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Abstract. In this paper we present preliminary findings regarding the possible connection between
the programming language and the paradigm behind it, and programmers’ tendency to adopt an
external or internal perspective of the system they develop. According to the findings, when working
with the visual, inter-object language of live sequence charts (LSC), programmers tend to adopt
an external and usability-oriented view of the system, while when working with a language that
is intra-object in nature, they tend to adopt an internal and implementation-oriented view of
the system. To explain the findings, we present a cognitive model of programming that is based
on that of Adelson and Soloway [1]. Our model suggests that the new paradigm of scenario-
based programming, upon which LSC is based, combined with concrete interface programming
and the ability to directly simulate the scenarios, allows the programmer to build systems while
concentrating more on the user side. This work has two main implications. First, we believe that
our findings on the programmers’ viewpoint are interesting in themselves. Second, it sheds light on
how the LSC approach supports programming that requires less work in the solution domain. This
can be applicable in areas such as novice and end-user programming.

1 Introduction

Programming 1 is the main activity through which computerized solutions to real-world prob-
lems are built. To construct a usable artifact, the programmer 2 first needs to determine what
the system should do, who the user of this system is, what the interaction between the user and
the system should look like, and so on. These parameters belong to what is defined in the soft-
ware engineering (SWE) literature as the problem domain. Once these “external” characteristics
are defined, the programmer can go on to design and implement the internal structure of the
artifact. This activity occurs within what the SWE literature defines as the solution domain.

Though the transfer from the problem domain to the solution domain is usually presented
as a linear process, in practice it is more cyclic, as demonstrated by the model of Adelson
and Soloway [1]. The design and the implementation phases bring up issues that were not
considered earlier, point to ambiguous requirements, and so on. This sends the programmer back
to the problem domain, and so on. In [17], Tang et. al. refer to moving between the problem
and the solution domains as context switching. They argue that extensive context switching
reduces software design effectiveness. Also, the comparison Adelson and Soloway make between
novice and experts in [1] might indicate that novices are less capable of moving back and forth
between the problem domain and the solution domain. Hence, context switching has a negative
effect on performance in design tasks, but in particular on the performance of less experienced
programmers. The conclusion is that all programmers, especially the less experienced ones,
could benefit from programming means that require less context switching.

In this paper we present our preliminary findings regarding the possible connection be-
tween the programming language one uses and the tendency to adopt a more ’user’- or a more
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1 Throughout this paper, we refer to programming in the broader sense, as an activity that involves both the
design and the implementation of a computerized artifact.

2 We refer to programmer as the one who carries out the activity of programming, as defined above.



’programmer’-oriented perspective of the artifact one builds. Our findings show that when work-
ing with the language of live sequence charts (LSC) [4], programmers tend to adopt a more user
oriented perspective of the system they develop. After presenting the findings, we suggest a
cognitive model of programming that stems from the behaviors that Adelson and Soloway [1]
use to describe the role of domain experience in software design. Our model relates the findings
to the three main concepts of LSC, and suggests that together these concepts form a program-
ming means that enables the programmer to spend more time in the problem domain, and also
reduces the number of context switchings.

The rest of this paper is organized as follows. In the next section we present LSC and its
development environment, and compare the approach behind LSC with the approach behind
Statecharts [6]. In Section 3 we describe the study, present our model and discuss the findings
in its light. We present our conclusions in Section 4.

2 Live sequence charts

In this section we introduce the language of live-sequence charts (LSC) and its development
environment, the Play-Engine (PE). We review the three main concepts of the language and
the PE: the underlying paradigm, which is also compared to the paradigm behind Statecharts,
the play-in method, and the play-out method.

