
Restricting Manipulations Within a Device Space: Effects Upon Errors,
Strategy and Display-Based Problem Solving

Simon P. Davies
Department of Psychology
University of Nottingham

University Park
Nottingham,
NG72RD

UK

Presented at the Fourth Psychology of Programming Interest Group Workshop,
Loughborough University, January 1992.

Introduction
A pervasive finding of recent research into the cognitive aspects of programming is that code is not
generated in a linear fashion - that is, in a strict first-to-last order (Davies, 1991; Rist, 1989). Typically,
programmers make many deviations from linear development. leaving gaps in the emexging program to be
filled in later. Hence, the final text order of the program rarely corresponds to its geneiative order. Green et
al (1987) have proposed a model to accollllt for this finding. Their parsing/gnisrap model descnl>es the
process by which a skeletal plan is instantiated in a programming notation This model introduces a
working memory component into the analysis of coding behaviolD' which forces the model to use an
external medimn (eg the VDU screen) when program fragments are completed or when working memory is
overloaded. In terms of this model, programs are not simply built up intemally and then output to an
extemal media with a generative order that reflects the final text onlez of the program.

However, the working memory limitations suggested by the parsing/gnisrap model give rise to other
cognitive costs since programmers will frequently need to refer back to generated fragments in order to
recreate the original plan structure which may have only been partially implemented in code. The parsing
element of the model descnl>es this process, while gnisrap (the reverse of parsing) describes the generative
process. While the parsing/gnisrap model relies extensively upon the notion of worldng memory in order
to explain the evident nonlinearities in program generation, it fails to address several key issues in relation
to the role of working memory that have been raised elsewhere. One issue of particular importance is the
relationship between working memory and the development of expertise.

One study that has considered this issue wu conducted by Davies (1991). Davies looked at the nature of the
nonlinearities found to exist in program generation for programmers of different skill levels. One finding to
emezge from this wodc was that expens perform a greater nwnber of between plan jumps than novices and
that novices tend to perform more within plan jumps � that is, adopt a linear generation strategy. However,
if we consider working memory to be a more flexible resource with a capacity that is related in part to skill
development. we should expect the opposite result In particular, if we assume that the re-parsing of a
genezated output involves some cognitive cost, then one might expect the development of programming
skill to be partly dependent upon a programmer's ability to generate as much of the program internally
before writing it to an external somce, thus reducing the need to �parse. However, the opposite appears to
be the case. The results of Davies (1991) suggest that skilled programmers make much use of external
memory sources (i.e., a VDU screen) while novices tend to rely upon the use of intemal memory to
develop as much of the solution as possible before transfening it to external memory. Moreover, novices
rarely change their output once it is produced.

In light of the well documented relationship between working memory and the development of expertise
that has been observed in other domains these findings are clearly rather anomalous. Given the cognitive
costs that are involved in continually evaluating and modifying generated code, we require an explanation as
to why skilled programmers rely so extensively on external rather than internal memory sources. One
reason for this might be that programming demands the simultaneous assimilation of information from a
range of problem space representations (Pennington, 1987). This integration of infonnation is likely to
place a significant load on working memory (Elio, 1986) and continually switching between different
abstraction levels may incur too great a cognitive cost This may give rise to the observation that

1

programmers develop code from focal structures, building the rest of the code around these fragments and
using the external display as repository for intermediate solution steps.

Hence, the question that arises in the present context relates to the extent to which expertise in
programming and in other complex skills can be explained by recourse to an extended working memory
model as opposed to a model which places emphasis upon the role of externalised memory structures and
display-based comprehension? The following experiments attempt to address this issue directly. The first
experiment considers the role of working memory in the determination of strategy for novice and expert
programmers. The second experiment looks at the effects upon certain error fonns of restticting the kinds of
manipulations programmers can make within an environmenL

Experimental Studies
In the first experiment subjects were carried out an articulatory suppression task while engaged in a
program generation activity. This experiment addresses a nwnber of specific hypotheses. Fmtly. if
working memory limitations cause programmers to make use of an external medium, as suggested by
Green et al, then the act of loading working memory through a concurrent task should give rise to an
inaease in nonlinearities. Given the effort required to use an external medium, in tenns of the number of
times a programmer must engage in the parsing/gnisrap cycle, one would expert experienced programmers
to rely more extensively upon internal sources. Additional support for this hypotheses also arises from
studies which suggest a strong link between expertise and working memory availability. However, the
results of Davies (1991) give rise to an opposing hypothesis. This work suggests that skilled programmers
make less use of internal sources than do novices and tend to rely more extensively upon using an external
medium to record partial code fragments as they are genrzated. Hence, when working memory capacity is
restricted this should give rise to a greater number of nonlinearities in the context of novice behaviour and
only a small decrement in the case of experts.

