
Schema Detection and Beacon-Based Classification for
Algorithm Recognition

Ahmad Taherkhani

Department of Computer Science and Engineering
Aalto University

P.O.Box 15400, FI-00076 AALTO, Finland
ahmad.taherkhani@aalto.fi

Abstract. We introduce a method for recognizing algorithms based on programming schemas,
which are generic conceptual knowledge with details abstracted out, and beacons, which are key
statements that suggest existence of specific structures in code. First, the method detects the
schemas related to the implementation of the target algorithm and next it computes the charac-
teristics and algorithm-specific beacons from the detected code and uses them as the learning data
to construct a classification tree for recognizing new unseen instances.
We demonstrate the method and its performance for searching, heap, basic tree traversal and
graph algorithms implemented in Java (N = 222). The results show that 94.1% of the schemas
are detected correctly and the estimated accuracy of the classification measured by leave-one-out
cross-validation technique is 97.3%.

Keywords: POP-II.B. algorithm recognition, detecting programming schemas, program
comprehension; POP-I.C. automated assessment

1 Introduction

Programming courses require students to implement a large number of practical exercises. Sev-
eral automatic assessment tools have been developed to assist teachers in assessing students’
work. These tools are capable of analyzing the structure of the program and coding style, verify-
ing that the program works correctly, assessing its run time efficiency, etc. (see, e.g., WebCat [7],
CourseMarker [10], Boss [13] and Scheme-robo [20]). Two recent surveys ([1] and [11]) on the
functionalities of these tools show that none of them can reliably analyze what kind of algo-
rithms students use to achieve the required functionality and give feedback on how the algorithm
is implemented. For example, if students are required to implement a specific sorting algorithm,
such as Quicksort, the existing tools can verify by black-box testing that the solution sorts a
sequence of integers correctly. However, using these tools, it is very clumsy and unreliable to say
whether the implementation conforms to the specification (i.e., whether the algorithm is indeed
the required Quicksort, or say Mergesort). This is what we are addressing in our research.

We discuss a combined method for algorithm recognition implemented in a prototype in-
strument called Aari system (an Automatic Algorithm Recognition Instrument). The method
combines two different approaches: 1) the schema detection approach, where the implementa-
tion of the target algorithm in the given program is detected, and 2) the classification approach,
which includes computing characteristics and algorithm-specific beacons that are used as the
learning data to train a classifier that is able to classify new previously unseen implementations
of algorithms. The main contribution of this paper is to show that the method we have previously
presented, as discussed in the following, can be extended to further types of algorithms.

1.1 Background

In our previous work, we have introduced different methods for algorithm recognition and con-
ducted several experiments to show the performance of the methods. We analyzed a set of

different sorting algorithm implementations (Bubble sort, Insertion sort, Selection sort, Merge-
sort, and Quicksort) and discerned various characteristics, such as Halstead metrics, McCabe
complexity and roles of variables in the algorithmic code, which can be used to recognize these
algorithms. We built a manually tailored classification tree and conducted an experiment show-
ing that the accuracy of the classification tree was 86% [28]. The next step was to apply the
C4.5 algorithm [17] to select the best split from the characteristics and build an automatic
classification tree that performs better. Evaluated by leave-one-out cross-validation technique,
we showed that the estimated accuracy of the classification was 98.1% [26]. The data sets for
these two studies (N = 287 and N = 209, respectively) were collected mainly from textbooks
and the Web. We validated our method by authentic students’ sorting algorithm implemen-
tations (N = 192) and concluded that for the aforementioned sorting algorithms, the average
accuracy of the method was about 90% [27]. In addition, using the same data set, we introduced
a categorization principle for student-implemented sorting algorithms and their variations [29].

We developed a new method based on programming schemas and evaluated its performance
with a data set consisting of the five sorting algorithm implementations from the data sets
discussed above (N = 368). The method detected 88.3% of the implementations correctly [25].

In this paper, we discuss a combined method where first algorithmic schemas are detected
from the target program, and then the characteristics and beacons of the selected algorithmic
schemas are further analyzed to build a classification tree. Our previous method for building
a classification tree computed the characteristics and beacons from the whole given program.
The problem with that method was that the given program might (and often do) include pieces
of code irrelevant to the implementation of the target algorithm. By first detecting the piece of
code in the given program that implements the target algorithm, and further process only this
detected code, the combined method allows us to overcome this limitation and thus achieve a
better reliability and performance. While the performance of our methods were tested by sorting
algorithms in our previous experiments, the main contribution of this paper is to define schemas
and beacons for a new data set consisting of the implementations of searching, heap, basic tree
traversal and graph algorithms and apply the combined method to this data to evaluate its
performance. The promising results show the generalizability of the proposed method.