2.1 A language for reactive system development

Live sequence charts and the Play-Engine present a novel approach to the specification, design
and implementation of reactive systems [11]. The language was originally introduced in [4] and
was extended significantly in [7]. Reactive systems are ones that continuously respond to stim-
uli of events from the external environment [11]. Examples include control systems, household
electronic goods, aerospace and automotive systems, communication networks, and so on. The
complexity of reactive systems stems mainly from the intricate interactions between the sys-
tem and its environment, as well as between the system components themselves, so the task
of specifying the system behavior becomes very complicated. In order to specify the behavior
of reactive systems in a way that is formal and precise, temporal-logic (TL) languages, such
as LTL [15], were developed. However, such languages are less convenient as design tools and
are mainly used for verification. LSC offers a specification language that is intended for design,
without compromising rigor and formality. Like temporal-logic languages, LSC deals with spec-
ifying system behavior over a given system model, and does not deal with designing the system
itself. LSC is supplemented with an operational semantics that enables one to execute/simulate
the specification (see section 2.4). Thus, LSC actually functions as a high-level programming
language.

2.2 Scenario-based programming

The paradigm and inter-object specification. LSC introduces a new paradigm, termed
scenario-based programming, implemented in a language that uses visual, diagrammatic syntax.
The main decomposition tool that the language offers is the scenario. In the abstract sense,
a scenario describes a series of actions that compose a certain functionality of the system, as
seen by the user, and may include possible, necessary or forbidden actions. For example, cash
withdrawal is a basic functionality of an ATM machine. A scenario that describes the system
behavior in cash withdrawal, will describe the interactions between the person withdrawing
money and the system, and between the internal parts of the system.

Since a scenario usually involves multiple objects — ”one story for all relevant objects”
([10], p. 4) — scenario-based programming is inter-object by nature. Returning to the ATM, a
scenario-based specification of an ATM will describe the ATM as a collection of such user-view
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inter-object scenarios. Scenarios in LSC are also multi-modal in nature, and among other things
can specify events that can or must occur, as wells ones that are forbidden

Syntactically, a scenario is implemented in a live sequence chart. Roughly speaking, the chart
consists of vertical lines (’lifelines’) that represent objects, and horizontal lines that represent
interactions between the objects, where the flow of time is top down (see Figure 1), messages
between them, and conditions. The visual representation emphasizes the general structure of
the scenario, the flow of control and the interactions between the objects.

Figure 1. A simple LSC describing a scenario of stopping the cruise control in a car.

Statecharts, the intra-object approach and OOP. As opposed to this inter-object ap-
proach, the more classical intra-object approach remains within the level of the object or the
component. It describes the internal behavior of each object in the various states of the system
— ”all pieces of stories for one object” ([10], p. 4) — and eventually describes the system as a
collection of these objects.

Such an intra-object approach for specification is supported by many languages, and in par-
ticulary by the visual language of Statecharts [6], which is a part of the UML standard and is sup-
ported by various tools, such as IBM Rhapsody (http://www-01.ibm.com/software/awdtools/rhapsody/).
Rhapsody can translate the statecharts diagrams into, e.g., C, C++ or Java. The translation
of Statecharts into OO is natural. Since OOP is based upon separating the system into objects
and implementing each of the objects independently, it is intra-object by nature.

2.3 The play-in method

LSC is supplemented with a method for building the scenario based specification over a real or
a mock-up GUI of the system — the play-in method [10]. With play-in, the user specifies the
scenarios in a way that is close to how real interaction with the system occurs. This approach
allows the user 3 to apply his/her knowledge in a concrete manner, without the need to transform
the knowledge into another representation (i.e., a programming language) in order to embed
it in the system. Thus, users who are not familiar with LSC (or even with other programming
languages) can program the behavior of an artifact relatively easily.

3 We refer to the one using the PE as ’user’, though he/she is actually programming the system. This is to
emphasize that this kind of programming does not necessarily requires one to be a ’real’ programmer.
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2.4 The play-out method

LSC has an operational semantics that is implemented by the play-out method (originally in-
troduced in [9]), and is also implemented in the Play-Engine. Play-out makes the specification
directly executable/simulatable. When simulating the behavior, the user is responsible for car-
rying out the actions of the potential end-user4 and the environment of the system. Play-out
keeps track of the user/external actions, and responds to them according to the specification.
The play-out algorithm interacts with the GUI to reflect the state of the system on the fly. Also,
the PE presents a graphical representation of the state of all the scenarios that are now active.
For more details see [10].