The second experiment considezs the role of worldng memory from a different perspective. Here interest is
directed towards the way in which restricting the use of an external medium affects perl'ormance. In tenns
of the above analysis, if programme.rs are not able to correct already genented code at 1atm' stages in the
coding process. then this should have some effect upon their pedonnance. In this experiment, subjects
created a program using a full-screen editor that provided no opportunity for the revision of existing text.
The use of such an editor clearly places a significant load upon a subjects worldng memory capacity since
they will be required to internally generate as much of the program as possible before externalising iL By
placing emphasis upon the use of working memory it should be possible to induce error prone behaviour
which parallels that evident when working memory is loaded in other ways, for instance via articulatory
suppre.mon.

We might mm,fore hypothesise that expens would pedorm worse than novices when the device used to
� create the program is res1ricted in such a way as to make retrospective changes impossible. This is based

upon the assmnption that expezts make greater use of external so� to record partial code fragments that
are then later elaborated through cycle of generative and evaluative activities.Convezsely, it has been
suggested that novices will tend to rely more upon generating as much of the program internally before
writing it to an external source. It is clear that these strategic differences will be supported to a greater or a
lesser extent by the device used to create the program. Hence, for expert programmers, it might be
suggested that restticting the device will cause them to revert to a novice strategy, since they will then be
unable to use the extemal display in the normal way.

Establishing support for this hypothesis would have a number of implications. Firstly, it would suggest
that the development of expertise may not be based simply upon the acquisition of knowledge about a
given domain. If this were the case, we would expect experts to peJ{orm better than novices regardless of
the constraints imposed by the task environmenL Secondly, it would indicate that increased working
memory availability does not necessarily lead to better perfonnance. Moreover, if increased working
memory availability is correlated with expertise, then experts should perfonn better that novices in
situations where they must rely upon internal sources. If this is not the case, then we might question the
central status of working memory in theories dealing with the development of complex skills. An
alternative explanation is to mgue that experts have developed particular strategies for dealing with task
complexity that involve close interaction with external infonnation repositories in order to record partial
solution fragments as they are generated. If novices have not developed such strategies, then it is unlikely
that their perfonnance would be affected significantly by restricting the task environment.

2

This analysis can be extended by classifying the errors in the programs generated by subjects. A scheme
devised by Gilmore and Green (1988) suggests four main categories of error:

1 - Surface level errors caused mainly by typing and syntactic slips: (e.g. confusion between< and>,
missing or misplaced quotes etc).

2 - Control-Flow errors: (e.g. missing or spurious else statements, split loops etc).
3 - Plan-Structure errors: Including, guard test on wrong variable. update wrong variable etc.
4 - Interaction eaors: A class of em>rs occurring at the point where structures of different types interact

(e.g.a missing 'Read' in the main loop, initialisations within the main loop).

Clearly some of these errors will be knowledge-based (specifically, plan-structme enors) while others will
be dependent upon working memory limitations. For example, both control-flow and intaaction errors.
since they depend upon �lisbing referential links and dependencie.1 between code sttuctures, are likely to
be affected by working niemoty constraints. In tenns of the first expcnnlent, we might expect both
control-flow and interaction errors to predominate in novice solutions where wOiking memory availability
is reduced. In the case of experts, it is argued that the intmactions between code structures will be evaluated
in the context of an external memory source. That is. by reparsing existing code fragments in order to
reconcile them with the code the programmer is currently working on. Thus. that the act of loading
working memory should not affect the occurrence of these types of error.

In the case of the second experiment we would expect the converse. H experts are not able to use the
external display to aid problem solving in the manner pn:dicted, then it might be hypothesised that
intezaction and control-flow arms will predominate in the condition where use of the device is restricted. It
might also be predicted that this expcnnlental inanipulation will not affect the occurrence of plan-structure
ezrors since these are hypothesised to be knowledge-based mihez than strategy-based.

