
•• -�·-·· -- .., •• ., .. - �-·-.. --···- ·-·�·-·�.:�:.:,,-� .. .;.�"---...:��-
·

- s ·- -- ..,_

by Caroline Humphreys,
Computer Studies Dept., Loughborough University.

Focal Areas of Interest

Software Design, Program.ming Behaviour and Debugging Methods; Human Factors, Human
Information Processing, Visual Perception and User Interface Design. Exploiting
Beneficial Factors to Enhance Program Comprehension and Debugging.

I have always been interested in the ways and means of making programming and
debugging easier, faster and more efficient; and 1n invest !gating the factors that affect
them. Thus one of my primary goals is to design tools that emphasize and take
advantage of the factors that aid in the programming and debugging tasks. Especially
those that alleviate cognitive processing during the edit-compile-debug cycle.

Effects of Experience on Personal Perspective

I spent 3 years as a Software Engineer - designing, writing, testing and debugging
Process Control software. Thus I have strong personal experience of debugging real-life
software destined for actual customers, as well as noting how the other 5 Software
Engineers in the department tackled similar tasks on different projects. I have also
spent time, during the last 4 years devoted to research, observing the next generation
of graduate programmers; and asking them about their attitudes to software tools and
debugging methods. The views I express in this paper are a distillation of experience,
observation, consultation and discussion with others programmers of varying levels.

lne Programmer•s Ma.in Problem

As you can see from Fig. 1, the programmer usually only has the code and his own mental
processes to aid in the program development and debugging tasks; since both activities
require the comparison of what the program code should say <as defined by the
programmer's own mental model of the code, and/or the code's specification> as opposed to
what it actually does say/do in the editing environment. Program code has 2 principal
lnteract Ing elements
- declaration of various program and procedural variables; and
- statements and program constructs using these variable values.

There are 2 other factors associated with program text : visual appearance - the way
that the code is laid out; and control flow - the order in which individual statements
are executed at run-time. The former affects program comprehension, and the latter is
determined by the input data processed, which in turn determines those bugs that are
revealed. Testing only gives evidence of bugs that are present, but it may not reveal
all bugs. Debugging is the art of eliminating bugs, without introducing others.

Principle Aims of Research

Catering for the solo programmer who only has access to the minimum programming
toolbox, consisting of a screen editor <or editing environment like MacPascal> and
compiler. Designing tools that fit the programming task, and programmers' needs more
closely than existing tools; filling the gap with new tools and/or "extrapolating"
existing tools and concepts.
• Using typographic effects to focus visual attention and alleviate those programming
tasks dependent on visual processing <spotlighting>.
• Reducing information processing burdens by providing essential information in
alternative formats <summary tables/menus).
• Supporting individual aesthetic requirements <layout aids>.
In effect, increasing programmer satisfaction and productivity by reducing the
fru€trat1on and mental burdens created by the inadequate tools provided for the
programming task.

NB. Spot lighting could be applied to other forms of electronic text, whereas summary
tables and layout aids refer mainly to procedural programming languages, such as Pascal,
which I have used for demonstrat lon, since it is my pref erred language. I'm not sure
whether they could be applied to logical languages with any beneficial effects!

Layout aids

Provide a selection of alternative layout patterns for each programming construct, and
let each user define his or her own matrix of layout patterns, and the number of spaces
for indenting �ach level. This would enable any program to be laid out according to
personal preferences. Thus enhancing comprehension and visual <as well as mental)
rapport with that program.

Layout factors : indentation and the relative disposition of programming construct
sub-elements, such as if-then-else <3 sub-elements>

Could only alter indentation - leaving all other aspects alone, except for overflow lines
<eg. complex conditions occupying 2+ lines) - thus placing of comments and overall
layout pat tern would retain its original features

Placing of AND & OR in complex conditional statements, reflects personal preference

Summary Tabl es

Provide alternative views of all <or selected> data declarations within the program.
Possible ordering permutations include : original <ie. in order of declaration>,
alphabetic, by data type, by parent procedure or function. For example, a list of all
variables within procedure 11average" alphabetically.

Summary tables are intended to answer questions of the class: "What has variable X been
used for and where?".

Summary aid as an on the spot reference so you can get it right the first time.
Summaries of all data definitions used as information tables or as selection menus.
User control of updates for spotlighting and summary tables means removal of problems
of deciding when to update.

