by Caroline Humphreys,
Computer Studies Dept., Loughborough University.

Focal Areas of Interest

Software Design, Programming Behaviour and Debugging Methods; Human Factors, Human
Information Processing, Visual Perception and User Interface Design. Exploiting
Beneficlal Factors to Enhance Program Comprehension and Debugging.

I have always been interested in the ways and means of making programming and
debugging easler, faster and more efficlent; and in Investigating the factors that affect
them. Thus one of my primary goals is to design tools that emphasize and take
advantage of the factors that aid in the programming and debugging tasks. Especially
those that alleviate cognitive processing during the edit-compile-debug cycle.

Effects of Experience on Personal Perspective

I spent 3 years as a Software Engineer - designing, writing, testing and debugging
Process Control software. Thus I have strong personal experience of debugging real-life
software destined for actual customers, as well as noting how the other 5 Software
Engineers in the department tackled similar tasks on different projects. I have also
spent time, during the last 4 years devoted to research, observing the next generation
of graduate programmers; and asking them about their attitudes to software tools and
debugging methods. The views I express in this paper are a distillation of experience,
observation, consultation and discussion with others programmers of varying levels.

The Programmer®’s Main Problem

As you can see from Fig. 1, the programmer usually only has the code and his own mental
processes to ald in the program development and debugging tasks; since both activities
require the comparison of what the program code should say (as defined by the
programmer's own mental model of the code, and/or the code's specification) as opposed to
what {t actually does say/do In the editing environment. Program code has 2 principal
interacting elements :

- declaration of various program and procedural variables; and

- statements and program constructs using these variable values.

There are 2 other factors assocliated with program text : visual appearance - the way

that the code is laid out; and control flow - the order in which individual statements
are executed at run-time. The former affects program comprehension, and the latter {s
determined by the input data processed, which in turn determines those bugs that are

revealed. Testing only gives evidence of bugs that are present, but it may not reveal
all bugs. Debugging is the art of eliminating bugs, without introducing others.

Principle Aims of Research

Catering for the solo programmer who only has access to the minimum programming
toolbox, consisting of a screen editor (or editing environment like MacPascal) and
compiler. Designing tools that fit the programming task, and programmers' needs more
closely than existing tools; filling the gap with new tools and/or “extrapolating"

existing tools and concepts.
+ Using typographic effects to focus visual attention and alleviate those programming

tasks dependent on visual processing (spotlighting).

+ Reducing information processing burdens by providing essential information in
alternative formats (summary tables/menus).

* Supporting individual aesthetic requirements (layout aids).

In effect, increasing programmer satisfaction and productivity by reducing the
frugtration and mental burdens created by the inadequate tools provided for the
programming task.

NB. Spotlighting could be applied to other forms of electronic text, whereas summary
tables and layout alds refer mainly to procedural programming languages, such as Pascal,
which 1 have used for demonstration, since it is my preferred language. I['m not sure
whether they could be applied to logical languages with any beneficial effects!

2

Layout aids

Provide a selection of alternative layout patterns for each programming construct, and
let each user define his or her own matrix of layout patterns, and the number of spaces
for indenting each level. This would enable any program to be laid out according to
cerscnal preferences. Thus enhancing comprehension and visual (as well as mental)
rapport with that program.

Layout factors : indentation and the relative disposition of programming construct
sub-elements, such as if-then-else (3 sub-elements)

Could only alter indentation - leaving all other aspects alone, except for overflow lines
(eg. complex conditions occupying 2+ lines) - thus placing of comments and overall
layout pattern would retain its original features

Placing of AND & OR in complex conditional statements, reflects personal preference

Summary Tables

Frovide alternative views of all (or selected) data declarations within the program.
Possible ordering permutations include : original (ie. in order of declaration),
alphabetic, by data type, by parent procedure or function. For example, a list of all
variables within procedure "average" alphabetically.

Summary tables are intended to answer questions of the class: "What has variable X been
used for and where?".