We start by presenting related work in Section 2. Section 3 gives an overview of the method.
Section 4 presents the data set and discusses the method more specifically for the algorithms of
the data set. In Section 5, we introduce the classification tree generated for recognizing these
algorithms. Section 6 presents the results followed by a discussion in Section 7. The paper ends
in some conclusions and future work.

2 Related work

Program comprehension (PC) has been studied from both theoretical and practical points of
view. Theoretical studies focus on understanding how programmers comprehend programs, what
elements affect the comprehension process, what stages there are in the progress from novice to
expert, etc. Different models for PC have been introduced. We will get back to some of these
studies in Section 3 when discussing the theoretical background of our method.

Practical studies on PC have focused on developing techniques to facilitate the comprehen-
sion process. These techniques have been influenced by the models resulted from the theoretical
studies. The characteristics that influence cognitive strategies used by programmers also influ-
ence the requirements for supporting tools [24]. By extracting the knowledge from the given
program, PC tools can be applied to different problems such as teaching novices, generating
documentation from code, restructuring programs and code reuse [16].

PC techniques are mainly based on stereotypical programming plans (also called schemas,
idioms, etc.), which are stored in a knowledge base. Understanding the given program is carried
out by analyzing the code to find pieces that match the set of plans from the knowledge base.
Extracting and matching plans can be performed in top-down, bottom-up or hybrid manner.

Top-down approaches start by the goal of the target program and use it to find the correct
plans from the knowledge base. This results in a higher probability to find the right plans from
the knowledge base and thus make the searching and matching more effective. However, these
approaches need the specification of the target program which are not necessarily available (see,
as an example, [12]). In bottom-up approaches, the process of searching and matching is started
from small plans and continued to bigger ones. Because small plans can be part of different
bigger plans, this technique may become ineffective as the size of knowledge base grows (see,
for example, [9]). In hybrid approaches both techniques are used (see, e.g., [16]).

The purpose of algorithm recognition is to determine what algorithm a piece of code imple-
ments. Therefore, algorithm recognition facilitates PC. Algorithm recognition can be applied in
various tasks including assessing students’ work (as discussed in this paper), detecting plagia-
rism (see, e.g., [8,18]), detecting clones in code (see, for example [2,19]) and source to source
program translation via abstraction and reimplementation [30]. In [15], Metzger and Wen discuss
a method for replacing algorithms with parallel algorithms that perform the same task. This
type of code optimization can be applied to develop compilers for parallel processing machines.

3 Method

In this section, we discuss the combined method very briefly. For a more detailed discussion on
the schema detection and classification approaches see [25] and [26], respectively.

The combined method has two main phases illustrated in Figure 1. In the first phase the
schemas for the target algorithms are detected (along with the beacons necessary for detecting
the schemas). As the result, the code related to the implementation of the algorithm in question
is selected for analysis and other non-relevant code is not processed further. The second phase
includes extracting and storing the characteristics and beacons1, building a classification tree
and evaluating the estimated accuracy of the classification. In this phase, a classifier is trained to
learn how each algorithm class can be associated with specific characteristics and beacons. Thus,
the implementations of the learning data are labeled by the correct type of the corresponding
algorithm (this is denoted by the dashed arrow in Figure 1). It should be noted that Steps 3 and
4 in the figure are independent from each other. This means that before we build a classification
tree, we can evaluate the performance of the classification. Note also that Steps 1 and 2 of the
figure are executed as many times as there are instances in the data set, whereas Steps 3 and 4
only once.

Figure 2 illustrates the process of classifying a new unseen data set after the training process
of Figure 1. There are two main differences between this process and the training process. First,
it starts with testing that the given program works correctly (only error-free inputs will be
processed). This step is not needed in the training process of Figure 1, because the data is
known. Second, it gets the classification tree already constructed in the training process and
ends with recognizing the previously unseen instances of the given data set. These differences are
highlighted by gray rectangles in Figure 2. In this paper, we present an experiment that covers
the steps illustrated by Figure 1, that is, we discuss the process of building a classification tree
and evaluating the estimated accuracy of the classification using leave-one-out cross-validation.
We have previously conducted an experiment that covers the steps presented in Figure 2 for
sorting algorithms (see [27]). Conducting a similar experiment is out of the scope of this paper
and will be reported elsewhere.

3.1 Schemas and beacons

Schemas and beacons are at the core of many program comprehension models. Soloway and
Ehrlich define plans (which correspond to schemas in their terminology) as stereotypical action

1 Basically, characteristics, such as software metrics, are the common features that are computed and used for
all fields of algorithms, whereas beacons are the features specific to a particular field of algorithm.

