
Understanding code quality for introductory courses

Martijn Stegeman

Faculty of Science, University of Amsterdam
martijn@stgm.nl

Abstract. An exploration of the meaning of ‘code quality’ for introductory programming courses
has led to a model that brings together teacher feedback and suggestions from professional handbooks.
We translated this model into a rubric for giving feedback to students in their first courses. Using
this rubric in teaching has encouraged us to reflect on the intent of programming language features
and how these can be used appropriately. We now propose future work: how can ‘approriate use’ be
more systematically integrated into the model? Furthermore, we propose that using the derived
rubric in teaching may very well confront students with unnoticed misconceptions and help them
eliminate these. Is this a reasonable assumption? How can we test it?

Keywords: POP-VI-E. computer science education research, POP-V.B. phenomenology, POP-III-C. procedu-

ral/object oriented, POP-I-A. learning to program

Supervisors: Erik Barendsen and Sjaak Smetsers of Radboud University, Nijmegen, Netherlands

1 Theory: rubrics

In the past, teachers have used various tools to systematically assess student work. A very
simple case would be a checklist, where a number of criteria are listed and can be checked off to
indicate performance. Rubrics add to this by defining a number of levels of accomplishment, and
optionally verbal descriptors to explain each combination of criterion and level (Sadler, 1985).

Checklist and rubrics have often been used as scoring tools, initially to gain reliability in the
calculation of grades. In contrast, Andrade (2005) argues for the idea of an instructional rubric,
primarily designed as a teaching tool instead of a scoring tool:

“A rubric that is cocreated with students; handed out; used to facilitate peer assessment,
self-assessment, and teacher feedback; and only then used to assign grades is an instruc-
tional rubric. It is not just about evaluation anymore; it is about teaching. Teaching with
rubrics is where it gets good.”

Defined as such, a rubric is composed primarily for use by students instead of teachers. By
studying that rubric, their own work, and the work of others, students are encouraged to form a
conception of expected (and current) quality.

2 Previous work: patterns of feedback in introductory classes

In previously published work, we have examined the feasibility of creating a rubric for introductory
programming courses1. Our focus was on deriving criteria and descriptors in a systematic fashion
by studying the practice of teachers and professional software engineers. We first analyzed
standards of code quality embedded in three popular software engineering handbooks and found
401 suggestions that we categorized into twenty topics. We also recorded three instructors who
performed a think-aloud judgment of student-submitted programs, and we interviewed them on
the topics from the books, leading to 178 statements about code quality.

1 This paragraph presents work that has been previously published; it is partially based on the abstract of
Stegeman, Barendsen, and Smetsers (2014).

The statements from the instructor interviews allowed us to generate a set of topics relevant
to their practice of giving feedback, which we used to select criteria for the model. We then
used these instructor statements together with the book suggestions to distinguish three levels
of achievement for each criterion. This resulted in a total of 9 criteria for code quality. The
interviews with the instructors generated a view of code quality that is very comparable to what
was found in the handbooks, while the handbooks provide detailed suggestions that make our
results richer than previously published grading schemes.

This process has led us to a model of code quality criteria and accompanying levels that we
have used to construct a preliminary rubric for introductory programming courses, as included
at the end of this paper. This rubric seems to be much more complete and less arbitrary than
previously published rubrics or grading schemes for introductory programming courses (Hamm,
Henderson, Repsher, & Timmer, 1983; Howatt, 1994; Becker, 2003).

3 Next up: help students understand the role of language elements

When using the rubric with students, we gradually started motivating its contents by explaining
that programming languages embody a certain intent. This is because programming languages are
presumably created by programmers to solve certain problems that pop up when programming.
Features in these languages are thus expected to be used in a certain way, and, as time passes,
are used to solve other problems as well. In short, it seems that the question that the rubric
wants to answer is this: “How do I appropriately use the tools that the language provides?” These
‘tools’, then, are indeed the language features that we find as the nine criteria in the first column
of the rubric: comments, decomposition, etcetera. In this light, it becomes clear that the rubric
tries to convey a common-sense approach to using such features. This immediately presents us
with the question: can we validate or even select the criteria in an even more systematic fashion,
by studying the theory and history of programming language design?