Summary tables - reserved word 11st could be useful when you need to refresh your
memory after previous working with another language or lull from this one.

Spotli ghting

Provide::. "automatic" highlighting of any given word throughout an electronic text, using
inverse video or colour. Thus spotlighting enables the user to see "all" instances of
the selected word situated within the current screen windowt at one glance.

It is also be useful to know how many instances of the given word there are all
together t and to know which "position" the "current" word holds.

The use of such a "current instance/total instance count" indicator could be used as a
strategic <planning-wise> and/or pure orientation aid.

Spotlighting implies additional "movement" commands, such as. go to 6th spotlight, or go
forwards <or backwards> 4 spotlights.

Debugging

Most bugs can be associated with a specific variable. Thus the simplest way of finding
the bug is to examine all statements involving that variable.

This technique is called variable trail following, and is usually achieved using the
search mechanisms. I hope to demonstrate that Spotlighting makes variable trail
following much easier to do, and hopefully less frustrating!

Search Mechanism Principles

Existing principle - "sequential, show/visit only one at a time, top-down search"

Spotlighting principle - "random access, show all at once, visit any using forwards
and/or backwards search"

2
/

j. �·

t

Spotlighting & Debugging

Seeing all instances at the same time has many advantages :
- you can quickly pick out the best place to start looking;
- freedom of movement: you can employ forward or backward search as needed;
- you can check individual statements in the instance sequence;
- you don't have to keep a mental map of "instance locations", as it is provided for

you; thus cutting down on memory load;
- using 2 spotlights as boundaries, you can investigate intermediate statements without

"getting lost 11.

Correlating Spotlighting & Summary Tables With Errors

Common Errors During Coding Spot Summ
undeclared variables Y Y

redundant variables Y n
misspelt variable names ? y

infinite loops y n
redundant loops ? n
inappropriate initialisation or modification of variable values y n
incor.rect sequencing of "dependent" variable assignments y n
missing/mis-matched comment brackets y n
incompatible format & content of procedure parameter lists n y
inappropriate passing/return of variable values via proc calls y y

• undeclared variables - if a variable has not been declared then its spotlight will
appear in the main body of the procedure, but not 1n the declaration area - thus it can
be detected by omission.

• redundant variables - the only spotlight will appear 1n the declaration area

• misspelt variable names - either you can detect this by checking what did not get
spot lighted, or by comparing the declared names 11st with the undeclared names list.

• infinite loops - terminating condition of the loop is never met, either the exit
condition is incorrectly defined, or the variable <s> that triggers the exit condition has
not been modified correctly within the loop

• redundant loops - the initial condition of the loop is never met, either the entry
condition is incorrectly defined, or the variable <s> that triggers the entry condition has
not been modified correctly beforehand

• missing or non-initialisation of a variable before use - spot lighting this variable's
trail, and tracking it forwards or backwards should soon give an idea of where the
missing initialisation statement should go

• inappropriate initialisation or modification of variable values - putting the spotlight
on a variable, and then checking each of the assignment statements. quickly points you
to the cause of the error. In some cases the wrong operator or function is applied, and
in others the wrong <variable> value has been fed into the equation.

• incorrect sequencing of "dependent" variable assignments - in the simplest case,. one
variable's value is modified before being fed into the equation that modifies another
variable <or· itself>. Getting these assignment statements in the wrong order can cause
all sorts of trouble

• missing/mis-matched comment brackets - if you arrange to spotlight anything that
appears between contiguous • {' and '}" symbols, disregarding any surplus • {' symbols, then
you should only spot light "comment text", but if a '}' symbol has gone missing, then it
will be obvious where, since all intervening comment and program text will be put into
in verse v idea

Combining spotlighting and summary table methods

Knowing which names/words are undeclared makes it easy to choose which to spotlight.

Comparing the undeclared list with the declared list <s> should point out any
discrepancies in spelling eg. declaring "time", and misspelling 1t as "tt ime", "yime" etc.
in the text.

· .