 Yes

 No

3. Build a

decision tree

2. Extract and

store

characteristics
and beacons

1. Detect

schemas and

related beacons

Input
program

Decision
tree

Schema
detected?

Type-

annotated

vector

representation

4. Evaluate

accuracy of

classification

Detected

algorithm

Original
program

Evaluation

results

Type

information

Fig. 1. The process of building a decision tree and evaluating the estimated accuracy of the
classification

 Yes Yes

 No No

2. Extract and
store

characteristics
and beacons

1. Detect

schemas and

related beacons

Input

program
Decision

tree

Schema

detected?

Unlabeled

vector

representation

3. Recognize

unseen

instances

Detected

algorithm

Original
program

Labeled

algorithm

implementation

s

0. Black-box

testing of

correctness
Correct?

Terminate

Fig. 2. An overview of the process of recognizing previously unseen algorithm implementations

structures [23]. Détienne defines schemas as formalized knowledge structures in programs [6].
Programmers create and store schemas at different levels of abstraction, and developing schemas
is what turns novices into experts. Beacons provide a link between source code and the process
of verifying the hypotheses driven from the source code, helping programmers to accept or reject
their hypotheses about the code. Beacons suggest the existence of a particular structure in code
and experts use them to comprehend programs [4]. In [23], Soloway and Ehrlich define critical
lines (which can be thought of as beacons) as highly informative and representative lines that
are strong indications of a specific plan.

We utilize schemas and beacons to recognize algorithms automatically. The idea is to store
abstracted stereotypical implementations of algorithms into a knowledge base of an automatic
tool so that the tool can use them to recognize different implementations of those algorithms
despite differences in implementation details. This is a similar process as what the experts do
while trying to comprehend new programs. We will explain this for our data set in Section 4.

3.2 Creating characteristic and beacon vectors

We compute three types of characteristics: numerical characteristics, truth value characteris-
tics and structural characteristics. The numerical characteristics include number of operators,
number of operands, number of unique operators, number of unique operands, program length
(total number of operators + total number of operands), program vocabulary (number of unique
operators + number of unique operands), lines of code, number of assignment statements, cyclo-
matic complexity (i.e., McCabe complexity [14]), number of variables, number of loops, number
of nested loops and number of blocks. Truth value characteristics consist of recursive (whether
the target algorithm uses recursion), tail recursive, using an auxiliary array (for algorithms that
use arrays) and roles of variables (automatically recognized roles of the variables, see [22]).

The structural characteristics help us identify language constructs and different patterns
and compute algorithm-specific beacons. These include block/loop information, loop counter
information, and dependency information.

We have implemented the method in Aari system. Aari detects schemas and computes the
characteristics and beacons for programs written in Java. The input algorithm implementations
are converted into characteristic and beacon vectors, which we call technical definitions of
the implementations. These vectors are given to the C4.5 algorithm [17], which selects the
characteristics that best separate the instances of the data set and builds a classification tree.

4 Experiment

We applied the method to searching, heap, basic tree traversal and graph algorithms.

4.1 The analyzed algorithms and data set

We analyzed 10 algorithms from different fields. Since analyzing a bigger set of algorithms is
beyond the scope of this paper, our goal was to examine a set of well-known basic algorithms
that are commonly discussed in data structures and algorithms courses and textbooks.

We collected a total of 222 algorithm implementations from various textbooks and edu-
cational web pages. Table 1 shows the number and the percentage of the implementations of
the analyzed algorithms, as well as the abbreviation used for each algorithm in this paper. As
indicated in the table, we analyzed the recursive version of depth first search algorithm (DFS)
and the non-recursive versions of heap insertion and remove algorithms2. Many of the collected
programs, especially those collected from the Web, in addition to the code related to the imple-
mentation of the algorithm, included non-relevant code as well, such as code related to reading
in user provided data, printing the processed data and testing the implementation.

Table 1. The number and percentage of the implementations of the analyzed algorithms. The
last column shows the abbreviation used for the algorithms

Algorithm Number (%) Abbreviation

Non-recursive BinSearch 36 (16%) NBS

Recursive BinSearch 13 (6%) RBS

Depth First Search (recursive) 15 (7%) DFS

Inorder traversal 23 (10%) InT

Preorder traversal 24 (11%) PreT

Postorder traversal 22 (10%) PostT

Heap insertion (non-recursive) 22 (10%) HeapI

Heap remove (non-recursive) 21 (9%) HeapR

Dijkstra’s algorithm 23 (10%) Dijkstra

Floyd’s algorithm 23 (10%) Floyd

Total 222 -

4.2 Schemas for the algorithms

Figure 3 illustrates the schemas for the analyzed algorithms. We examined all the implemen-
tations of the data set and determined an implementational definition for each algorithm. We
define an implementational definition of an algorithm as the abstraction of its implementation,
which reflects the functionality and structure of the algorithm. Implementational definitions
do not include implementation details, such as the type of loops or variables, but only high
level structural and functional features of algorithms. The schemas depicted in Figure 3 further
abstract the implementational definitions of the analyzed algorithms.