Experiment 1. Effects of articulatory suppr�ion on programming strategy and errors

Method

Subjects
Twenty subjects participated in this expcnnlenL One group of ten subjects consisted of professional
programmers. All the subjects in this group used Pascal on a daily basis and all had substantial training in
the use of this language. Members of this group were classified as experts. A second group consisted of
second year tmdergraduate students all of whom had bea1 formally instructed in Pascal syntax and language
use during the first year of their course. Members of this group were classified as novices.

Materials and procedure
A variety of suppression tasks were explored, but the more complex tasks tended to disrupt performance to
such an extent that a very simple articulatory suppreuion task was adopted. This involved asking the
subjects to repeat a string of five auditorily presented random digits.The expcnnlenter was present during
the session in ordex to ensure that this concurrent task was perfonned, and intervened only when the subject
paused for more than 5 sec. The subjects were requested to generate a simple Pascal program that could read
a series of input values, calculate a running total, output an average value and stop given a specific
tamioating condition. This specification was derived from Johnson and Soloway (1985) and was chosen
because it has formed the basis for many empirical studies and could be thus be more easily analysed for
plan structures and mars. Subjects were allowed to study the specification for 5 mins and were then asked
to generate a program corresponding to this specification while engaged in the concurrent suppression task.
The subjects were given 15 mins. to complete this task, typing their solutions onto a familiar text editor.
Subjects' keystrokes were recorded for further analysis. This analysis provided an indication of the temporal
sequence in which programs were generated. Three independent raters were asked to analyse all the resulting
program transcripts for the presence of common plan structures (Soloway and Ehrlich, 1984) and for errors
(using the classification described above). Within and between-plan jumps were defined as follows:
Within-plan jumps were classified as movements between a particular line of the program text to another
line which fonned pan of the same plan structure. Between-plan jumps were defined as movements from
the current line to lines within different plan structures (see Davies, 1991). These protocols applied only to
situations where the jump was followed by an editing action.

3

The experiment was a two-factor design, with the following independent variables: 1. Articulatory
suppression/No suppression and 2. Level of expertise (Novice/Expert).There were two dependent variables:
1. The number of Between/Within-plan jumps and 2. Errors remaining in the final program

Results

Plan-jumps
Figure I shows the number of within and between-plan jumps perfonned by novice and expert
programmers in the two experimental conditions. Analysis revealed main effects of suppression CF1, 72 =
8.47, p<0.01) and expertise (F1,72 = 12.56, p<�>.01) on jump-type and a more complex interaction
between suppression and expertise (F1,54 = 4.73, p<0.05). A number of post-hoc comparisons were carried
out using lhe Newman"."Keules � .wjth an adoi>te4.significance level of p<0.01. This procedure indicated
that experts produced significandy more between plan jumps than novi� in the non-suppression
condition. Convasely, novices produced a� number of within plan-jumps in this condition. In the
case of the suppression condition. there were no significant differences.

Errors
Figure 2 shows the total mean numbrz of enors remaining in the programs on task completion for novice
and expert subjects in the two experimental conditions. Analysis revealed a main effect of expertise (F1.36
= 931, p<0.01) and suppression <Ft.36 = 4.54, p<0.05) and an intezaction between these two factors
(F1,36 = 15.89, p<0.01). Once again a numbrz of post-hoc comparisons were carried out using the
Newman-Keules test with an adopted significance level of p<0.01. This indicated a significant diffezence in
error rates in the both experimental conditions when comparing the novice and expert groups. In addition, a
significant difference between eaor rates across conditions was evident for the novice group. In the case of
the expert group the same comparison proved not to be significant

Em>r classification analysis
Figure 3 represents the proportion of errors in each error classification. In the case of experts, there is a
fairly even distnoution of error types across the two experimental conditions. Indeed, further statistical
analysis revealed no significant differen� between error types both within and between conditions
(multiple t-tests). In the case of the novice group, the distnoution of error types is less straightforward. In
the non-suppression condition, novi� produced a signfficantly greater number of plan euors in
comparison to the other categories (t-test). Moreover, the only significant difference between the novice and
experts groups in this condition was the number of plan enors produced by the novice group (t-test). In the
second condition. the distnoution of mors across classification types for expert subjects was again fairly
even. No significant differences between any of the error classifications were evident (t-tests). For the
novice group, significantly more control-flow and interaction em>IS were evident in comparison to the other
two error classifications (t-test). Moreover, for the novice group,the number of plan mors occurring in the
second condition was significandy less than in the first condition (t-test).