3 The Study

In this section we present an empirical study conducted as part of a larger research effort, in
which we investigate educational issues involved in the learning of the language of live sequence
charts (LSC), and its accompanying paradigm, scenario based programming (see section 2).
The findings reported upon here are taken from the pilot phase of this larger effort. The section
is organized as follows. First, we present the research question. We then describe the research
setting, which includes the course that was at the basis of the work, the population and the data
collection tools. We describe the analyses that we carried out, and their results, and, finally, we
present our enhancement of the model of Adelson and Soloway [1] and discuss the findings in
its light.

3.1 The research question

One of the issues that we study in the larger research effort is how working with LSC affects
the way programmers solve programming problems.

The research question that we investigate in this paper is whether working with LSC leads
programmers to adopt a more user-oriented perspective. This question highlights one aspect
of programming problem solving behavior. In Schoenfeld’s framework for problem solving [16],
this aspect falls into the categories of belief systems, i.e., the psychological aspects that affect
one’s performance: control, which refers to the meta-cognitive tasks involved in problem solving,
and heuristics, which refers to strategies and techniques for making progress.

3.2 Research setting

The setting of the study was based on the course ”Executable Visual Languages for System De-
velopment”, given by the third-listed author in the Fall term of 2010-2011 at the Weizmann Insti-
tute of Science (see the course site: http://www.wisdom.weizmann.ac.il/ michalk/VisLang2011/).
This course presented various aspects of reactive system development, and concentrated on the
two aforementioned approaches to the specification, design and implementation of systems:
the intra-object approach (through Statecharts) and the inter-object approach (through LSC).
About half of the course was devoted to Statecharts and the intra-object approach, and about
half to LSC and the inter-object approach.

Course assignments included two implementation projects, one of them to be carried out
using Statecharts, and the other to be carried out using LSC. The students were directed to
choose a system (of reasonable complexity) that they find appropriate, and implement it in
both languages. Students projects included, among other things, modeling the blood’s glucose
level control system, modeling animals behavior, and modeling a variety of electronic devices.
Students were allowed to choose between modeling exactly the same parts of the system in both
languages, or modeling one part of it in Statecharts and the other in LSC. With some variations,

4 In the context of the PE we use the term end-user to denote the target user of the artifact.
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this course is given for the third time. A report on the first experience of teaching the course
can be found in [8].

The student population was composed of graduate students studying towards an M.Sc or
Ph.D in computer science. Seven students taking the course participated in our study. Among
these, four were CS graduates, two had degrees in Biology/Bioinformatics, and one in EE.
Some students had practical experience in the software industry, and some had only academic
experience. The main programming experience of the students was with OOP, through C++
and Java, except for the EE graduate who was mainly familiar with procedural programming
in C. Students’ age varied between (roughly) 25 and 35.

Data collection tools included:
i) Pre-interviews: These were mainly used to characterize the student’s previous programming
experience. During the interviews, we also gave each student a programming task, which is less
relevant in the context of the present paper.
ii) Student presentations: Each student presented his/her project to the course team.
iii) Student projects: After the presentations, we analyzed the LSC projects in order to be
familiar with them before the post-interviews, and to identify interesting patterns.
iv) Post interviews: Each interview was divided into two parts. In the first part, we asked each
student about the LSC project, and in the second we asked the student to solve a programming
task, using a think-aloud protocol.

The post interviews were semi-structured. The first part included the following questions to
the student: Why did you choose this specific project? What differentiates your LSC project
from your Statecharts project? Why did you take this specific design decisions? How did you
understand the main semantic idioms? Regarding each topic, we used follow-up open ques-
tions when we felt that more interesting information could be revealed, or to verify that our
interpretation of the answer was correct.