2 DFS has also a well-established non-recursive version, and heap insertion and remove algorithms have also
well-established recursive versions. However, we could not gather enough samples of these versions for analysis.

 Binary search (non-recursive) Binary search (recursive) Depth first search (recursive)

 Preorder traversal Inorder traversal Postorder traversal

 Heap insert (non-recursive) Heap remove (non-recursive) Dijkstra's algorithm

 Floyd's algorithm

LOOP

 MIDPOINT_SEARCH

MIDPOINT_SEARCH
RECURSIVE_CALL
RECURSIVE_CALL

LOOP

 RECURSIVE_CALL

LOOP

 LOOP

 LOOP

 DISTANCE_UPDATING

STATEMENT

RECURSIVE_CALL

RECURSIVE_CALL

RECURSIVE_CALL

STATEMENT

RECURSIVE_CALL

RECURSIVE_CALL

RECURSIVE_CALL
STATEMENT

PARENT_INDEX_SEARCH

LOOP

 PARENT_INDEX_SEARCH

LOOP

 LEFT_CHILD_INDEX_SEARCH

 RIGHT_CHILD_INDEX_SEARCH

LOOP

 LOOP

 DISTANCE_UPDATING

Fig. 3. The schemas for the analyzed algorithms

For the algorithms of the data set that have well-established recursive and non-recursive
versions, the version we analyzed is indicated in the parentheses after their name. Furthermore,
indentations indicate the nesting relationship between the loops and blocks.

In the following, we elaborate on some parts of the schemas with semantic meaning and
explain how they are computed.

– In the schema of binary search algorithm: MIDPOINT SEARCH involves computing the
midpoint of a sorted sequence, for example, mid = (low + high)/2.

– In the schemas of preorder, inorder and postorder traversal algorithms: STATEMENT
denotes whatever function (examining, printing, updating) that may be performed when a
node of a binary tree is visited.

– In the schema of heap insertion algorithm: PARENT INDEX SEARCH denotes com-
puting the index of the parent of a given node with index i, which is i/2.

– In the schema of heap remove algorithm: LEFT CHILD INDEX SEARCH for a node
with index i is 2i and RIGHT CHILD INDEX SEARCH correspondingly 2i+1. Some
implementations compute the index of the right child of a node by simply incrementing the
index of its left child by one, instead of computing it using the index of the node3.

– In the schemas of Dijkstra’s and Floyd’s algorithms: existence of the operation denoted by
DISTANCE UPDATING (also called relaxation for Dijkstra’s algorithm, e.g., in [5]) in
code is investigated by examining whether the given implementation includes the following
statements in the nested loops: if v.d > u.d+w(u, v) then v.d = u.d+w(u, v). That is, the
process of DISTANCE UPDATING for an edge (u, v) involves examining whether the so
far found shortest path to the vertex v can be improved by going through the vertex u, and
updating the shortest path to v if this is the case.

3 If the tree root is at index 0, the parent, left child and right child of each node is located in (i− 1)/2, 2i+ 1
and 2i+ 2. We have considered these cases in the implementation of our schema detection method as well.

Note that the schemas of Figure 3 show abstract typical implementations of the algorithms
and that slightly different implementations are also possible. For example, some implementations
of non-recursive heap remove algorithm might perform LEFT CHILD INDEX SEARCH
once before the loop and at the end of the loop. As another example, some implementations of
Dijkstra’s algorithm might have more than one loop within the outer loop. We have not shown
these details in the schemas but considered them in the implementation of Aari system.

4.3 Beacons

We analyzed the implementations of the data set to find the following set of beacons specific
to the analyzed algorithms that can be used for identifying them. We automatically compute
these beacons and give them, along with the computed characteristics discussed in Section 3,
to the C4.5 algorithm which selects the best separating beacons and characteristics to generate
a decision tree for the classification task. We will present the decision tree in Section 5.

– MPSL: MidPoint Search in a Loop; whether the implementation of the algorithm includes
searching midpoint of an array within a loop. This mainly indicates implementations of
non-recursive binary search algorithm.

– MPBR: MidPoint Before Recursion; whether the implementation includes searching mid-
point before two recursive calls. This mainly indicates implementations of recursive binary
search algorithm.

– REIL: REcursion In Loop; whether the implementation includes a recursive call within a
loop. This mainly indicates implementations of depth first search algorithm.