���j <]�Jr � @tt}l\� � r���
· program surveynnpur. outputJ :
program survey(tnput. outputJ : var
var

time. vehi cles. wai t . maxwait : integer:

begi n
wait := 0:
vehicles := 0:
read(signa/J:
repeat

if signal= 2 then
begin

time := ti me + 1:
if wait > maxwait

then maxwait := wait:
wait := wait + 1:

end:
if signal= 1 then

begin
vehicles := vehi des + 1 :

end:
until signal = 0:
writelnCTotal time=·. tim e. ·secs) :

writelnCNo. of vehicles=· . vehicles) :

writelnCMax wait=· . maxwait. ·secs·) :

end / (- · I
iut(A.,,Y�• .,_:

program survey(input. output) :
var

time. vehicles. wait. maxwait : integer:

begin
wait := 0:
vehicles := 0:
read< signall:
repeat

i f signal = 2 then
begin

time := t ime • I:
if wait > maxwait

then maxwait := wait:
wait : = wait + 1:

end:
if signal = 1 then

begin
vehicles := vehicles • I:

end:
until signal = 0:
writeln(T otal time= ' . time. ·secs"):

writelnC 'No. of vehides= ·. vehidesl:

writeln('Max wait= ' . maxwait. ·secs") :
end.

time. vehi des. wai t. maxwait : i nteger.
begin

wai t := 0:
vehicles := 0:
read(si anal) :
repeat

if signal = 2 then
begin

time :c: time + 1:
if wait > maxwait

then maxwai t := wait:
- -Wmt-;=--wait .-. -1: - - -

end:
if signal = 1 then

begin
vehicles := vehicles + 1 : �

end:
until signal = 0:
wri telnCT otal time�· . ti me. ·secs·) ;
writelnCNo. of vehicles= · . vehicles) :
writeln('Max wait= '. moxwait. ·secs) :

end .

. · �

program survey(input. output) ;
var

time. vehicles. wai t. maxwait : integer:
begin

wait := 0:
vehicles := 0:
reod<W: �
repeat

j f m = 2 then
begin

time := t ime • I:
if wait > maxwait

then maxwait := wait:
wait := wait • I:

end:

if • = · I then
begin

vehicles := vehides • I·
eod:

until R = 0:
writeh(T otaf time= ·. time. ·secs·):
writeM'No. of vehides=". vehides):
writelr(Max wait= ·. maxwoit. 'secs") :

end.

prograA survey{ input , output J ;
\1ar

. · - .. · · . · - .. . - ·· · "" ".Fr1fgfa]l('sufVe�\Ynp·ut��-o�Utlut-rr�·-�·�·- -·-· ·-····- - · ·-'-'-··

t jNe , veh i c l es , ua i t , Aaxwait integer ;
hegm

ua it : = e ;
vehicles : = e ;
read(s ignaD;
repeat

1r s ignal = 2 then
begm

t i111e : = t iAe + 1 ·
it uait > Aa.XWai{

then fta.Xllait : = uai t ;
ua.it : = wa it + 1 ;

end ·
if s ignal = 1 then

begrn
vehic les : = vehicles + 1 ;

end ·
unt i l s l�I = O;
ur iteln(T ine-span= ' , t ine, ' secs ') ;
uriteln(' Uehicle-count= ' , vehicles) ;
writeln ('Plax�it= ' Aa><Uait ' secs 1

) ·
nd

I I I

r • . � L �v-

progran survey(input , output) ;
\la!'
D, mmm, ua i t , --axuait : integer ;

1tegm
uait := e ; �m : = e ; re signal) ;
repeat

1f s ignal = 2 then
he�
rruait ��H

then AaXWait : = uai t ·
u.a.it : : �a it f 1 ;

I

end ·
if s i911al = 1 then

bi:mmrn
: = m;mm + 1 ;

! •

unti l s l�l = e ;
uriteln(T iAe-span= ' ,

�
'secs ') ;

uriteln(' Uehicle-count:(73'Bi) i
ur i te ln ('Ma.x-wait= ' , naxua1 , secs) ;

end . -�- ��
t � --t.� -t \-"l�lu>

\•ar
t iAe , veh i c l es , wa i t , Aaxvait : integer ;

begin
ua it : = e ;
vehic les : = 0 ;
read(mmnl) ;
re:eeat -

1f m;mJ = 2 then
begm

;J·fte i = t ifte + li
1 w it > 11axwan

\hen na.xwait : = uait ;
ua1t : = wait i 1 ;

em{_l__
i f mmDJ = 1 tben

begm
veh ic les : = veh ic les + 1 ;

end ·
unt i i fiAn1 = e ·
urjte liir"'Yii�-span= • , t ine , ' s ecs ') ;
vr1teln(' Ueh1cl�-count= ' , vellicles > i
ur1teln('Ma.x-wa1t= ' , AaXWait, ' secs) ;

end .