The second part was more open, during which we mainly followed-up on the student’s
behavior while solving a programming task with minimal interference. However, if we saw that
the student missed some important issues, we noted that, and tried to figure out with the
student why this issue was neglected. Also, if the student got stuck, we noted that as well and
guided the student to progress. Once the student presented a design that seemed sufficient for
solving the problem, we stopped the student’s work. (Some of the students were not able to
create a satisfactory solution.) The interviews were held in Hebrew, and were conducted by the
first-listed author. They were fully transcribed, to facilitate future analysis.

The primary source of data for the analysis presented in this paper were these post-course
interviews. Since the post-interviews were mainly held around the projects, being familiar with
the projects before the interviews was an obvious preparation step. The presentations helped
with that, providing us with a brief summary of each project, so it was easier to ’dive into’ the
projects for further analysis. The pre-course interview helped us become familiar with the stu-
dents and their background. This assisted us both on the interpersonal level, and in interpreting
students’ answers and behavior.

3.3 Analysis

Our conjecture was that working with LSC leads programmers to adopt a user-oriented per-
spective. The goal of the analysis was to check if the empirical data significantly supported this
conjecture.

The analysis is presented as follows. We define the reference groups, and then give an accu-
rate operational definition for a user/programmer perspective. Following this, we use a content
analysis protocol on the transcripts of the interviews, in order to obtain quantitative measures,
and then analyze the interviews using a purely qualitative method.

Reference group. The perspective of the students while working on the programming task
given at the post-course interview was used as a reference point; this was an indication of stu-
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dent’s ’normal’ perspective when working on programming tasks. In the task, the students were
not directed to choose any specific methodology or tool, so they were free to choose how to
approach the problem. Thus, we believe that the past programming experience was the main
factor that affected the student’s problem solving behavior. The task itself and the way it was
executed created a built-in bias towards user perspective:
i) The given task included a significant component of user interaction. This should have encour-
aged the students to refer to the usability of the system.
ii) We stopped students who presented a sufficient design, and did not ask them to actually
implement the system. Obviously, the design phase requires much more usability analysis than
the implementation phase.
This bias should strengthen the significance of the difference between the two groups, if found.

Statecharts as a special case. The Statecharts projects were used as a triangulation means
for the student’s regular perspective. This is a special case, because Statecharts is a specific
programming language and we have no data on the influence of working with this language on
a programmer’s perspective. However, in light of the intra-object nature of Statecharts, and
its correspondence with OOP, it is reasonable to believe that working with Statecharts can be
a good approximation to working with an OO programming language. Since most students’
main programming experience is with OOP, we believe that there should be a good correlation
between the Statecharts results and the post-course interview programming task results.

Operational definition of user and programmer perspective. To operationalize each
perspective, we defined it by means of a few categories. Recall that we refer to programming
in the broader sense, as an activity that includes both the design and implementation of the
solution. We usually refer to the one carrying out this activity as the programmer, but when
the activity is mainly a design activity we sometimes use the term designer.

A user perspective is an external and usability-oriented one. It is characterized by referring to
the usability of the designed system (the artifact), referring to the artifact as a means, focusing
on aspects of the problem that the artifact should solve, seeing the artifact as a ’black-box’, and
verifying it using external criteria.

A programmer perspective is an internal and implementation-oriented one. It is characterized
by referring to the artifact as a goal, focusing on aspects of the solution, seeing the artifact as
a ’white-box’, constructing a mental model thereof, and verifying it using internal criteria.

Content analysis. The purpose of the content analysis was to give us a quantified measure
as to the extent to which each student tended to adopt each of the two perspectives, the user-
perspective and programmer-perspective. The content analysis followed Chi’s method for verbal
analysis [3].

We coded as ’user perspective’ utterances that included references to user needs as a pa-
rameter in decisions; descriptions that used terms taken from the problem domain (professional
terms, tasks descriptions, external constraints); references to external features of the artifact
(such as GUI); the use of external characteristics to describe the state of the artifact; the use
of use-cases to verify the artifact; self evidence of the student as holding a user-perspective.