– TSRC : Two Sequential Recursive Calls; whether the implementation includes two sequen-
tial recursive calls. This mainly indicates implementations of preorder and postorder tree
traversal algorithms and separates these implementations from implementations of inorder
traversal algorithm.

– TPNI : Two Parent Nodes Index search; whether the implementation includes searching the
indexes of two parent nodes before and after a loop. This mainly indicates implementations
of heap insertion algorithm.

– LRCI : Left and Right Child node Index search; whether the implementation includes search-
ing the indexes of the left and right child nodes within a loop. This mainly indicates imple-
mentations of heap remove algorithm.

– DUTWL: Distance Update within TWo nested Loops; whether the implementation includes
distance updating (i.e., relaxation) performed within two nested loops. This mainly indicates
implementations of Dijkstra’s algorithm.

– DUTHL: Distance Update within THree nested Loops; whether the implementation includes
distance updating performed within three nested loops. This mainly indicates implementa-
tions of Floyd’s algorithm.

5 Classification tree

Figure 4 illustrates the decision tree classifier generated by the C4.5 algorithm4. Using Aari,
we automatically analyzed all the implementations of the data set (Table 1) and stored the
computed characteristics and beacons in a database. As depicted in Figure 1, because the
implementations of the data set are used as the training data and the decision tree is generated
based on supervised learning, each implementation is labeled by its correct type in the database.

In the decision tree, the internal nodes, which are depicted by the white ellipses, include the
tests that determine the splits. The leaves are illustrated by the gray rectangles and indicate the

4 J48 (from Weka data mining software), which is an open source Java implementation of the C4.5 algorithm is
used to construct the classification tree. URL: http://www.cs.waikato.ac.nz/∼ml/weka/

http://www.cs.waikato.ac.nz/~ml/weka/

 1 0

 <=17 >17

 1 0 1 0

 1 0 1 0

 1 0

 1 0

 1 0

TSRC

MPSL

LRCI

PreT

InT

NBS

TailR

PostT

Operands

MPBR

RBS

DUTHL

TPNI

HeapR

Floyd

HeapI Recur

DFS Dijkstra

Fig. 4. The classification tree constructed by the C4.5 algorithm on the algorithm implemen-
tations presented in Table 1 (see the table for the abbreviations)

analyzed algorithms. The information of the arcs shows the outcome of the test performed in
each internal node and determines which child is visited next. The decision tree has 10 leaves and
9 internal nodes (with the root included). From the beacons discussed in Section 4, the following
six beacons are selected by the C4.5 algorithm to be used as the tests in the classification tree:
MPSL, TSRC, MPBR, LRCI, DUTHL and TPNI. In addition, the characteristics Recursive,
Tail recursive and number of operands are used as the tests in the decision tree as well.

Table 2. Definition of the analyzed algorithms as rules based on the classification tree

Algorithm class Rule

Non-recursive BinSearch MPSL
Recursive BinSearch ¬ MPSL ∧ Operands > 17 ∧ MPBR
Depth first search ¬ MPSL ∧ Operands > 17 ∧ ¬ MPBR ∧ ¬ LRCI ∧ ¬ DUTHL ∧ ¬ TPNI ∧ Recur
Inorder traversal ¬ MPSL ∧ Operands <= 17 ∧ ¬ TSRC
Preorder traversal ¬ MPSL ∧ Operands <= 17 ∧ TSRC ∧ TailR
Postorder traversal ¬ MPSL ∧ Operands <= 17 ∧ TSRC ∧ ¬ TailR
Heap insertion ¬ MPSL ∧ Operands > 17 ∧ ¬ MPBR ∧ ¬ LRCI ∧ ¬ DUTHL ∧ TPNI
Heap remove ¬ MPSL ∧ Operands > 17 ∧ ¬ MPBR ∧ LRCI
Dijkstra’s algorithm ¬ MPSL ∧ Operands > 17 ∧ ¬ MPBR ∧ ¬ LRCI ∧ ¬ DUTHL ∧ ¬ TPNI ∧ ¬ Recur
Floyd’s algorithm ¬ MPSL ∧ Operands > 17 ∧ ¬ MPBR ∧ ¬ LRCI ∧ DUTHL

Based on the decision tree of Figure 4, we can describe each analyzed algorithm (i.e., each
class represented as a leaf in the decision tree) as a set of rules [17]. Each set of rules presents the
beacon-based technical definition of the corresponding algorithm and covers the path from the
root to the leaf for that algorithm. These rules are shown in Table 2. We can, for example, express

the implementations of Floyd’s algorithm as those that do not have MPSL, have number of
operand more than 17, do not have MPBR, do not have LRCI and include DUTHL.