Discussion
This experiment shows that expert perl'onnance in programming tasks is not significantly affected by
articulatory suppression. Hence, for experts the number of erroIS produced is not significantly different
comparing the suppression condition to the lion-suppression condition. Moreover, it appears that strategy
is similarly unaffected Hence, the prevalence of between-plan jumps in the non-suppression condition for
the expert group is not diminished in the suppression condition. Similarly, the occurrence of within-plan
jumps does not differ significantly in the two experimental conditions.

Conversely, the novice group produced significantly more erroIS in the supp�on condition when
compared to the non-suppression condition. In addition. the nature of the coding strategy that they adopt is
also affected. In particular, it appears that novice programmers revert from a linear genezation strategy
characterised by the prevalence of within-plan jumps, to a strategy more characteristic of experts. That is,
to a sttategy which reflects a greater number of between-plan jumps.

Earlier it was stated that expert programmers appear to rely much more extensively than novices upon the
use of external sources to record partial code fragments and that the act of loading working memory or of

4

otherwise reducing its availability would not affect this process. It was suggested that experts will tend
engage in very closely linked cycles of planning, subsequent code generation and evaluation. Since it is
posited that this process relies little upon the programmer's working memory capacity it is reasonable to
expect that articulatory suppression would not affect the nature of perf onnance in the context of this task.
The resulls of this experiment provide support for this view. Further support for this view is evident in the
error data In the non-suppression condition, novice subjects are clearly more error prone than experts. This
finding is not unexpected. However, in the suppression condition, the error rate for the expert group
changes little from this base line whereas the novice error rate more than doubles. This may indicate that
when working memory is loaded novices must externalise information and that this constibJtes a strategy
which they find unnatural, thus leading to an increased error rate.

r A more detailed analysis of these errors reveals a change in the nature of enors foe novice subjects between
the two exprrimental conditions. In the non-suppression condition, the novice group make a greater
num� of plan errors. suggesting knowledge-based difficulties. Convezsely, in the suppression condition a
greater p,oportion of control-flow and interaction eiTOl'S are evident In terms of the present analysis, the
prepondennce of control-flow and interaction errors may reflect problems keeping track of the
intezdepeodencies between elements in the emerging program. When working memory availability is
reduced it appears that novices experience some difficulty with these interdependencies. Unlike experts, it

r appears that novices cannot use the external display as an aid � memory to its full extent

An alternative explanation for these findings is that experts simply have an extended working memory
capacity. Such an acco1D1t would presumably have no difficulty predicting the results of the experiment
reported above. In order to � the cogency of this altemative explanation, the second experiment
reported in this paper adopts a different approach for exploring the relationship between woddng memory
and the development of programming skill"-In particular, if-experts, for whatevezreason;areableto·extend
their effective working memmy capacity or increase its availability in other ways then restricting the task
environment should not significantly affect their perfonnance.

Experiment 2. Effects of restricting the task environment
The second experiment is complementary to the first Where.as the first experiment attempted to reduce the
subjects' available working memory capacity. this experiment has been designed to encourage subjects to
rely upon woddng memory. Hence, if experts have an extended working memory capacity they should
demonstrate pezfonnance equitable to that displayed in the first experiment Moreover, if the extended
capacity notion is correct, then experts should out perfonn novices even in the situation where the task
environment is severely restricted as in this second experiment

Method

Subjects
The same subjects took part in this experiment, with the order of participation randomised.