Summary aid as an on the spot reference so you can get it right the first time.
Summaries of all data definitions used as information tables or as selection menus.
User control of updates for spotlighting and summary tables means removal of problems
of deciding when to update.

Summary tables - reserved word list could be useful when you need to refresh your
memory after previous working with another language or lull from this one.

Spotlighting

Provides “"automatic" highlighting of any given word throughout an electronic text, using
inverse video or colour. Thus spotlighting enables the user to see "all" instance:s of
the selected word situated within the current screen window, at one glance.

It is also be useful to know how many instances of the given word there are all
together, and to know which "position" the "current" word holds.

The use of such a “current instance/total instance count" indicator could be used as a
strategic (planning-wise) and/or pure orientation aid.

Spotlighting implies additional "movement" commands, such as, go to 6th spotlight, or go
forwards (or backwards) 4 spotlights.

Debugging

Most bugs can be associated with a specific variable. Thus the simplest way of finding
the bug is to examine all statements involving that variable.

This technique is called variable trail following, and is usually achieved using the
search mechanisms. I hope to demonstrate that Spotlighting makes variable trail
following much easier to do, and hopefully less frustrating!

Search Mechanism Principles

Existing principle - "“sequential, show/visit only one at a time, top-down search"

Spotlighting principle - “random access, show all at once, visit any using forwards
and/or backwards search"

\bo

L L R e 2

Spotlighting & Debugging

Seeing all instances at the same time has many advantages :

- you can quickly pick out the best place to start looking;
- freedom of movement : you can employ forward or backward search as needed;

- you can check individual statements in the instance sequence;
- you don't have to keep a mental map of “"instance locations", as it is provided for

you; thus cutting down on memory load;
- using 2 spotlights as boundaries, you can investigate intermediate statements without

“getting lost".
Correlating Spotlighting & Summary Tables With Errors

W
‘O
(ad
‘m
c
B
B

Common Errors During Coding
undeclared variables
redundant variables
misspelt variable names
infinite loops

redundant loops
inappropriate initialisation or modification of variable values

incorrect sequencing of "“dependent" variable assignments
missing/mis-matched comment brackets

incompatible format & content of procedure parameter lists
inappropriate passing/return of variable values via proc calls

DN I I
S Ji= Ei- Bie B Bie B 3= Y

<

« undeclared variables - if a variable has not been declared then its spotlight will
appear in the main body of the procedure, but not in the declaration area - thus it can

be detected by omission.
* redundant variables - the only spotlight will appear in the declaration area

* misspelt variable names - either you can detect this by checking what did not get
spotlighted, or by comparing the declared names list with the undeclared names list.

* infinite loops - terminating condition of the loop is never met, either the exit
condition is incorrectly defined, or the variable(s) that triggers the exit condition has
not been modified correctly within the loop

+ redundant loops - the initial condition of the loop is never met, either the entry
condition is incorrectly defined, or the variable(s) that triggers the entry condition has
not been modified correctly beforehand

* missing or non-initialisation of a variable before use - spotlighting this variable’'s
trail, and tracking it forwards or backwards should soon give an idea of where the

missing initialisation statement should go

- inappropriate initialisation or modification of variable values - putting the spotlight
on a variable, and then checking each of the assignment statements, quickly points you
to the cause of the error. In some cases the wrong operator or function is applied, and
in others the wrong (variable) value has been fed into the equation.

+ incorrect sequencing of “dependent" variable assignments - in the simplest case, one
variable's value is modified before being fed into the equation that modifies another
variable (or- itself). Getting these assignment statements in the wrong order can cause
all sorts of trouble

* missing/mis-matched comment brackets - if you arrange to spotlight anything that
appears between contiguous ‘(' and ')' symbols, disregarding any surplus ‘{' symbols, then
you should only spotlight “comment text", but if a ')' symbol has gone missing, then it
will be obvious where, since all intervening comment and program text will be put into
inverse video

Combining spotlighting and summary table methods
Knowing which names/words are undeclared makes it easy to choose which to spotlight.