� ft«-1 y-o__.�\e

prograA survey(input , output) ; var - · · ·· - - · -
D, m;mm, wa it , naxwait : integer ;

J,egrn
uait : = & ;

pi
>!;

1f QiiDJ = 2 then
be�
rr:ait �1�H

tben Aa.XW-ait : = �a i t ;
ua it : = wa it + 1 ;

tnd ·
i f � = 1 then

be 1

rkfllLEl,l-:1:.l : = mmm + 1 ;
unif· f · · = e ;
ur J efn 1�e-span= ' , � :;;_cs ') ;
ur 1 e n ' Ueh 1c le-count=, lfa�rn> i
ur iteln('Pla.x;rai t= ' , ,aaxwai£, secs) ;

end .
.

(, �!:!-

� :1: � -f �a) .

Sj0'St'f, /j 1FY I(�

Siddiqi's < I 985) s igna l problem <Program designer behaviour, People & Compu t ers 11

p377) is s ta t ed as follows :
A t ra f f i c sui-vey is con d u c t ed a u toma t i ca l ly by p l a c ing a de tector a t t he road s ide
connec t ed by da t a- l inks to a compu t er. Whenever a veh icle passes t he de t e c t or, i t
t ransmits a s igna l cons ist ing of the n umber J . A c lock in the de t ec t or is start ed a t
the beg inn ing o f t h e survey , and a t one second in t erva ls therea f t er i t t ransm i t s a
s igna l cons is t ing o f the number 2 . A t the end o f the survey the de t ec t or t ransm i t s
a 0 . Each s ignal i s received by the computer as a s ingle number < 1e. i t i s
impossible for t wo s igna ls to arrive a t the same t ime). Des ign a program wh ich reads
such a se t of s igna ls and ou tputs the fol low ing :
(a) t he leng t h of the survey per iod;
Cb) t he number of vehicles recorded;
(c) the length of the longest wai t ing period w i t hou t a veh ic le.

Fig 1 shows a comple te , comment ed solut ion t o Siddiq i 's signa l problem - this can be
used for re ference and comparison of the subsequent par t ia l sol u t ions, and the
variet y of errors that spo t light ing emphasizes in each case.

program survey (input , out pu t >;
var

s igna l : 0 . . 2 ;
{ 0 ind ica tes end o f survey period,

1 ind ica t es ano t her veh icle has passed the de t ec t or,
2 ind ica t es anot her second has passed . >

t ime, { leng th of sur vey period in seconds }
veh icles, < n� of veh ic les detected so f a r >

wait, { t ime in seconds s ince last car was detec t ed >
maxwa i t : in t eger; { maximum wa it ing per iod so far }

begin { in it ialise }
t ime : = O;
vehicles := O;
wai t := O;
maxwa it : = O;
repea t { read and process signals un t il end of survey per iod }

read <signal >;
i f signal = 2 t hen { anot her second has passed, so incremen t t ime coun t ers >

begin
t ime : = t ime + 1 ;
wa i t : = wait + 1 ;
if wa it > maxwa i t { adjust maxwa i t to new max imum wa i t va lue }

t hen maxwalt : = wait ; �
end;

if signa l = 1 t hen
< a vehicle has passed, so rese t wait coun ter, and incremen t veh icle coun t >

begin
wa i t := O;
veh icles : = veh icles + 1 ;

end;
un t i l signa l = O; { end o f survey period >
{ Print ou t requ ired da t a)
writeln ('Length of survey period is '• t ime, 'secs');
writeln < 'No. of vehicles recorded is ' , vehicles >;
writeln < 'Longest wait ing per iod is ' , maxwa it , 'secs');

end.
Final Solut ion to Signal Problem

- ... - ��� · - ·- - � � . .

In F ig. 2 , the s igna l var iable has been spot l ighted - t h is shows up a var ie t y of
assoc ia t ed bugs . As can c lear l y be seen, <w i th/wi thout ref err ing to the comple t e
so l u t ion in the Append ix > there is no declara t ion o f t he s igna l var iab le. A lso, t he
"read (s igna l >; " s t a temen t i s on t he wrong l ine - i t shou ld be the f irs t s t a t emen t ins ide
the repea t loop - as i t is t he repea t loop forms an in f in i te loop <un less the f irs t
signa l va lue is O >.