Materials and procedure
Subjects were asked to produce a program co�nding to a brief specification which involved processing
simple bank transactions. Here, the nature of the task environment fonned the basis for the two
experimental conditions. In one condition, subjects used a familiar full-screen text editor. In the second
condition subjects used a modified version of the same editor.which allowed only restricted cursor
movement That is, from the top of the screen to the bottom. and only between adjacent lines. Once a
subject had genezated a line and pressed the return key, they were unable to then return to that line to
pe.iform othe.r editing operations. The editor did howeve.r allow edits to the current line being generated.
Subjects first participated in a 5 min. familiarisation session, where the basic modifications to the editor
were descnl>ed. Subjects were then asked to attempt to generate a program from the specification and were
asked to check each line of their program before pressing the return key, in order to detennine whether they
were satisfied with their response. 15 mins were allowed for this task.

Design
This exprrlment was a two-factor design with the following independent variables: Environment
(restricted/unrestricted) and Level of expertise (Novice/Expert). In this case the dependent variable was the
number of errors remaining in the final program.

s

Results

Errors
The results of this experiment are shown in figures 4 and 5. These data were analysed using a two-way
analysis of variance with the following factors; Environment (restricted or unrestricted) and Level of
expertise (Novice/Expert) This analysis revealed a main effect of Environment <Ft,36 = 5. 74, p<(l.05), a
main effect of Level of expertise CF1.36 = 4.21, p<().05) and an interaction beween these two factors
(F1.36 = 9.76, p<0.01). Post-hoc comparisions were carried out using �e Newman-Keules test with an

adopted significance level of p<0.01. This analysis revealed a significant difference between the number of
errors produced by novices and experts in condition 1.

Error classification
The resulting program transcripts were analysed according to the classification scheme described above. The
results of this analysis are shown in Figure 5. In the case of experts. analysis revealed no significant
differences between error type., within this condition (t-tests). In the case of the novice group, the
distribution of error types in the first condition suggests a greater proportion of plan errors in comparison
to the other categories (t-test). In the second condition, the distribution of errors across classification types
for expert subjects was more complicated. This showed a greater proportion of control-flow and interaction
errors compared to the other classifications (t-tests). In addition, experts produced significantly more
control-flow and interaction errors in comparison to the first condition.

These results provide a striking demonstration of the effects of restricting a task environment We have
argued above that experts rely to a great extent upon using the external display to recoid fragments of code
that are then further elaborated at subsequent points during the genemtion proces.,. This led to the
hypothesis that if programmers were unable to return to previously generated fragments then they would be
forced into a situation where they would have to rely extensively upon working memory. Howevec, it
appears that while novices are seemingly unaffected by changes to the task environment, experts not only
perfonn worse than novices but also produce the kinds of enors that are indicative of an inability to
intemally constmct links and dependencies between code structures. These results reveal that experts
produce more mors than novices in the restricted task environment Moreover. expens produce a
significantly greater number of control-flow and interaction errors in this second condition.

It was suggested previously that the first experiment that the results might be interpreted as indicating that
experts have an extended working memory capacity. However. if this is the case then the results of this
second experiment would appear to be rather anomalous. H we asswne that experts have an extended
working memory capacity in comparison to novices, then we might expect that situations which cause
experts to rely upon working memory would not give rise to such an extensive decrement in performance.

� Moreover. in terms of this view there appears to be no reasonable explanation as to why experts produce
many more control-flow and intaaction mors in comparison to novices.

A more cogent explanation for these findings might simply involve suggesting that expens rely upon
external sources and are not able to efficiently revert to a strategy that demands extensive reliance upon
working memory. This would account for both sets of experimental findings. In the first experiment a
reduction in worldng memory availability did not affect expert perfonnance. This could clearly be accounted
for in two ways. On the one hand, it could be argued that experts simply have an extended working
memory capacity. Conve.rsely11 we might claim that experts rely extensively upon extemal sources and find
it difficult to adopt other alternative strategies. However. the second experiment appears to suggest that the
first of these explanations is incoirect In particular. if expens have an extended working memory capacity
then we would expect them to perfonn better than novices in situations where a reliance upon working
memory is necessitated. This appears not to be the case.

Another finding relating to this data was that in the restricted environment condition the expert group
produced fewer surface and plan errors. An explanation for this may be that, in the restricted environment
condition, the nonnally automatic aspects of programming skill are disrupted. This may lead the
programmer to attend to the knowledge-based components of programming skill leading to a reduction in
surface and plan-based errors. There is evidence in the literature which suggests that so called 'skill' and
'knowledge-based' errors are to some extent disassociable (Reason, 1979).