6 Results

We evaluated both the performance of the schema detection method and the estimated accuracy
of the classification using the data set described in Table 1. We first present the results of the
schema detection followed by the results of the estimated accuracy of the classification.

6.1 Results of schema detection

All the algorithmic schemas of the implementations of recursive and non-recursive binary search,
as well as the implementations of inorder and postorder traversal algorithms are detected cor-
rectly. For DFS, preorder traversal and heap insertion implementations the accuracy of the
schema detection method is more than 90%. For the rest of the implementations, the accuracy
of the method is more than 80%. From all the 222 implementations, the schemas for 209 imple-
mentations are detected correctly, that is, the average accuracy of the method is 94,1%. Table 3
summarizes these results.

Table 3. The number and percent of the correctly detected algorithmic schemas

Algorithm Detected (%) Not detected (%) Total

Non-recursive BinSearch 36 (100) 0 (0) 36

Recursive BinSearch 13 (100) 0 (0) 13

Depth first search 14 (93,3) 1 (6,7) 15

Inorder traversal 23 (100) 0 (0) 23

Preorder traversal 23 (95,8) 1 (4,2) 24

Postorder traversal 22 (100) 0 (0) 22

Heap insertion 21 (95,5) 1 (4,5) 22

Heap remove 18 (85,7) 3 (14,3) 21

Dijkstra’s algorithm 19 (82,6) 4 (17,4) 23

Floyd’s algorithm 20 (87,0) 3 (13,0) 23

Total 209 (94,1) 13 (5,9) 222

6.2 Results of the evaluation of the estimated classification accuracy

Cross-validation is a well-known technique for estimating the performance of a classification
model. Cross-validation has different types. In k-fold cross-validation, the data set is partitioned
into k subsets that include both training and validation data. The accuracy of the classification is
evaluated by constructing k different classification trees using k−1 subsets as the training set to
construct a classification tree and one subset as the validation set to evaluate the performance of
the constructed tree. We evaluated the estimated accuracy of the classification using leave-one-
out cross-validation technique, where a single instance of the data set is used as the validation
data and the remaining instances are used as the training data. Therefore, the training set
includes N − 1 instances and the validation set a single instance. This process is repeated such
that each instance of the data set is used once as the validation data. Our data set includes 222
implementations, and therefore 222 classification trees are constructed using 221 instances as
the training data and one instance as the validation data for each tree.

The results of the evaluation of the estimated classification accuracy are summarized in
Table 4. The column Total shows the total number of the implementations of each algorithm. The
column Correct (%) shows the number and percentage of the correctly classified implementations

of each algorithm and the column False (%) indicates the number and percentage of the falsely
classified implementations of each algorithm. The last column shows what type the falsely
classified implementations are recognized as. From 222 instances of the data set, 216 instances
are classified correctly (97.3%) and 6 instances are classified falsely (2.7%).

Table 4. The estimated accuracy of the classification evaluated by leave-one-out cross-validation
technique

Algorithm Correct (%) False (%) Total Falsely recognized as

Non-recursive BinSearch 35 (97,2) 1 (2,8) 36 Inorder traversal

Recursive BinSearch 13 (100) 0 (0) 13 -

Depth first search 14 (93,3) 1 (6,7) 15 Dijkstra

Inorder traversal 23 (100) 0 (0) 23 -

Preorder traversal 23 (95,8) 1 (4,2) 24 Inorder traversal

Postorder traversal 22 (100) 0 (0) 22 -

Heap insertion 21 (95,5) 1 (4,5) 22 Depth first search

Heap remove 21 (100) 0 (0) 21 -

Dijkstra’s algorithm 22 (95,7) 1 (4,3) 23 Depth first search

Floyd’s algorithm 22 (95,7) 1 (4,3) 23 Dijkstra

Total 216 (97,3) 6 (2,7) 222 -

7 Discussion

Programming courses require students to solve several practical exercises. Assessing students’
solutions especially in large courses is a time-consuming task. A teacher can use the presented
method to asses these solutions in the cases where the assignments require students to implement
a specific algorithm. This allows the teacher to concentrate on the solutions that do not conform
to the specification, instead of assessing all the implementations manually. The method can also
be further developed to recognize variations of student-implemented algorithms and provide
informative feedback to students about their solutions. This can be done by examining students’
solutions and identifying the variations they implement. We have done it in the case of sorting
algorithms and reported the results in [29]. Aari system can be trained by the implementations
of these variations to identify previously unseen similar variations. Another application of the
method in computer science education is detecting plagiarism in students’ work, which can be
achieved with slight modifications.