F ig 3 : I f the t ime and veh ic les var iables are spo t l igh ted t oget her, t hen i t is easy to
check t ha t each of t he var iables is incremen ted in t he appropr ia t e sequence, and that
t hey are independen t from each o t her.

F ig 4 : If t he s igna l, t ime and vehi c les var iab les are spot l ighted t ogether, t hen t h is
makes the sequenc ing dependenc ies even more obv ious, and s ubsequent ly eas ier to de tect .

Thus, m u l t iple spot ligh t ing can be used to check for dependence be t ween the selected
var iab les.

F igures 5 & 6 show a s l igh t ly d i f feren t <part ia l ly deve loped > solut ion to t he s igna l
problem, where some commen t s ha ve been added and t he code t ha t dea ls w i t h t he t imer
variab les < t ime, wa i t and maxwa i t > has been made int o a subprocedu re ca l led f rom wit hin
the ma in program loop.

F ig 5 shows the e f fec t of spo t l igh t ing, when the g loba l <ma in program > var ia b le "wa i t " is
selec ted - the dec lara t ion, in i t ia l isa t ion, re- in i t ia l isa t ion and procedure ca l l s t a t emen t s
involving "wa i t " have a l l become h igh ly v is ible . However, t he "wa i t " var iab le s t a tements
in the subprocedure rema in camou f laged , because t hey are assoc ia ted w i t h the loca l
"wa i t " var iable belong ing to procedure 1nc _ t imers. wh icta is not t he same as the g loba l
<main program> var iable of t he same name. I f t he proced ura l parame ter l is t for
inc _ t imers had not inc l uded t he "wa i t " var iab le. t hen the re ferences wou ld have re f erred
to the g loba l variable (in t h is pa r t icu lar case > and the spot l igh t ing wou ld have
emphas ized these ins t ances o f t he "wa i t " var iable as wel l .

F ig 6 shows the e f fec t o f spot l igh t ing when i t is appl ied t o the t ask o f ma t ch ing
comment bracke ts - t ha t is spot l igh t ing a l l tex t t ha t occurs be t ween con t iguous · < · and
') ' symbo ls. It is obv ious t hat t he '} ' symbol is m iss ing f rom the "ma in program"
comment , s ince a l l t he f o llowing s t a t emen t s have become spot l igh t ed , un t i l a ma t ch ing ' > '
i s found, t erminat ing t h e nex t commen t .

Thus, t h e brevi t y o f t h e exa m p les g ive an ind ica t ion of t he in t erpret a t iona l power
a f forded by spot l igh t ing - however , 1t mus t be remembered that in longer tex ts , t h is
power w i l l increase as t he <potent ia 1) number of se lect ed i t em ins t ances increases. I f
t he se lec ted i t em has a low dens i t y < f ew ins tances w i t h in a large chunk o f text), then
it becomes increas ingl y eas ier. espec ia lly wi th unass is ted v is ua l scanning, to over look
some ins tances . The same is t rue for h igh dens i t ies, where the same e f fect occurs due
to in format ion over load and con fus ion be t ween success ive s t a t emen ts <Card et . a l . 1 98 3).

� The spot l igh t e f fect cou ld a lso be used as a memory jogger, to guard aga ins t
uncomple ted var iable name changes eg. changing ' i ' t o ' index' but no t check ing that a l l
appropr ia te changes have been made . Th is wou ld b e par t icularly use f u l where the scope
of a var ia b le ex tends across a large sec t ion o f text , w i t h a "blank area" in t he m iddle .
For example , where a var iab le is spread across 3 screen "pages", occurr ing on t he f irs t
and t h ird pages, but not on t he second page. The w ider t he gap - t he more use f u l t he
rem ind ing e f fec t .

� . f

'

:

1

One o f t he mos· t frequen t errors is the undeclared variable error and also the non
ini t lalisa t ion error. These can qui t e easily be picked up wi th spot ligh t ing. In the case
of the undeclared error, i f you spo t ligh t the variable name t ha t hasn 't been declared, t hen
i t won ' t appear in the declara t ion 11s t . It will appear throughou t the program or
procedure t ext , bu t 1 t won ' t act ually occur in the declara t ion, so you can de t ec t t ha t by
omission.