3.1 Reframing the model

In the current version of the rubric, all parts, including the language features, have emerged from
a single bottom-up coding process. However, by studying programming language publications
and history, we should be able to construct an up-front inventory of these features. To make
the data analysis more systematic, and possibly to come to a more complete rubric, it would
seem appropriate to make this part more theory-based. Doing this can then help us re-focus
the data analysis on patterns in the use of programming language features; for example, in the
first version of the rubric, we have already seen that for a whole family of formatting features
(indentation, white space use), it is usually consistency that is asked for. Aren’t there many
more of these patterns? Using those to select and formulate criteria may help us answer the
“How do I appropiately...” question more clearly in the rubric.

3.2 Potential questions

1. Is there existing theory of programming language features?
2. ...that includes stylistic features such as use of whitespace?
3. How do these relate to existing models of code quality?
4. If needed, how can we create a complete overview of programming language features?
5. How is ‘appropriate use’ defined in literature and/or historical documents?
6. What separates ‘appropriate use’ from concepts like guidelines, patterns, etc.?
7. How useful is the rubric in follow-up courses that deal with more elaborate use of object-

oriented features?

4 Later: confronting and eliminating misconceptions

Apart from teaching students to write ‘good code’, there is another possible motivation for giving
systematic feedback on code quality. We think that bad code may well be a sign of remaining
problems with learning to program.

4.1 Varying difficulties

Difficulties of learning to program have been studied extensively. Researchers have found, for
example, that some students lack the skill to interpret and understand the problem statement
(McCracken et al., 2001); some have misconceptions of the notional machine that a programming
language represents (Utting et al., 2013); some produce semantically correct fragments but have
difficulties combining those (Soloway, 1986); and some lack the skill of mentally simulating
the runtime behavior of programs (Lister et al., 2004). In these studies, the authors discovered
the difficulties as a result of studying bugs in the programs that students produce. However,
Du Boulay (1986) described that even without bugs, there may still be difficulties:

“I have often been surprised at the bizarre theories about how the computer executes
programs held even by students who have successfully ‘learned to program’.”

Berges, Mühling, and Hubwieser (2012) studied this phenomenon. The authors asked students
to create concept maps as proof of understanding, and compared those with programs the students
had written while making use of those same concepts. In several categories, the students appeared
to be able to apply concepts of which they showed no clear understanding. More recently, Teague
and Lister (2014) found evidence that some students are able to trace programs without being
able to explain them.

Something else that may go unnoticed without the presence of bugs is the difficulty with
combining correct fragments of code into a working program. Dorn and Guzdial (2010) studied
professional web designers. Most developers that needed new information in order to make
progress used a process that they describe as trial-and-error : writing code, checking the results
and finding appropriate information to make the code work. The authors compare this to the
opportunistic programming described by Brandt, Guo, Lewenstein, Dontcheva, and Klemmer
(2009), where developers construct functional programs while sometimes actively avoiding to
learn the complicated syntax for future use.

4.2 Going forward

Students being at least able to construct a working program according to specifications is
arguably a fine result of an introductory programming course. However, isn’t it possible to
further the understanding of students by providing feedback that addresses the hidden difficulties
they may still have? When assuming that low quality code may actually be the result of the
hidden difficulties that we discussed, we can speculate that giving feedback on those aspects of
code might indeed confront students with the underlying difficulties they are still having, and as
such have the potential to encourage learning. One course of action for us would be to use a
concept-test and combine this with systematic formative feedback on code quality, in order to
find if positive effects can be seen.

4.3 Potential questions

1. Do students ask more conceptual questions when they are systematically given feedback on
code quality?

2. Do students perform better on conceptual test when they are systematically given feedback
on code quality?

3. Should we use a more qualitative study to gain insight into student understanding in this
regard?

5 Conclusion

There is quite a bit of work embedded in the proposed refinement of the method of creating a
code quality rubric, as well as in the proposed evaluation of its usefulness in the introductory
programmer’s learning process. The above is a first try at defining future work and integrating
the various potential strands of research. Suggestions on the proposed questions, on related
theory and on the proposed methods are very welcome.