Comparing the undeclared list with the declared list(s) should point out any
discrepancies in spelling eg. declaring “"time", and misspelling it as “ttime", "yime" etc.
in the text.

ACN)

(mpuiey Ol Tpepog O

program survey(input, oufrpuf):

var
time. vehicles. wait. maxwait : integer:

begin
wait = O:
vehicles := O:
read(signal:
repeat
if signal= 2 then
begin
time = time + 1.
if wait > maxwait
then maxwait := wait:
wait = wait + 1:
end:
if signal=1then
begin
vehicles := vehicles + 1:
end:
until signa/ =
writeln(Totdl hme- time. ‘secs’):
writeln(No. of vehicles=" vehlcles!
writeln(Max wait=", maxwait. ‘secs’):

[l

;.__

program surveylinput. output):
var
time, vehicles. wait. maxwait : integer:
begin
wait = 0:
vehicles := 0:
read(signal):
repeat
if signal = 2 then
begin
time = time * |
if wait > maxwait
then maxwait := wait:
wait := wait + |;
end:
if signal = 1 then
begin
vehicles := vehicles ¢ I
end:
until signal =
writeln(Total time=". time. ‘secs’):
writeln(No. of vehicles=". vehicles):

wﬁteln('Max wait=". maxwait. 'secs’):
en

,_ ﬂ’\/\,) /(I.Msf :

Y

Pfogrom survey(lnput output):
var
time. vehicles. wait. maxwait : integer:
begin
wait .= O:
vehicles = O:
read(signal):
repeat
if signal = 2 then
begin
time = time + I
if wait > maxwait
then maxwait = wait:
- wgit-=wait +1;- -
end:
if signal = 1 then
begin
vehicles := vehicles + 1: ™
end:
until signal =
writeln("Total time=", time. ‘secs’):

writeln(No. of vehicles=". vehjcles):
writeln(Max wait=". maxwait. 'secs):

end.

program survey(input. output):

var

time, vehicles. wait. maxwait : integer:
begin

wait := 0:

vehicles := 0

read (SERD: ™
repeat
if = 2 then
begin
time = time «+ I
if wait > maxwait
then maxwait = wait;
wait .= wait ¢+ |:
end
if =1 then
egln

vehicles := vehicles + |-
end: :

until m = Q;

writeh(Total time=". time. secs’):

writel(No. of vehides="_ vehicles):

writelr(Max wait=". maxwait, ‘secs’):
end.

/:’Q.'-V'C‘-J N V ukﬂ,\,

| pragram survey(input, output};
© o @ar .
tine, vehicles, wait, aaxwait : integer;
begin
vait ;= 0;
vehicles := 0;
ad(51gnal)

eat
1f signal = 2 then
begin
ime := time + 1:
if vait) soasait
then aaxuaxt = yait;
ualt = gait + 1;

if sxgual = 1 then
begin
vehicles := vehicles + 1;

end;
until sxgna
vriteln(Tine- span" tlne, secs');
vriteln('Vehicle-count=" , vehlcles)*
vriteln('Max—wait="', maxwait, 'secs');

~ ™ i@ RM\@/

Piogran survey(input, output);

EEE!L MINEA, vait, aaxait :
begin
vait : 0

integer;

.

1al)
repeat
if signal = 2 then

begin Y

uaxt aaxuaxf
then amait
vait := vait ¢

end;
if signal = 1 then

)
“fIneE - mInE ¢ 1;

untll sxgna

vriteln(xne-span-' 30, 'secs),
vriteln('Yehicle- count- g ehislesty
witeln("Max-vait=", naxvall, 'secs’);

end. E;;;igé ’i%iil tveha U,

uait;

Nae s cnanbidiseny

ORRIIN A Wi e mmr s

S s

[SUrvey Input; oﬁtput},
var
time, vehicles, vait, maxwait :
begin
vait := 0;
vegagles =)0
re EF[EE!!'
repea '
if E[jiﬂl = 2 then

beg
}ue i= time + |;

t) ramait
then aawait = wvait;
vait := wait + 1;