A simpler way, oi course, of det ecting undeclared variables is to compile a 11st of all t he
di fferen t variables and which procedures they belong t o. Then any variable or any word
which does not occur in the declared variables lis t , or is not a reserved word or reserved
procedure/funct ion name is obviously undeclared, and you can not e i t tha t way.

For the unini t ialised variable error, all you have to do is to spotll.gh t t he required
variable and i t will appear wi thin the t ext, and t hen all you need is t o check where the
first use of this variable appears, and decide where t o pu t the ini t 1allsa t 1on s t a t emen t ,
just before i t <the program coun t er) get s to tha t poin t .

The next t ool I concept ualized i s the summary menu syst em - an a u t oma t ic da t a dict ionary
in ven t ory, tha t is viewable from differen t perspect i ves. The purpose of this t ool is to
collect all the di fferen t variable names, tha t you 've declared throughout the program t ex t ,
and t o arrange them 1n differen t ways so tha t you can see them a t a glance, by looking a t
t he summary menus. So, for example, you could call up a variable name, and see wh i ch
procedures i t appeared in, because somet imes you use the same variable name, and jus t pass

i t across as a parame ter. Or perhaps i f i t is jus t a simple coun t ing variable, you m �.
t

use t he same variable name across dif fere.n t procedures for simpl ici ty. '�
{ Tha t 's also an in t eres t ing poin t , because programmer's ha ve their own pe t names for
coun t ing var iables. I t end to use i and J for my coun t ing variables in "for ", "wh i l e " and
"repea t - un t il " loops - anything which needs an in t ermedia t e incremen t er wh ich 1s s impl e
and o f no part icular importance.]

Having a declara t ion list available as a menu is very us e fu l, because tha t way you can
look up whichever variable name you 're in t eres t ed in and check the da ta type t o make sure
t ha t you 're using the righ t funct ions and opera t ors to manipula te i t , and a lso t c checJ.:
tha t if you 're modi fying a value and passing i t to anot her variable, tha t i t is ass igned t o
a variable o f the correc t da ta type. For example i f you crea t e or modi fy a rea l va lue on
one s ide of an assisnmen t s ta t emen t . and is assigned t o an in t eg er variable on t he o t her
side. then you are going to lose va lue across t he opera t ion, because a rea l va lue 1.1 1 1 !
t runca t e t o a n in t eger va l ue.

Some people would argue tha t you don ' t need a summary men u t ool, because you 've ge e t .>1e
declara t ion l is t . k'ell tha t is t rue, bu t why should you c."" .,pend t ime and <men t a J ??.1 energ_v
scrolling back t o t he dec lara t ion area, and searching t hrough for wha t e ver var iable you 're
in t eres t ec in. I t '=- much s impler jus t to ca l l up the chosen variable name on t he s u.11mary
menu and ha ve i t t el l you wha t it is. Tha t way t here are no err ors s uch as you t h ink �
i t 's one da t a type and then finding out much la t er (when debugging perhaps I t ha t 1 t .,
something else. A lso summary t ables pro vide other possibi l i t ies for checking. Fer exa.rnplc
you can find ou t wh ich o ther procedures use the same variable name, and i f t hey are
dec lared a s the same or di fferen t da t a types. Perhaps in 0ne procedure you 've dec lared i t
as an in t eser, and in anc• ther you 've declared i t as a re-a l da t a type. Now you may ha ve
done t ha t on purpose. or you may ha ve wan t r?d them bo t h l a be of the same da t a t ype-. and
! h is way i t is m uch eas ier t o check tha t you are us Lnl{ t hem con.=- is t en ! iy. or c o ; ·._.., .Jr
required plan.

A l l these ttl ings tha t I 'm sugges t ing are 1.1.::ys .:.: I mali in8 t he ac t u..:: 1 rr c.-s r amm i r"i.:'. .:-:-:t.1
det-ugg i.ng t asks ea '=- !�r f c-r the programmer. t•-:(d USt= l fli:·r i:' is :::, ucr, .i ." c· l y,.:: :J :;.':! , 7 - .

r,;;-m:::mt·er. end ob vioua ly t he m,:>,-e VL°'.IU hc: \·t? r i:· ! ° cmr::'mber tmJ dea l ,,J i th. ! he mor e m is t akes
you ar� going l :.) make. Obvious ly, any t h ing ! ha t is B C ing t o make the act ua l bur den
ligh t er is a bonus, t ,,;, t•e wished for.