We coded as ’programmer perspective’ utterances that included references to implementation
issues as a parameter in decisions; descriptions that used terms taken from the solution space
(architecture, data structures, , etc.); internal simulation of the artifact (as evidence for a
mental model); references to aspects of the artifact that do not have an external expression;
’extra’-investment in the implementation (for example, in ’aesthetics’ of the program); the use
of internal states to describe the state of the artifact; the use of assertions and unit testing to
verify the artifact; self evidence of the student as holding a programmer-perspective.

The grain level for the analysis was ’an argument’. Usually, there was a one-to-one corre-
spondence between ’an argument’ and ’a turn’; i.e., a specific answer to a question given by the
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interviewer. However, if a specific answer contained several different arguments, we coded each
of the different arguments (this was quite rare). On the other hand, we did not code an answer
to a question that was given as a follow-up to previous answer, if the answer merely continued
the argument of the original answer.

The results of the content analysis are presented in Table 1, where we refer to the three
activities on which we tested student’s perspective: the Statecharts project, the LSC project,
and the programming task that was posed in the post interview. For each activity, we show for
each student the number of utterances coded as ’user perspective’, and the number of utterances
coded as ’programmer perspective’.

Table 1. Comparing the number of utterances classified as User or Programmer perspective.

As can be seen in Table 1, regarding the LSC activity, the amount of utterances coded
under each group is almost equivalent for most students, with the exception of student 4 and
student 6. For student 4, the number of utterances coded as ’programmer perspective’ is much
higher than the number of utterances coded as ’user perspective’. For student 6, the number of
utterances coded as ’user perspective’ seems significantly higher than the number of utterances
coded as ’programmer perspective’. Regarding the Statecharts activity, and even more for the
programming task activity, the results seem more biased toward the ’programmer perspective’.

However, we can refer to these results only as an initial indication. First, the number of
students was small. Second, the verbal analysis method has inherent limitations: looking only
at verbal fragments might fail in capturing perspectives expressed in a more holistic manner.
In addition, the global goals of the interviews sometimes interfered with the more specific
objective of looking into the issue of user/programmer perspective: When looking into the
issue of user/programmer perspective, spontaneousness is a major factor. However, one of the
objectives of the interviews (in the context of the wider research and not in the context of
this paper) was also to collect data regarding students’ understanding of the LSC semantics.
Hence, some of the questions necessarily led the students to refer to the implementation details
and ’wear the programmer hat’. This induced non-spontaneous utterances that were coded as
’programmer perspective’.

Pure qualitative analysis. Based on the limitations of content analysis, we turn to a pure-
qualitative analysis, which is focused on three categories: The first is the students’ self reflection
on their perspective. During the interviews, there were questions that enabled the students to
express their subjective opinion regrading the perspective that they held with respect to some
of the activities. The two remaining categories are taken from the set of categories included in
the operational definition of user/programmer perspective. (For lack of space, we exemplify only
two categories from the operational definition). By mapping student utterances according to
these three categories, we shed more light on their perspective when working with Statecharts,
with LSC, and during the solution of the programming task. This mapping is demonstrated by
the excerpts of a few students.
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Students reflecting on their perception. During the interviews, we asked the students how they
perceived their role with respect to the system they had developed. Each student was asked
this question once, in the context of either LSC or in the context of the programming task. The
results were remarkably consistent: all the students who were asked this with respect to LSC
reported a ’user-oriented’ perspective, while all the students who were asked this with respect
to the programming task reported a ’programmer-oriented’ perspective. This is demonstrated
by the answers of two of the students (I = interviewer, S = student):

Student 3 was asked this question with respect to the programming task:
I: ”[...] and do you think of yourself as the one who needs to implement this system, or as the
one who needs to use it?”
S3: ”As the one who needs to implement it. It’s a habit. I used to develop data bases, so I go
straight to the solution and I don’t think of the interface.”

Student 7 was asked this question with respect to LSC:
I: ”And when you worked on the interface of the radio, did you think of it as the one who uses
the radio, or as the one who implements it?”
S7: ”As the user.”