¢
if = 1 then
begln)
vehicles := vehicles + i;
untxl

end;

E{gq;!! = 9;
vriteln e-span=' tlne, 'secs’);
vriteln('Vehicle-comt=" , uehxcles)

yriteln('Maxwait=', saaait, secs*)

e, o el e
E;;gzg_ Ef;%!!&! N

integer:;

progran surveg(xnput output),
var - - -

B, IR, vait, aamalt : integer;
begin

wit := 0,_

re .);'

repea

if m = 2 then

oait aaxwaxf ,
then nawait := vait;
vait := wait ¢ 1;

i{;?fijEIJ - 1 then
ékﬁ&ﬁlﬁ%ﬁ = [@EINEE + 1;
unt%i
fot.

vriteln e-span" A6H, 'secs');

vriteln 1c e-count= flvehi s ieshR {)

grxteln -ualt- raxualt, "secs')
end.

—;Be
@Mf‘«dwimit n.ﬁZ_\AL_

\

\W»

S

p377) is stated as follows :

A traffic survey is conducted automatically by placing & detector at the road side
connected by data-links to a computer. Whenever a vehicle passes the detector, it
transmits a signal consisting of the number 1. A clock in the detector is started at
the beginning of the survey, and at one second intervals thereafter it transmits a
signal consisting of the number 2. At the end of the survey the detector transmits
a oO. Each signal 1is received by the computer as a single number (ie. it is
impossible for two signals to arrive at the same time). Design a program which reads
such a set of signals and outputs the following :

(a) the length of the survey period;

{b) the number of vehicles recorded,

(c) the length of the longest waiting period without a vehicle.

Fig 1 shows a complete, commented solution to Siddiqi‘'s signal problem - this can be
used for reference and comparison of the subsequent partial solutions, and the
variety of errors that spotlighting emphasizes in each case.

program survey (input, output);
var
signal : 0..2;
{ O indicates end of survey period,
1 indicates another vehicle has passed the detector,
2 indicates another second has passed.)

time, { length of survey period in seconds)

vehicles, { no. of vehicles detected so far)
wait, { time in seconds since last car was detected)
maxwait : integer; { maximum waiting period so far)

begin { initialise)

time := 0;
vehicles := 0;
wait := 0O;
maxwait := 0O;
repeat { read and process signals until end of survey period)
read (signal);
if signal = 2 then { another second has passed, so increment time counters)
begin
time := time + 1;
wait := wait + 1;
if wait > maxwait { adjust maxwait to new maximum wait value)
then maxwait := wait;
end;

if signal = 1 then
{ a vehicle has passed, so reset wait counter, and increment vehicle count)
begin
wait := O;
vehicles := vehicles + 1;
end;
until signal = O0; { end of survey period)
{ Print out required data)
writeln('Length of survey period is ' time, 'secs');
writeln("No. of vehicles recorded is *, vehicles);
writeln('Longest waiting period is ', maxwait, 'secs");
end.
Final Solution to Signal Problem

- R ¥ e bt

SRR LA L R e g e

@
kA
bR
&

In Fig. 2, the signal variable has been spotlighted - this shows up a variety of
associated bugs. As can clearly be seen, (with/without referring to the complete
solution in the Appendix) there is no declaration of the signal variable. Also, the
“read(signal);" statement is on the wrong line - it should be the first statement inside
the repeat loop - as it 1s the repeat loop forms an infinite loop (unless the first

signal value is 0).

Fig 3 : If the time and vehicles variables are spotlighted together, then it is easy to
check that each of the variables is incremented in the appropriate sequence, and that
they are independent from each other.

Fig 4 : If the signal, time and vehicles variables are spotlighted together, then this
makes the sequencing dependencies even more obvious, and subsequently easier to detect.

Thus, multiple spotlighting can be used to check for dependence between the selected
variables.