6

Conclusions
These experiments have clearly demonsttated that the relationship between skill development in
programming and working memory is not as predicted. It appears that experts rely significantly upon
external sources to reconl code fragments as these are generated and then return later, in tenns of the
temporal sequence of program generation, to further elaborate these fragments. It has been suggested that a
major determinant of expertise in programming may be related to the adoption or the development of
strategies that facilitate the efficient use of external sources. The externalisation of infonnation clearly has a
high cost in terms of the reparsing or recomprehension of generated code that is implied. Hence, it might
seem counterintuitive to suggest that problem solvers will tend to rely upon this kind of strategy rather
than upon a strategy which involves the more extensive use of worlcing memory. However, this
explanation is consonant with existing worlc which has implicated display-based recognition skills in
theoretical analyses of complex problem solving (Larkin. 1989). The contribution of these analyses has
been important, but they have neglected to consider the relationship between display use and expeztise and
the consequent effect that this may have upon the nature of problem solving stmtegies.

The results of the experiments reported here queaion the cogency of accounts of expertise which place
centml emphasis upon the assumption that experts possess an extended working memory capacity or
availability. For expert programmeis, it has been shown that articulatory suppression affects neither
programming strategy nor number of errors. Such an effect would be expected given the increased capacity
assumption posited in previous models. However, the results of the second experiment would not be
predicted on the basis of this assumption. In particular, restricting the task environment such that the
programmer must rely more extensively upon working memory should affect neither strategy nor errors to
the extent that was apparent in this particular study. Since it is uncommon to see expert pedonnance
reduced to level exhibited by novices, it might claimed that restricting the environment in this way causes
experts to revert from their preferred strategy to one more characteristic of novices.

The work reported here also poses implications for the way in which we might attempt to explain the
occurrence and distribution of error types. In particular, it is clear that a certain classes of error can be
attributed to working memmy limitations and that such errors are not distributed at random. In terms of the
enor cJassiffcation employed here, it appears that intezaction and control flow enors predominate in
situations where working memory availability is reduced. Previous work (AndeISOD, 1989) suggests that
errors arising from working memory failures will occur at random. However, the results of the studies
presented here suggest that working memory related errors may have a more systematic distribution, and
that the type of errors one might expect to occur may to some extent be predictable.

It also appears that that the nature of display-based problem solving in programming may be highly
dependent upon features of the programming language considered Green (1991) suggests that some
programming languages are "viscous" in that they are highly resistant to local change. Hence, adding a line
to a Basic program may involve renumbering lines such that the correct control flow is maintained. In
tezms of the present analysis, less viscous languages will provide better support for the kind of incremental
problem-solving processes that are proposed. Such features will affect the strategies employed in the
generation of code. However, there are other language feawres which will affect its comprehension.
Gilmore and Green (1988) suggest that some languages are "role-expresmve" (for example, Pascal) in that
they may contain a rich somce of lexical cues which enable a programmer to distinguish more easily the
porgam's structure. They contest that less role-expressive languages (e.g. Prolog) are lexically amorphous
and will tend not to facilitate certain foIDls of comprehension.

Such language features are important in the present context, since they will clearly affect the incremental
nature of code generation and comprehension/recomprehension. This analysis extends existing worlc by
suggesting ways in which language features and strategy may interact with features of the task environment
to give rise to particular forms of behaviour. Such effects would not be taken into account by display-based
views, since the salience of particular features of the display remains undifferentiated.

Summary
The experiments reported in this paper suggest that the development of expertise in programming is
dependent upon the adoption of strategies for effectively utilising an external display. They also
demonstrate that increased working memory capacity or availability is not a necessary prerequisite of skilled
performance in this domain. Rather, skilled programmers appear to engage in closely linked cycles of code

7

generation and evaluation activities. According to this model, code is generated in a fragmentary fashion and
the display is used as a repository for recording intermediate solution steps.

While this paper has indicated the importance of display-based performance in programming, it has also
suggested two primary limitations of this general approach. Firstly, existing accounts of display-based
problem solving ignore the apparent relationship between expertise and the development of strategies for
utilising display-based information. Secondly, such accounts fail to consider the possibility that different
forms of display-based information will be differentially salient in the context of a given task. Further
developments of display-based accounts of problem solving will need. to address these issues if they are to
provide a coherent desaiption of human perfonnance in the context of complex tasks.