References

Andrade, H. G. (2005). Teaching with rubrics: The good, the bad, and the ugly. College Teaching ,
53 (1), 27-31. Retrieved from http://www.tandfonline.com/doi/abs/10.3200/CTCH.53

.1.27-31 doi: 10.3200/CTCH.53.1.27-31
Becker, K. (2003, June). Grading programming assignments using rubrics. SIGCSE Bull.,

35 (3), 253–253. Retrieved from http://doi.acm.org/10.1145/961290.961613 doi:
10.1145/961290.961613

Berges, M., Mühling, A., & Hubwieser, P. (2012). The gap between knowledge and ability.
In Proceedings of the 12th Koli Calling international conference on computing education
research (pp. 126–134). New York, NY, USA: ACM. Retrieved from http://doi.acm.org/

10.1145/2401796.2401812 doi: 10.1145/2401796.2401812
Brandt, J., Guo, P. J., Lewenstein, J., Dontcheva, M., & Klemmer, S. R. (2009). Two studies

of opportunistic programming: Interleaving web foraging, learning, and writing code.
In Proceedings of the SIGCHI conference on human factors in computing systems (pp.
1589–1598). New York, NY, USA: ACM. Retrieved from http://doi.acm.org/10.1145/

1518701.1518944 doi: 10.1145/1518701.1518944
Dorn, B., & Guzdial, M. (2010). Learning on the job: Characterizing the programming knowledge

and learning strategies of web designers. In Proceedings of the SIGCHI conference on
human factors in computing systems (pp. 703–712). New York, NY, USA: ACM. Retrieved
from http://doi.acm.org/10.1145/1753326.1753430 doi: 10.1145/1753326.1753430

Du Boulay, B. (1986). Some difficulties of learning to program. In (Vol. Studying the Novice
Programmer). Baywood.

Hamm, R. W., Henderson, K. D., Jr., Repsher, M. L., & Timmer, K. M. (1983, February).
A tool for program grading: The Jacksonville University scale. SIGCSE Bull., 15 (1),
248–252. Retrieved from http://doi.acm.org/10.1145/952978.801059 doi: 10.1145/
952978.801059

Howatt, J. W. (1994, September). On criteria for grading student programs. SIGCSE Bull.,
26 (3), 3–7. Retrieved from http://doi.acm.org/10.1145/187387.187389 doi: 10.1145/
187387.187389

Lister, R., Adams, E. S., Fitzgerald, S., Fone, W., Hamer, J., Lindholm, M., . . . Thomas, L. (2004).
A multi-national study of reading and tracing skills in novice programmers. In Working
group reports from iticse on innovation and technology in computer science education (pp.
119–150). New York, NY, USA: ACM. Retrieved from http://doi.acm.org/10.1145/

1044550.1041673 doi: 10.1145/1044550.1041673
McCracken, M., Almstrum, V., Diaz, D., Guzdial, M., Hagan, D., Kolikant, Y. B.-D., . . . Wilusz,

T. (2001). A multi-national, multi-institutional study of assessment of programming skills
of first-year cs students. In Working group reports from iticse on innovation and technology
in computer science education (pp. 125–180). New York, NY, USA: ACM. Retrieved from
http://doi.acm.org/10.1145/572133.572137 doi: 10.1145/572133.572137

Sadler, D. R. (1985). The origins and functions of evaluative criteria. Educational Theory , 35 (3),
285–297. Retrieved from http://dx.doi.org/10.1111/j.1741-5446.1985.00285.x doi:
10.1111/j.1741-5446.1985.00285.x

Soloway, E. (1986, September). Learning to program = learning to construct mechanisms and
explanations. Commun. ACM , 29 (9), 850–858. Retrieved from http://doi.acm.org/

10.1145/6592.6594 doi: 10.1145/6592.6594
Stegeman, M., Barendsen, E., & Smetsers, S. (2014). Towards an empirically validated model for

assessment of code quality. In Proceedings of the 14th Koli Calling international conference
on computing education research (pp. 99–108). New York, NY, USA: ACM. Retrieved
from http://doi.acm.org/10.1145/2674683.2674702 doi: 10.1145/2674683.2674702

Teague, D., & Lister, R. (2014). Blinded by their plight: Tracing and the preoperational
programmer. In 25th Anniversary Psychology of Programming annual conference (PPIG),
Brighton, England, 25th-27th June.