The method has potential to be applied to software engineering related tasks as well. In clone
detection, as an example, the task is to locate similar pieces of code. Another example includes
program translation via abstraction and reimplementation [30], which is a well-known technique
for source to source translation. With appropriate further developments, our method is capable
of performing these tasks for the implementations that are stored in its knowledge base. However,
since these activities involve dealing with large-scale software (unlike the implementations in
computer science education), the performance of the method in this context should be evaluated
with empirical tests before drawing further conclusions.

As discussed in Section 2, we previously applied the schema detection and classification
methods to sorting algorithms (see [25] and [26], respectively). In this paper, we have demon-
strated that these methods are generalizable by applying them to the algorithms from various
fields with practically the same accuracy. This suggests that we can safely claim that the meth-
ods can be extended to cover more algorithms from different fields with fairly high accuracy. The
main steps of extending the method to cover other types of algorithms include analyzing those
algorithms to identify the schemas that can represent them and the beacons that can strongly

indicate these algorithms. Once these are defined, the next step is to develop a tool that can
automatically recognize these schemas and extract the beacons (along with the characteristics
discussed in Section 3) to be used by the C4.5 algorithm for constructing a suitable classification
tree.

In Section 4, we introduced eight beacons for the algorithms discussed in this paper. Two of
these beacons, namely REIL and DUTWL are not used by the C4.5 algorithm in constructing
the decision tree of Figure 4. These beacons indicate implementations of depth first search and
Dijkstra’s algorithms respectively. These two algorithms are distinguished by the characteristic
Recursive and thus their indicative beacons are left out from the tree. The C4.5 algorithm
selects attributes that can discriminate between different classes of data in the best possible
way, trying to keep the size of the tree as small as possible.

As in our previous studies, we used the tool developed by C. Bishop and C. G. Johnson [3]
for automatically detecting roles of variables in this study. The tool, however, did not detect
the roles of the variables in the implementations of the data set accurately enough. With a
more accurate role recognizer, roles of variables could have played a distinguishing role in the
decision tree of Figure 4 (like they did in our previous studies). For example, the low index
in implementations of binary search (e.g., low = middle + 1) has a follower role ([21]) that
could be a good beacon for identifying these implementations. We are looking for a better role
detector for our future work.

8 Conclusion and future work

We have discussed a combination of two different methods for algorithm recognition and evalu-
ated their performance. As Tables 3 and 4 show, both methods perform very accurately (94,1%
and 97,3% of accuracy, respectively). In the combined method, the schema detection method
first identifies the code related to the implementation of the algorithm in question. This im-
proves the reliability of the recognition, since the characteristics and beacons are computed from
the detected schemas, and not from the whole program.

In real-life programming projects, programmers often use existing standard libraries. How-
ever, in a data structures and algorithms course, students need to implement many programming
assignments themselves. Aari system can help instructors to check that students have imple-
mented the required algorithm that conforms to the specification. Before this, the correctness
of the solutions can be tested by an automatic assessment tool that performs black-box testing.

We applied our methods to sorting algorithms in [25] and [26]. In this paper we have shown
that the methods can be extended to cover other fields of algorithms. As a direction of future
work, we will further develop the methods to deal with more algorithms and their variations.

9 Acknowledgment

The author would like to thank Lauri Malmi and Ari Korhonen for their valuable comments.

References

1. K. Ala-Mutka. A survey of automated assessment approaches for programming assignments. Computer
Science Education, 15(2):83–102, 2005.

2. S. Bellon, R. Koschke, G. Antoniol, J. Krinke, and E. Merlo. Comparison and evaluation of clone detection
tools. IEEE Transactions on Software Engineering, 33:577–591, 2007.

3. C. Bishop and C. G. Johnson. Assessing roles of variables by program analysis. In Proceedings of the 5th
Baltic Sea Conference on Computing Education Research, Koli, Finland, 17–20 November, pages 131–136.
University of Joensuu, Finland, 2005.

4. R. Brooks. Towards a theory of the comprehension of computer programs. International Journal of Man-
Machine Studies, 18(6):543–554, 1983.

5. T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction to Algorithms. The MIT Press,
Cambridge, Massachusetts, USA, 2009.

6. F. Détienne. Expert programming knowledge: A schema-based approach. In J.-M. Hoc, T. R. G. Green,
R. Samurcay, and D. J. Gilmore, editors, Psychology of Programming, pages 205–222. Academic Press, Lon-
don, 1990.

7. S. H. Edwards. Rethinking computer science education from a test-first perspective. In Companion of the 18th
annual ACM SIGPLAN conference on Object-oriented programming, systems, languages, and applications,
Anaheim, California, USA, 26–30 October, pages 148–155. ACM, New York, NY, USA, 2003.

8. B. S. Elenbogen and N. Seliya. Detecting outsourced student programming assignments. In Journal of
Computing Sciences in Colleges, pages 50–57. ACM, 2007.