Figures 5 & 6 show a slightly different (partially developed) solution to the signal
problem, where some comments have been added and the code that deals with the timer
variables (time, wait and maxwait) has been made into a subprocedure called from within

the main program loop.

Fig 5 shows the effect of spotlighting, when the global (main program) variable "wait" 1is
selected - the declaration, initialisation, re-initialisation and procedure call statements
involving "wait® have all become highly visible. However, the "wait" variable statements
in the subprocedure remain camouflaged, because they are associated with the local
"wait" variable belonging to procedure inc_timers, which is not the same as the global
(main program) variable of the same name. If the procedural parameter 1list for
inc_timers had not included the "wait" variable, then the references would have referred
to the global variable (in this particular case) and the spotlighting would have
emphasized these instances of the "wait" variable as well.

Fig 6 shows the effect of spotlighting when it is applied to the task of matching
comment brackets - that is spotlighting all text that occurs between contiguous ‘'{' and
‘}* symbols. It is obvious that the '} symbol is missing from the "main program"
comment, since all the following statements have become spotlighted, until a matching ‘)’
is found, terminating the next comment.

Thus, the brevity of the examples give an iIndication of the interpretational power
afforded by cpotlighting - however, it must be remembered that in longer texts, this
power will Increase as the (potential) number of selected item instances increases. If
the selected item has a low density (few instances within a large chunk of text), then
it becomes increasingly easier, especially with unassisted visual scanning, to overlcok
some instances. The same is true for high densities, where the same effect occurs due
to information overlcad and confusion between successive statements (Card et. al. 1983).

The spotlight effect could also be used as a memory jogger, to guard against
uncompleted variable name changes eg. changing ‘i' to ‘index' but not checking that all
appropriate changes have been made. This would be particularly useful where the scope
of a variable extends across a large section of text, with a "blank area" in the middle.
For example, where a variable is spread across 3 screen “"pages", occurring on the first
and third pages, but not on the second page. The wider the gap - the more useful the
reminding effect.

i
)
i
3
b1
]

ARRDORNDEEENAS S WV rsv v 0 b0 et 0's)

One of the most frequent errors 1s the undeclared varjable error and also the non-
initialisation error. These can quite easlily be picked up with spotlighting. In the case
of the undeclared error, 1f you spotlight the variable name that hasn't been declared, then
it won't appear in the declaration list. It will appear throughout the program or
procedure text, but it won't actually occur in the declaration, so you can detect that by

omission.

A simpler way, of course, of detecting undeclared variables is to compile a list of all the
different variables and which procedures they belong to. Then any variable or any word
which does not occur in the declared variables list, or is not a reserved word or reserved
procedure/function name is obviously undeclared, and you can note it that way.

For the uninitialised variable error, all you have to do is to spotlight the required
variable and it will appear within the text, and then all you need is to check where the
first use of this variable appears, and declde where to put the Initialisation statement,

Jjust before it (the program counter) gets to that point.

The next tool I conceptusalized 1s the summary menu system - an automatic data dictionary
inventory, that is viewable from different perspectives. The purpose of this tool is to
collect all the different variable names, that you've declared throughout the program text,
and to arrange them in different ways so that you can see them at a glance, by looking at
the summary menus. So, for example, you could call up a variable name, and see which
procedures 1t appeared In, because sometimes you use the same variable name, and just pass
it across as a parameter. Or perhaps If it Is just a simple counting variable, you might
use the same variable name across different precedures for simplicity. %

[That's also an interesting polnt, because programmer's have their own pet names for
counting variables. I tend to use I and j for my countling varlables in “fer", "while" and
“repeat-until” loops - anything which needs an Intermediate incrementer which 1s simple

and of nc particular importance.]

Having a declaraticn list available as a menu Is very useful, because that way jyou can
look up whichever variable name you‘'re interested In and check the data type to make sure
that you're using the right functions and operdtors to manipulate it, and also tc check
that if you’re modifying a value and passing it to another variable, that it is assigned tc
a8 variable of the correct data type. For example if you create or modify a real value con
one side cof an assignment statement, and is assigned to an integer variabtle on the other
side. then you are gcing to lose value across the operation, because a real value will

truncate to an integer value.