Another very use ful mechan ism , I think, for the summary t able sys tem t o work on is the
user-de fi.Jled procedure names and their parame t er lis t s t hemse lves so tha t for e.-..:ample, a
qui t e common faul t is for programmer t o ge t t he parame t er l is t tha t g oes wi t h � procedu�e
cal l wrong, or a l t erna t i vely t o ge t the order of t he parame t ers themsel ves m ixed. Th1 s
way you can ca ll up t t,e procedure name tha t you 're in t eres t ed in, and then a lso ca l l up
i t 's parame t er lis t as i t was declared origina l ly. Tha t way i t makes i t absol u t ely c lear
which parame t ers are variable and which art? ac t ua l parame t ers, and which type each one 1s.
Tha t �1a v thr?r":? 5-i,ouM be: no orotdem 1n 8BS 1 LTfl1.rls.T the r1oh t var1Bbles 1.n t u the or·eicedu:·e , I O O Q I

call 's parame t er lis t - which aga in is a use ful thing.

The foregoing applies t o t he user 's own procedures, bu t 1 t ls perhaps even more use ful for
the predefined procedures/funct ions which you are not familiar wi th, when you n eed t o find
out t he parame t er lis t . Usually t o do this you ha ve t o go and look a t t he manual, which
is a chore tha t nobody likes doing. So in this case i t 's m uch simpler t o call i t up on the
menu, find out i t 's parame t er l is t and then Just fill i t in - inst ead o f ha ving t o go
through the aggra va t ion of ge t t ing the manuals ou t and t rying to find out more a bou t the
required procedure. A lso i t should be error free, because you will ha ve a l l the procedural
parame t er l is t t here and possibly i f i t s a predefined procedure t here may even be some
addi t ional in forma t ion on the act ua l use of the procedure. This all goes t o makinB l i fe
easier for the programmer.

program survey(input . outputJ:
var

t ime. vehicles. n. maxwait integer:

procedure inc_timers
(var time. wai t . maxwait i ntegerl :

begin
time := time + 1:
wai t := wait • 1:
if wai t > maxwait

then . maxwai t ·= wait:
end:

begin (main program
B ·= O·
�cles := 0:
read(signal) :
repeat (process signal }

if si gnal = 2 then
inc_timers(t ime. B m axwai t) :

i f signal = 1 then
begin

& := O:
vehicles : = vehicles + 1:

end:
unti l signal = 0:
wri telnCTi me- span= · . tim e. ·secs·) :
wri telnCVehicle-count= ·. vehicles) :
wri telnCMax- wai t= · . maxwait. ·sec s ·) :

end.
Eig _ _5._; _ _ Wqit. J.gk>_b(JJ _ y�ria_bk__QnlyJ

program survey(input. output) :
var

time . vehicles. wai t . moxwoit integer:

procedure inc_timers
(var ti me. wai t . maxwait integer) :

begi n
t ime := time • 1:
wai t := wait + 1:
if wait) maxwait

then maxwai t := wait:
end:

i sign a = 2 t en
inc_timers(t ime. wait. maxwai t) :

i f si gnal = 1 then
begi n

wait := O·
vehicles :

= vehicles + 1:
end:

unti l si gnal = 0:
writelnCTi me- span= · . ti me. · secs ·) :
writeln("Vehicle-count= ·. vehicles) :
wri telnCMox-wai t= · . maxwait. · secs ·) :

end
... fi9�- ·6.-��tc;hin.g . Co.mm_ent _Brock.eh

flg_l_

Component Lis t

program survey

procedure 1nc_ t 1mers

Fig 1 1

Aiphabet ical

maxwait 2

t ime

vehicles

2

wait 2

Program Survey

t ime

vehicles

wait

maxwait

Undeclared

s ignal

Fig 1 2

Undeclared

signal

Fig 9

inc t imers

t ime

wait

max wait

Undeclared

Fig 1 0

global

t ime

vehicles

wait

maxwait

inc t imers

t ime

wait

maxwait

Figs 7- 1 2 show summary lists that could be produced a ft er interpret ing the struct ure

produced through interrogat ion of the program text of Figs 5 & 6. Fig 7 shows the

component list - the full lis t of all named procedures and funct ions, including the

program name. Select ing a name shown on the component list would cause the

associated ch i ld lists to become available - either in declarat ion or alphabe t ica l

order; with or without the associa ted undeclared var iable lists.

