
Programming in the Real World:

Computer science students' perceptions of the values and difficulties of
learning formal methods

Abstract

Professor T. O'Shea, Dr. P. Fung
Centre for Information Technology in Information

Open University, Milton Keynes

Professor R.Bornat, Dr. S. Reeves, Dr. D. Goldson
Queen Mary andWestfield College, London

it is generally ackno,.vledged that computer software design would benefit from insistence on a
high standard of consistency and reliability. One solution to this is the application of formal
reasoning techniques to establish the correctness of programs at an early stage in the design
process. An increasing number of universities are integrating this approach to programming into
their undergraduate computer science courses. This raises issues related to the process of learning
formal reasoning methods and the difficulties computer science students may experience on such
courses. In the light of the results of a preliminary survey of students' experiences in this area we
look at the factors which may contribute to their difficultiec �nd c-n, .. .::;rl<'r thr·· :__,,:-!:ration� for
computer science teaching.

Introduction

The contents of computer science courses at undergraduate level can vary
greatly but on a majority of courses 'software engineering' is an integral part of
computer science studies. Many graduates of these courses go on to become
software engineers in industry, while others enter the academic system and
eventually are themselves responsible for shaping the ideas and development
of future computer scientists. It is natural that those involved in
undergraduate computer science teaching should be concerned that the content
and quality of the curriculum offered to students reflect the best practice and
thinking in that field.

� A major concern, discussed in detail by Gries [1991], is the need to develop a
rigorous and scientific, as opposed to an operational, approach to programming
and software design. Those supporting this view believe that if software
engineering is to become a legitimate branch of 'engineering' then it must
develop the same rigorous approach to design and planning that is taken for
granted in traditional engineering projects. They feel that the high standard of
reliability and quality demanded of sophisticated software systems today can be
better satisfied if the specification and design of those systems are underpinned
with verification of a mathematical rigour. Employing formal methods for
program verification is seen as an essential step in achieving a precision and
d�rity of program design [Jones 1986]. The computer scicno::- department al
Queen Mary and Westfield College, London, specifically introduces this way of
thinking into the core of its first year curriculum [Bornat 19**]. Successful
teaching of formal reasoning techniques and the principle which underlies
their use, i.e., that programming and software design is a considered and
formally provable process rather than an ad hoc 'try it and see' affair, is seen to

The Calulator Project

have long term advantages both for the study of computer science and
practically for the students themselves. Gries [1991] summarises what he sees as
the advantages for the latter:

one learns th.1t the shape nf the formalization r.1n iht'lf lend i,v .. ,it�hl int<, dL'\'clnping a
solution. One acquires the urge to clarify and simplify, to seek the right notation in which
to express a problem. One acquires a frame of mind that encourages precision and rigor. This
frame of mind can have a strikingly beneficial effect on what \vork one docs later as a
professional in computing.

The benefits of using a formal approach to software development are indeed
relatively easy to appreciate when one considers the growth of soft,v,u0
applications designed to be used in circumstances which demand a high level
of reliability. However in computer science departments it is recognized that
Ie<1rnin� to l]C:::() fnrm;il n,0thrvlc lC nf"\� w;fl,{"\,,, :,,- ,,'hl.� , - r�-- ••>':���-.�:·""'._�::::'.�

0 • U

students. In an attempt to alleviate the difficulties which students experience in
this area, staff of Queen Mary and Westfield College computer science
department, in collaboration with the Open University, are currently
undertaking a three year research project funded by the joint research council .

In the course of the project, the collaborators expect to introduce and evaluate
the use of on-line mechanical aids which have been developed to help students
in applying formal rules and recording the results, thus relieving them of some
of the more tedious aspects of calculation entailed in program verification. In
parallel with this, they are undertaking empirical studies designed to help
identify which aspects of learning formal reasoning techniques are most
problematic for students.

At the outset of the project, a preliminary study was undertaken, in which
current second and third year computer science students were questioned about
their attitudes to learning formal reasoning techniques and the difficulties they
had, if any, with these techniques during their first year courses. The study \Vas
undertaken with a view to gaining a first insight into students' perceptions of
the values and the difficulties of learning formal methods. Marginally over
fifty, out of the one hundred and fifty second and third year students who were

� contacted, completed a questionnaire. While the number of replies was
obviously not large enough to be used as the basis of any generalisations, the
replies themselves were interesting and useful in bringing to attention some of
the factors which students see as contributing, adversely or otherwise, to their
progress.

As a follow up to these questionnaires twelve students were interviewed
individually and each talked in more depth about their first year experiences of
learning formal methods of reasoning.

The first year courses about which the students were questioned, primari]v aim
Lu instii principles which ·encourage the development ot ·reliable' ·correct'
'consistent' programs, all of which are qualities demanded of software in the
'real world'. Yet the answers we obtained from questionnaires and feedback
from the interviews indicated that for a number of students, in their initial
perceptions of computer science there exists a gap between the academic view
of computing and computing 'in the real world'.