Some people would argue that you den't need a summary menu tccl, because you've gct the
declaration list. Well that is true, but why should ycu expend time and (mental??! energy
screlling back tc the declaration area, and searching through for whatever variable ycu're
interested in. it's much simpler just to call up the chosen variable name on the suamary
menu and have it tell you what it is. That way there are no errors such as ycu thmknwa’
it's one data type and then finding out much later (when debugging perhaps’) that 1t .
something else. Alsc summary tables provide cther possibilities for checking. For examgple
you can find cut which other prccedures use the same varjable name, and if they are
declared as the same or different data types. Ferhaps In one procedure ycu've declared It
as an linteger, and in ancther ycu've declared it as a real data type. Now yocu may have
done that con purpese, or yocu may have wanted them both to be of the same data type. and
this way it is much easier tc check that ycu are using them ceonsistentiy. or (o vour

required plan.

Ali these things that I'm suggesting are ways cof making the actusl fprogrammins sid
detugging tasks eacier {for the programmer, belguse there (s such & Jot you fais I
remzmter. 2nd cbviousiy the more you heve ic remémber and deal with. the more mistakes

you osre going to make. Qbvicusly, anything that is going te make the actual burden
lighter is a bcnus, tc be wished for.

\OQ

ITTISN A s,

g
i
:

RSN L 0

Another very useful mechanism, 1 think, for the summary table system to work on lis the
user-defined procedure names and their parameter lists themselves sc that for example, a
quite ccmmon fault is fer programmer tc get the parameter list that goes with a procedure
call wreng, cor alternatively to get the order of the parameters themselves mixed. This
way you can call up the precedure name that you're interested in, and then also call up
it's parameter list as it was declared originally. That way it makes it absclutely clear
which parametéers are variable and which are actus) parameters, and which type each one 1s.
That way there should be no problem In assigning the right varisbles into the procedure
call’s parameter list - which again is a useful thing.

The foregoing applies to the user's own procedures, but it is perhaps even more useful for
the predefined procedures/functions which you are nct familiar with, when ycu need tc find
cut the parameter list. Usually to do this yocu have to go and look at the manual, which
is a chore that ncbedy likes deing. So in this case it's much simpler to call it up on the
menu, find cut it's parameter list and then just fill it In - linstead of having to go
through the aggravation of getting the manuals out and trying to find out more about the
required procedure. Also it should be error free, because you will have all the procedural
parameter list there and possibly if its a predefined procedure there may even be some
additional information on the actual use of the procedure. This all goes to making life

easier for the programmer.

program survey(input. output): program survey(input. output):
var var
time. vehicles. i maxwait : integer: time. vehicles. wait. maxwait : integer:
procedure inc_timers procedure inc_timers
(var time. wait. maxwait : integer): (var time. wait. maxwait : integer):
begin begin
time = time + 1: time := time + 1
wait .= wait + 1 wait == wait + 1:
if wait > maxwait if wait > maxwait
then-maxwait = wait: then maxwait = wait:
end: end:

begin { main program

@ =0
vehicles = O:

read(signal):
repeat { process signal }
if signal = 2 then

' in_c_timers(time. (E maxwait): inc_timers(time. wait. maxwait):
if 5"3’_“" = 1 then if signal = 1 then
beln begin
=0 wait = O;
VehiCIES = VehiCIES + l: vehicles = vehicles *];
end. end:
until signal = 0. .) . until signal = O:
wr!:e:ngglnggls?on— .':!ne. hs_e;:s ; writeln("Time-span=". time. 'secs’):
wniein! Vehicle~couni=. vehicles): writeln('Yehicle-count=". vehicles):
writeln(Max-wait=". maxwait. 'secs’); writeln(Max-wait=" moxwaif. “secs’):
end. end.)) :
Eig 5. Wait (global varicble only) .Fig 6.: Matching Comment Brackets