External vs. internal oriented description of system processes. When describing their work with
LSC, the students revealed an external viewpoint of the system. Their answers also demonstrated
how the external viewpoint is reflected through scenarios. This is exemplified by the following
excerpt, taken from the interview with student 3.
S3: ”I’ve observed the system and thought what processes can occur. The leopard is chasing
after them, they are running away... perceptible scenarios that can happen, like I’m sitting there
and watching it.”
On the other hand, when working on the programming task, this student mainly referred to
the internal parts of the system (in fact, we had to ask this student directly about the user
interface):
S3: ”[...] so the basis is the data base, with some ESP script that will update the SQL table,
and will take care of the synchronization.”

Focusing on the aspects of the problem vs focusing on aspects of the solution. When describing
their work with LSC, the students tended to focus on aspects of the problem domain. In the
following excerpt, student 2 described a certain property of the biological system that her LSC
project modeled:
S2: ”What happens is that each of the organs updates the glucose level, because of the hormones
level, etc. Actually it takes glucose, disassembles glycogen to glucose, accumulates glucose, and
then when it takes glucose from the blood it reduces the glucose level. This happens with three
organs. ”

However, when working on the programming task, the student’s approach is much more
solution oriented:
S2: ”[...] there are on-line forms that you insert and gets the input... instead of something that
sits locally on your computer... something on-line that the server sits in one place and gets
frequent updates... then you count the votes. Is that what you meant?”
I: ”Maybe, I don’t know how these things work.”
S2: ”Many votes from different...” [the student is not sure how to proceed with the solution.]
I: ”And when you think of this question, do you think as the one who needs to use it or...”
S2: [interrupting the interviewer] ”No, as the one who needs to implement it.”

To summarize the findings, there is evidence that working with LSC leads programmers
to adopt a more external and usability-oriented perspective. These findings were triangulated
from two directions: a content analysis of the transcripts of students’ interviews, and a pure
qualitative analysis of students’ interviews.

8



3.4 Discussion

We now turn to explaining our results in light of the paradigm upon which LSC is based. The
two following examples illustrate how the paradigm and the methodology that accompanies it
can affect the programmer’s perspective.

The effect of paradigm. Because the intra-object approach focuses on the behavior of each
object, a scenario must be broken down according to the boundaries of the participating objects.
This yields an ’extra’ difficulty that stems directly from the specific solution domain, and is not
related to the problem domain. In contrast, scenario-based programming allows the programmer
to capture an entire scenario in a single chart, so this ’extra’ effort is avoided.

This is demonstrated by the following excerpt, taken from the interview held with student
1 (the student referred to Statecharts through its development environment, IBM Rhapsody):
I: ”What was the effect of the programming approach?”
S1: ”[...] there were places in Rhapsody were we had to divide the code between several places
and it was extremely unnatural, you need to think how to make the scenario while referring to
each object. In LSC you just make one chart that captures it all.”

Thus, with LSC the programmer can spend less time and effort in the solution domain, so
he/she can invest more time and effort in the problem domain. This should result in a more
user-oriented perspective.

The effect of methodology. A programming paradigm is usually accompanied with a correspond-
ing methodology that suggests how to carry out an effective development process. One of the
most used OO methodologies starts with writing use-cases as a means for capturing the func-
tional and behavioral requirements (see for example [12]). From these, the architecture of the
system is derived. The internal behavior of each object is then implemented. This methodology
makes a clear separation between the problem domain and the solution domain, and the result
can be that the programmer will eventually focus on implementation issues and will neglect the
usability issues.

This is demonstrated in the following excerpt, taken from the interview held with student
7. This student is a very experienced OO developer, who is working in a leading IT company.
I: ”So, you took a behavior, and modeled it?” (referring to the work in LSC)
S7: ”Yes.”
I: ”And do you work in the same way when you work with OO?”
S7: ”No, only when I do use-cases.”
I: ”So, you do use-cases and then transfer them into the objects?”
S7: ”Yes, and then when it becomes objects I stop thinking on the scenarios. Maybe that’s the
problem...”