References
Anderson, J. R., (1983). The architecture of cognition. Harvard Univezsity Press, Harvard, MA.
Anderson, J. R., (1989). The analogical origins of enors in problem solving. In D. Klahr and K. .Kotovsky

(Eds.), Complex information processing: The impact of Herbert A Simon. LEA, Hillsdale, NJ.
Chase, W. G. and Simon, H. A., (1973), Pttception in chess. Cognitive Psychology, 4, SS-81.
Davies, S. P., (1991). The role of notation and knowledge representation in the detennination of programming

strategy: A framework for integrating models of programming behaviour. Cognitive Science, 15, 547-572.
Elio, R., (1986). Representation of similar well-learned cognitive procedures. Cognitive Science, 10, 41-73. �
Green, T. R. G., (1991). Describing information artifacts with cognitive dimensions and structure maps. In D. 'J

Diaper and N. Hammond (Eds.), People and Computers 6, Cambridge Univezsity Press.
Green, T. R. G., Bellamy, R. K. E. and Parker, J. M., (1987). Parsing and gnisrap: a model of device use, Proc.

INTERACT87, H. J. Bullinger and B. Shackel (Eds.), Elsevier Science Publishezs B. V., North-Holland.
Johnson, W. L. and Soloway, E., (1985). PROUST: Knowledge-based program understanding. IEEE

Transactions on Software Engineering, SE-11, (3), 423 -442.
Larkin, J. H., (1989). Display-based problem solving. In D. Klahr and K. Kotovsky, (Eds.), Complex

Information Processing; The impact of Herbert A. Simon.
Pennington, N., (1987). Stimulus structures and mental representation in expert comprehension of computer

programs. Cognitive psychology, 19, 295 - 341.
Soloway, E. and Ehrlich, K., (1984). Empirical studies of programming knowledge. IEEE Trans. SE, SE -

10(5), 595 -<,09.

8

(/J a.
E
..2.
C
(ti
a.
C
::c
.:t::

3:

1 2

9

6

3

t--t NOVICE GROUP
I - -I EXPERT GROUP

.... ... �

Offl -

g_ 6
E

.2.

i 4
a. .
C
(I) 2
I m

. - - - - - - - - - - - - - - - - ... - - ...

CONDITl0N 1
(No Suppression)

CONDITl0N 2
(Suppression)

Figure 1 Within and Between-Plan jumps by novice and experts during the first experiment

e
g

1 5

<D 1 0
0 ...
_g
E
::,
C

fa 5
(I)

:E

(1 4.5)
NOVICE GROUP

(4)

(3) _ _ _ _ _ _ ... _ _ _ - - - - .e EXPERT GROUP
.. - - -

CONDITl0N 1
(No Suppression)

CONDITl0N 2
(Suppression)

Figure 2 Mean number of error in experiment 1 for novice and expert subjects

f?
e ._
(I)

15

o 1 0
ci

.0
E
::,
C
C
(ti

� 5

(1 5)
,. EXPERT

•• • GROUP
.•

••• (1 2)

. 1��-------:°7;..• ·---�-- NOVICE GROUP
(�0.5) ••• • •

. ·
. •

(4) •• •• ••

CONDITION 1
(Non Restricted)

.
.• •

. •
.• .

CONDmON 2
(Restricted)

Figure 4 Mean number of errors in experiment 2 for novice and expert subjects

0

s
g

0

0

a.

ffl

g
0

a.

50

40

30

[&5il SURFACE ERRORS

� PLAN ERRORS

CONTROL-FLOW ERRORS

m INTERACTION ERRORS

41

NOVICE EXPERT NOVICE

CONDITION 1
(NO SUPPRESSION)

COND1TION 2
(SUPPRESSION)

Figure 2. Errors on task completion in experiment 1

50

40

30

- SURFACE ERRORS

� PLAN ERRORS
� CONTROL-FLOW

�

EXPERT

NOVICE EXPERT NOVICE
CONDITl0N 2

(RESTRICTED)

EXPERT
CONDITION 1

(NON RESTRICTED)

Figure 5. Errors on task completion in experiment 2