Thus Fig 8 resu lts when select ing the declara t ion ordered variable list of "program

survey" from Fig 7 ; and Fig 9 results when select ing the declarat ion ordered variable

list of "procedure inc_ t imers" from Fig 7 . Note tha t t he lower portion of both Figs 8

& 9 is devot ed to undeclared variables.

In contrast , Fig 10 de fines the list of declared variables that are accessible and can

be used, in terms of global and local variables, when seen from within inc_ t imers.

Fig 1 1 shows the <entire> alphabet ical list of variables declared throughout the

program. Not ice that each variable is associated with a number, i f i t is declared more

than once - select ing any individual variable name would cause a 11st of its "parent a l"

procedure names (denot ing declarat ion origin), to pop up, wit h or without an

accompanying de finit ion of t he var iable 's type stat us (depending on the viewer's

requirements).

There are 2 ways of doing the en t ire declarat ion list - either list ing all declara t ions

and allocat e them as given, and list all undeclared i tem separately in a "float ing"

lis t ; or list every thing in associat ion with its parent lis t , not ing declared items

first and undeclared items second, so it is easy to tell where each item appeared, and

hence to alloca te it.

I

Bi bl i ography

Cakir A. Har t D J & St ewart T F M
Vi sual Di spl ay Terminal s
John Wi l ey & Sons 1 980

Card S K, Moran T P & Newel l A
The psychol ogy of human-comput er
in t erac t i on
Lawrence Er 1 ba um, 1 983

Davi es S P
Ski l l l evel s and s t ra t egi c di fferences
i n pl an comprehensi on and impl emen t a t i on
in prograJ1JJ1Jing
Peopl e and Comput ers V, 1 989, p48 7-502

Green T R G
Programming as cogni t i ve ac t i vi ty
in Human In t eract i on wi t h Comput ers,
edi t ed by Smi t h H T & Green T R G
Academi c Press : L ondon, 1 980

f:"creen T R G, Sime /.f E & Fi t t er M J
The art of no t a t i on
in Comput ing Ski l l s and t he User
In t erface, edi t ed by Coombs M J & Al ty J
L
Academi c Press : London, 1 98 1

Hul me
Ext rac t i ng informa t i on from prin t ed and
el ec troni cal ly presen t ed t ext
i n Fundament al s of human-comput er
in t erac t i on, edi t ed by Monk A
Academi c Press. 1 985, 35-42

Monk A
Personal Browser
In t eract ing wi th Comput ers 1 (2) Aug 1 989

� Si ddi qi J I A
· Program designer beha vi our

Peopl e & Comput ers I, 1 985, p369-379

Suchman L
Pl ans and si t ua t ed act i ons : the probl em
of human-machine communi ca t i on
Cambri dge. 1 987

Thompson P
Vi sual percept i on an in t el l igen t
syst em wi th l i mi t ed bandwi dt h
i n Fundament al s of human-comput er
i n t erac t i on, edi t ed by Monk A
Academi c Press, 1 985, 5-33

Trei sman A
Percept ual groupi ng and a t t en t i on in
vi sual search for fea t ures and objec t s
Journal o f Experimen t al Psychol ogy
human percept i on and per(ormance, 1 982,
8 (2) 1 94-21 4

I /

van Laar
Eval ua t ing a col our codi ng support t ool
Peopl e and Comput ers � 1 989, p21 5-230

van Nes F L
Space, col our and t ypography on vi sual
di spl ay t ermi nals
BI T 1986, 5 (2) 99- 1 1 8

Wa t ki nson N S
The eval ua t i on of dynami c human-comput er
in t eract i on
Unpubl i shed
St udi es
Uni versl t y,

Winfi el d I

Ph. D. Thesi s, Comput er
Departmen t , L oughborough
1 988.

Human Resources and Comput ing
Hei nemann : London, 1 986

Wrigh t P & L i ckori sh A
Col our c ues as l oca t i on ai ds i n l engt hy
t ext s on screen and paper
BI T 1 988, 7 < J > J J -30