Thus, following the accepted OO methodology can lead the programmer to adopt a more
implementation-oriented perspective.

These two examples suggest that scenario-based programming leads the programmer to
think about the solution in terms of the external behavior, while the intra-object approach and
the OOD methodology can lead the programmer to concentrate more on the internal behavior.
This explanation emphasizes the role of the paradigm (and the methodology), but programming
is much more than just problem decomposition.

To provide a more complete explanation, we show how the main concepts behind LSC sup-
port a model of programming that describes how domain knowledge can be used for incremental
construction of an artifact. Using this model we can suggest an explanation for the way the char-
acteristics of LSC promote user-oriented programming. The model we suggest stems from that
of Adelson and Soloway [1]. We first briefly review that model and proceed to describe our
enhancement thereof. We then provide a possible explanation for our findings based on the
enhanced model.
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The model of Adelson and Soloway Adelson and Soloway [1] observed expert and novice
designers working on problems taken from familiar and unfamiliar domains. They described the
main activities involved in the design process, which they called Behaviors, and studied the way
the designers’ experience affected the way those behaviors were carried out. The behaviors were
described in a way that emphasizes their interconnection; i.e., how one behavior facilitated the
other. Together, the behaviors can be seen as creating a model of programming. In its essence,
this model describes programming as an iterative refinement process, where at each stage the
design-in-progress is simulated, and the gap between the simulation results and the expected
results leads to the next refinement cycle. We now briefly describe these behaviors.

The first behavior is the Formation of Mental Models. Mental models ”can be thought as
the designer’s internal design-in-progress” ([1], p. 5), which supports internal simulation of the
design. So, a working mental model is the basis for simulation.

The second behavior is the Systematic Expansion of Mental Models. The mental model starts
at a very abstract level, and becomes more accurate and complete as the design progresses.

The third behavior is the Simulation of Mental Models. The simulation allows the designer
to assess the difference between the current state of the design-in-progress (held as a mental
model) and the ultimate solution (the goal state). Then, proper steps can be taken to reduce
the difference.

The forth behavior is Representing Constraints. The constraints limit the mental repre-
sentation of the problem, hence reducing the cognitive load by helping us concentrate on the
important properties of the mental model.

We omit two other behaviors that we find less essential in this context: Retrieving Labels for
Plans, and Note Making.

The behaviors complete each other in the following manner: the constraints facilitate the
creation of a working mental model, which is the key for simulation; simulation allows one to
realize what is missing in the design. This leads to another cycle in which the design is improved.

Our enhancement of Adelson and Soloway’s model We claim that LSC allows the pro-
grammer to ’imitate’ this iterative refinement through simulation process without the need to
build a working mental model and simulate it5. Hence, the programmer can enter the solution
domain less often, and spend more time in the problem domain. Our claim stems from a model
of programming that connects the three main concepts behind LSC, and explains how they
complement each other. The model relies on the assumptions that we make on these concepts,
but it also reinforces them. We now briefly describe the concepts, the assumptions that we make
about these concepts, and the resulting model.

Scenario-based programming (SBP). Our first assumption is that SBP allows the programmer
to think of the system they develop in the level of the external behavior. In ([10], p. 3), it is
argued that ”when people think about reactive systems, their thoughts fall very naturally into
the realm of scenarios of behavior” (emphasized in the source). This is also supported by
studies that refer to tasks as the way users tend to think of the system they interact with.
For example, Nardi [13] emphasizes the importance of task-oriented programming languages for
end-user programming. Ben-Ari and Yeshno state in [2] that end-users’ learning of artifacts like
a word processor is mostly task-oriented (though their claim is that such kind of learning falls
short in the long term). Obviously, tasks are kind of scenarios that the system should fulfill. The
postulate that users think through scenarios also underlies the accepted OOD methodology, in
which the design cycle starts by listing the use cases. Use cases define the external behavior
of the system. SBP is a programming paradigm that is based on decomposing the system into
pieces of behavior; i.e., use cases can be represented directly as code.