\-9

4
PR,

sanilie

Fig 7 Fig & Fig 9 Fig 10
Component List Program Survey inc timers EM,
program survey time time time
procedure inc_timers vehicles walt vehicles

wait maxwait wailt
maxwailt Undeclared maxwait
Fig 11 Undeclared inc” timers
Alphabet ical- {signal time
maxwait 2 ' wait
time 2 Fig 12 maxwait
vehicles 1 Undeclared
wait 2 signal

"Figs 7-12 show summary lists that could be produced after interpreting the structure

produced through interrogation of the program text of Figs 5 & 6. Fig 7 shows the
component 1list - the full list of all named procedures and functions, including the
program name. Selecting a name shown on the component list would cause the -
associated child lists to become available - either in declaration or alphabetical

order; with or without the associated undeclared variable lists.

Thus Fig 8 results when selecting the declaration ordered variable list of “program
survey" from Fig 7; and Fig 9 results when selecting the declaration ordered variable
list of “procedure inc_timers" from Fig 7. Note that the lower portion of both Figs 8

& 9 1s devoted to undeclared variables.

In contrast, Fig 10 defines the list of declared variables that are accessible and can

be used, in terms of global and local variables, when seen from within inc_timers.

Fig 11 shows the (entire) alphabetical list of varilables declared throughout the
program. Notice that each variable is assoclated with a number, if it is declared more
than once - selecting any individual variable name would cause a list of 1its “parental"
procedure names (denoting declaration origin), to pop up, with or without an A\,

accompanying definition of the variable's type status (depending on the viewer's
requirements).

There are 2 ways of doing the entire declaration list - either listing all declarations
and allocate them as given, and list all undeclared item separately in a "floating"

list; or list everything in assoclation with its parent list, noting declared items

first and undeclared items second, so it is easy to tell where each item appeared, and

hence to allocate it.

Bibliography

Cakir A, Hart D J & Stewart TF M
Visual Display Terminals
John Wiley & Sons 1980

Card S X, Moran T P & Newell A

The psychology of human-computer
Interaction

Lawrence Erlbaum, 1983

Davies S F

Skill levels and strategic differences
in plan comprehension and implementation
in programming

People and Computers V, 1989, p487-502

Green TR G
Programming as cognitive activity
in Human Interaction with Computers,

edited by Smith H T & Green T R G
Academic FPress : London, 1980

(ﬂ;Green TR G, Sime ME & Fitter M J

Cm\

The art of notation

in Computing Skills and the \User
Interface, edited by Coombs M J & ALty J
L

Academic Fress : London, 1981

Hulme

Extracting information from printed and
electronically presented text

in Fundamentals of human-computer
Interaction, edited by Monk A

Academic Fress, 1985, 35-42

Monk A
Personal Browser
Interacting with Computers 1(2) Aug 1989

Siddiqi J I A
Frogram designer behaviour
People & Computers I, 1985, p369-379

Suchman L

Plans and situated actions : the problem
of human-machine communication

Cambridge, 1987

Thompson P

Visual perception : an
system with limited bandwidth
in Fundamentals of human-comput er
interaction, edited by Monk A

Academic FPress, 1985, 5-33

intelligent

Treisman A

Perceptual grouping and attention in
visual search for features and objects
Journal of Experimental FPsychology
human perception and performance, 1982,
8(2) 194-214

J

/

van Laar
Evaluating a colour coding support tool
Feople and Computers V, 1989, p215-230

van Nes F L

Space, colour and typography on visual
display terminals

BIT 1986, 5(2) 99-118

Watkinson N S

The evaluation of dynamic human-computer
Interaction
Unpublished Fh.D.
Studies Department,
University, 1988.

Thesis, Computer
Loughborough

Winfield I
Human Resources and Computing
Heinemann : London, 1986

Wright P & Lickorish A
Colour cues as location aids in lengthy

texts on screen and paper
BIT 1988, 7(1) 11-30