Utting, I., Tew, A. E., McCracken, M., Thomas, L., Bouvier, D., Frye, R., . . . Wilusz, T. (2013).
A fresh look at novice programmers’ performance and their teachers’ expectations. In
Proceedings of the ITiCSE working group reports (pp. 15–32). New York, NY, USA:
ACM. Retrieved from http://doi.acm.org/10.1145/2543882.2543884 doi: 10.1145/
2543882.2543884

LEVEL 1 2 3 4

names names&appear&unreadable,&
meaningless&or&misleading

names&accurately&describe&the&
intent&of&the&code,&but&can&be&
incomplete,&fuzzy,&lengthy,&
misspelled

names&accurately&describe&the&
intent&of&the&code,&and&are&
complete,&distinctive,&concise,&
correctly&spelled

all&names&in&the&program&use&a&
consistent&vocabulary

headers headers&are&missing&or&
descriptions&are&redundant&or&
obsolete;&or&use&mixed&languages

headers&summarize&the&goal&of&
parts&of&the&program&and&how&to&
use&those,&but&may&be&incomplete&
or&misspelled

headers&accurately&summarize&
the&role&of&parts&of&the&program&
and&how&to&use&those,&are&
spelled&correctly,&may&be&wordy

headers&contain&only&essential&
explanations,&information&and&
references

comments comments&are&generally&missing,&
redundant&or&obsolete;&or&use&
mixed&languages

comments&highlight&important&
decisions&and&potential&problems,&
but&may&be&wordy&or&misspelled

comments&highlight&important&
decisions&and&potential&
problems,&are&concise&and&
spelled&correctly

comments&are&only&present&
where&strictly&needed

layout old&code&is&present arrangement&of&code&within&
source&files&is¬&optimized&for&
readability

arrangement&of&code&within&
source&files&is&optimized&for&
readability

arrangement&of&code&is&
consistent&between&files

formatting formatting&is&missing&or&
misleading&or&lines&are&too&long&
to&read

indentation,&line&breaks,&spacing&
and&brackets&highlight&the&
intended&structure&but&erratically

indentation,&line&breaks,&spacing&
and&brackets&fully&highlight&the&
intended&structure&

formatting&makes&differences&and&
similarities&clearly&visible

flow there&is&deep&nesting;&code&
performs&more&than&one&task&per&
line;&control&structures&are&
customized&in&a&misleading&way

flow&is&complex&or&contains&many&
exceptions;&choice&of&control&
structures&and&libraries&is&
inappropriate

flow&is&simple&and&contains&few&
exceptions;&choice&of&control&
structures&and&libraries&is&
appropriate

flow&prominently&features&the&
expected&path

expressions expressions&are&repeated&or&
contain&unnamed&constants

expressions&are&complex;&data&
types&are&inappropriate

expressions&are&simple;&data&
types&are&appropriate

expressions&are&all&essential&for&
control&flow

decomposition most&code&is&in&one&or&a&few&big&
routines;&variables&are&reused&for&
different&purposes

most&routines&are&limited&in&length&
but&mix&tasks;&routines&share&
many&variables;&parts&of&code&are&
repeated

routines&perform&a&limited&set&of&
tasks÷d&into&parts;&shared&
variables&are&limited;&code&is&
unique

routines&perform&a&very&limited&
set&of&tasks&and&the&number&of&
parameters&and&shared&variables&
is&limited

modularization modules&are&artificially&separated modules&have&vague&subjects,&
contain&many&variables&or&contain&
many&routines

modules&have&clearly&defined&
subjects,&contain&few&variables&
and&a&limited&amount&of&
routines

modules&are&defined&such&that&
communication&between&them&is&
limited

>&highlight&features&from&all&levels&that&are&present&in&the&code,&starting&at&the&lowest
>&for&each&criterion,&circle&the&level&that&is&most&representative&of&the&features&that&are&present
>&no&need&to&circle&a&level&that&is¬&relevant&to&the&assignment
>&level&2&implies&that&the&features&in&level&1&are¬&present,&level&4&implies&that&the&features&in&level&3&are&also&present

Level&1:&problematic&features&are&present
Level&2:&core&quality&goals¬&yet&achieved
Level&3:&core&quality&goals&achieved
Level&4:&achievement&beyond&core&quality&goals

Documentation&>&is&the&code&well>annotated&to&ensure&rapid&understanding?

Presentation&>&is&the&code&visually&organized&for&a&quick&read?

Algorithms&>&is&each&part&of&the&code&as&simple&as&possible?

Structure&>&is&the&code&organized&for&quick&understanding&of&parts&and&the&whole?