5 This statement takes this claim to the extreme. We do think that the programmer holds an internal mental
model of the artifact, but the question is how much this model is essential in the process.
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The play-in method is a direct manipulation programming interface that enables to program
the scenarios by ’doing’ them. We note that direct manipulation is a broad concept, but the
basic idea is what Eisenberg ([5], p. 5) calls ”Integrating Mind-work and Hand-work”. Norman
[14] argues that ”the naturalness of a mapping is related to the directness of the mapping”.
In our context, this implies that a direct manipulation interface should be more ’natural’. We
interpret ’natural’ as something that is close to how the user thinks. Based on this, our second
assumption is that play-in allows the user to add the scenarios to the artifact without the need
to ’drop’ the user perspective and replace it with a ’programmer’ perspective.

The play-out method enables us to execute/simulate the artifact, compare the results to the
expected behavior, and realize what behaviors should be added or refined. Our third assump-
tion is that this can be done without the need to maintain an internal model of the artifact,
because play-out executes the scenarios directly. This assumption stems directly from the first
assumption that the scenarios capture the behavior in a way that is close to the way the user
captures it.

The enhanced model. We now tie these three concepts together to form a model that stems from
the model of Adelson and Soloway, but replaces some of its components. The scenario-based
paradigm allows us to decompose the system into scenarios, and the LSC language gives the
syntactic idioms that enable the direct representation of these scenarios as code. In the model
of Adelson and Soloway, this takes the place of representing constraints on the behavior of the
artifact. Play-in allows one to add these constraints into the artifact, hence it enables expending
the design-in-progress. In the original model, this corresponds to systematic expansion of mental
models. Finally, play-out allows one to simulate the design-in-progress directly, and to realize
what behaviors should be added or refined. This takes the place of simulation of mental models.

To conclude, the three concepts together form a model of programming, which enables
a systematic expansion of an artifact by comparing the simulation to the external behavior,
without the need to hold an internal mental model of the design-in-progress.

Interpreting the results in the light of Adelson and Soloway’s model and its en-
hancement Programming requires the programmer to work in both the problem and the
solution domain. The model of Adelson and Soloway emphasizes that this is a cyclic, not a
linear, process: The programmer needs to consider user/external aspects when drawing con-
straints (which are derived from use cases, system requirements, etc.); then he/she needs to
hold the programmer/internal perspective to construct the mental model and simulate it; then
again, he/she needs to consider the user perspective when comparing the simulation to the
expected (=external) behavior. The model of Adelson and Soloway puts the most weight on
issues that are related to the solution domain — the way the mental model is built, expanded
and simulated.

The enhanced model suggests that with LSC the overall rationale of iterative refinement
through simulation remains the same, but that with LSC most weight is placed on behaviors
that are related to the problem domain. This leads the programmer to hold a ’usability-oriented’
perspective, and it is consistent with our findings on LSC.

4 Summary and conclusions

We have studied the question of whether working with the language of live sequence charts (LSC)
leads programmers to adopt a more user-oriented perspective. Our findings demonstrate that
when working with LSC the students’ perspective was more user-oriented than their perspective
when working with conventional programming means. In way of relating these findings to the
language itself, we presented a cognitive model of programming, suggesting that the combination
of the main concepts behind LSC requires programmers to make less context switching between
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the problem and the solution domain and enables programmers to concentrate more on the
former.

From this result, we derive the following conclusions:
i) Reducing context switching has a positive effect on performance, and is especially desired
in the case of novices. Hence, we believe that the main concepts of LSC are very suitable for
novice programmers.
ii) Holding a more user-oriented perspective can help programmers create more usable artifacts
whose specification is more complete and better defined. Our data showed some indication of
this, but it requires further study.
iii) In the context of end-users, combining user perspective with the ability to apply domain
knowledge directly, through scenario-based and direct interface programming, renders the LSC
approach especially useful in the domain of end-user programming.
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