9. M. Harandi and J. Ning. Knowledge-based program analysis. Software IEEE, 7(4):74–81, 1990.
10. C. Higgins, P. Symeonidis, and A. Tsintsifas. The marking system for CourseMaster. In Proceedings of the

7th annual conference on Innovation and Technology in Computer Science Education, Aarhus, Denmark,
24–26 June, pages 46–50. ACM, New York, NY, USA, 2002.

11. P. Ihantola, V. Karavirta, O. Seppälä, and T. Ahoniemi. Review of recent systems for automatic assessment
of programming assignments. In Proceedings of the 10th Koli Calling International Conference on Computing
Education Research (Koli Calling 2010), 2010.

12. W. L. Johnson and E. Soloway. Proust: Knowledge-based program understanding. In Proceedings of the
7th international conference on Software engineering, Orlando, Florida, USA, 26–29 March, pages 369–380.
IEEE Press Piscataway, NJ, USA, 1984.

13. M. Joy, N. Griffiths, and R. Boyatt. The BOSS online submission and assessment system. ACM Journal on
Educational Resources in Computing, 5(3):1–28, 2005.

14. T. J. McCabe. A complexity measure. IEEE Transactions on Software Engineering, SE-2:308–320, 1976.
15. R. Metzger and Z. Wen. Automatic Algorithm Recognition and Replacement: A New Approach to Program

Optimization. The MIT Press, 2000.
16. A. Quilici. A memory-based approach to recognizing programming plans. Communications of the ACM,

37(5):84–93, 1994.
17. J. R. Quinlan. C4.5: Programs for Machine Learning. Morgan Kaufmann, USA, 1993.
18. S. S. Robinson and M. L. Soffa. An instructional aid for student programs. In Proceedings of the 11th SIGCSE

technical symposium on Computer science education, Kansas City, Missouri, USA, 14–15 February, pages
118–129. ACM, New York, NY, USA, 1980.

19. C. K. Roy, J. R. Cordy, and R. Koschke. Comparison and evaluation of code clone detection techniques and
tools: A qualitative approach. Science of Computer Programming, 74:470–495, 2009.

20. R. Saikkonen, L. Malmi, and A. Korhonen. Fully automatic assessment of programming exercises. In
Proceedings of the 6th Annual SIGCSE/SIGCUE Conference on Innovation and Technology in Computer
Science Education, ITiCSE’01, pages 133–136, Canterbury, UK, 2001. ACM Press, New York.

21. J. Sajaniemei. Visualizing roles of variables to novice programmers. In Proceedings of the 14th Annual
Workshop on the Psychology of Programming Interest Group (PPIG ’02), Brunel University, London, UK.,
2002.

22. J. Sajaniemi. An empirical analysis of roles of variables in novice-level procedural programs. In Proceedings of
the IEEE 2002 Symposia on Human Centric Computing Languages and Environments, Arlington, Virginia,
USA, 3–6 September, pages 37–39. IEEE Computer Society Washington, DC, USA, 2002.

23. E. Soloway and K. Ehrlich. Empirical studies of programming knowledge. IEEE Transactions on Software
Engineering, 10(5):595–609, 1984.

24. M.-A. Storey. Theories, tools and research methods in program comprehension: past, present and future.
Software Quality Journal, 14(3):187–208, 2006.

25. A. Taherkhani. Automatic algorithm recognition based on programming schemas. In Proceedings of the 23th
Annual Workshop on the Psychology of Programming Interest Group (PPIG’11), University of York, UK,
6-8 September, 2011, 2011.

26. A. Taherkhani. Using decision tree classifiers in source code analysis to recognize algorithms: An experiment
with sorting algorithms. The Computer Journal, 54(11):1845–1860, 2011.

27. A. Taherkhani, A. Korhonen, and L. Malmi. Automatic recognition of students’ sorting algorithm imple-
mentations in a data structures and algorithms course. In Proceedings of the 12th Koli Calling International
Conference on Computing Education Research (Koli Calling 2012), Tahko, Finland, 15–18 November, 2012,
10 pages, accepted.

28. A. Taherkhani, A. Korhonen, and L. Malmi. Recognizing algorithms using language constructs, software
metrics and roles of variables: An experiment with sorting algorithms. The Computer Journal, 54(7):1049–
1066, 2011.

29. A. Taherkhani, A. Korhonen, and L. Malmi. Categorizing variations of student-implemented sorting algo-
rithms. Computer Science Education, 22(2):109–138, 2012.

30. R. C. Waters. Program translation via abstraction and reimplementation. IEEE Transactions on Software
Engineering, 14(8):1207–1228, 1988.

	Schema Detection and Beacon-Based Classification for Algorithm Recognition