The Calulator Project 2

Interestingly, however, many of the students explained that they had modified
their initial perceptions as their understanding of computer science had
increased. Before we look at these student responses more closely and discuss
the implications which they may have for computer sci�nce teaching, we give a
brief description of the preliminary study itself.

An overview of courses incorporating formal reasoning methods

In the study, second and third year students were questioned about their
learning experiences and attitudes in relation to certain courses they had taken
in their first year. The four courses chosen for consideration were those in
which learning about formal reasoning techniques formed a significant part of
the work.

Two of these were taken in the first semester:

Programming I (PI)
ii Introduction to Discrete Structures (IDS)

PI was a pre-requisite for most of the computer science courses and was based
01 l i.L,H.:i llhc, iang�agt i11l.iL !,Jenut:Ill COH L .I! l� 01 prog1 c1m111111g, wan emphasis
on the proof of programs against informal specifications. However,
mathematical experience beyond 0-level (GCSE) was not required for the
course.

IDS covered the basic repertoire of formal notions used in computer science,
describing programming language, constructing relational databases and in
developing correct programs. It covered topics such as equivalence relations
and partial orders, sets, functions and relations, induction, graphs and trees and
lambda notations.

The remaining two courses were taken in the second semester:

� 11
Introduction to Logic (IL)
Programming II (PH)

IL introduced the basic ideas and notions of classical propositional calculus,
with emphasis on the notions of proof and validity. This logic was then
extended to classical predicate calculus and the notion of proof considered in
more detail. The course is designed to help students realise how close I y
computer science and logic are linked and that mcuh of logic is inseparable
from the notion of an effective algorithm [Reeves & Clarke, 1990].

PII was concerned mainly with the use of data structures and was a follow on
from PI of the first semester. The programming language Pascal was taught and
used t0 imp1crncnt concepts learned in PI.

The questionnaires

The tick box format of the questionnaires required the students to rate each of
the four courses in terms of how easy they had found it, how relevant to their
computer studies they had found it, how interesting it had been. e.g.

The Calulator Project 3

Did you find this course interesti� (please tick appr°friare box)
very D fairly D not very LJ not at all

Students \Vere also invited to make additional comments on the courses, or
their L1ti:;�·� <'f thcm

1
,1..: thev wished

l_., ..

The interviews

The structure of each interview allowed the interviewee to discuss what was
found hard about the four courses, if any difficulties had been encountered and
if so, how these difficulties could be minimised. The 'interest', 'relevance' and
'easiness' aspects were a suggested framework, but interviewees were free to
develop the conversation in other directions if they wished. The goal of
undertaking in-depth interviews with a selection of students, wc1s tn

investigate in more detail the outline picture obtained from the questionnaire
ratings ;rnd to look for any commonality in the difficulties they may have
·encountered or the attitudes they held towards the courses.

Participants

The second and third year students of spring 1991 were circulated with
questionnaires, in total about one hundred and fifty students, but the data
collected refers to the sixty-three students who actively participated, i.e. fifty­
one who returned completed questionnaires about the courses and twelve who
volunteered to be interviewed personally. Of those who had completed
questionnaires, thirty-one had given their names, while twenty of the forms
were returned anonymously. It was possible, using end-of-year exam. results, to
check the academic progress of the named participating students.

Overall 2nd. year resu Its (n=79) 2nd.yr named questionnaires (15)

good passes 31 good passes 10

comfortable 27 comfortable 4

struggling 15 struggling 1

deferred/withdrawn/ transferred 6

0 , erall 3rd. year degree results (n=81) 3rc .yr named questionnaires (16)
firsts: 5 firsts: 3

upper twos: 28 upper twos: 8

lower twos: 19 lower twos: 2

thirds: 13 thirds: 2

passes: 8 pass 1

deferred/ftq: 8

Fig. 1 Summary of end of year examination results

As previously mentioned, it is not possible to generalise from the thirty-one
named students who comp1eted questionnaires. It is, however, in light of their
end of year results, reasonable to presume that comments from this set of
students at least, were not unduly coloured by the experience of basically
finding the whole undergraduate program very difficult. Comparing their
results with the overall levels of attainment (see Fig.1 above) for their year,
these participants showed a near average spread of attainment, perhaps biased
towards the upper levels of achievement.

The Calu]ator Project

Some data from the questionnaires

Figures 2, 3 and 4 summarise students' responses. Looking briefly at each we
can see that for those aspects of the courses directly queried, i .e . how easy, how
interesting, how relevant a course was, some interesting points emerge.

22 -.---------------------,

'Xl +- -- --------�l----------i ..,.,,.,.,.,,.,,.,,,.,,.,,,,.,,.,,=

n��,:f 11

ii
2
0

very not very

ratings d10sen by students to describe level of easiness

Figure 2 The easiness factor

22 -.--------------------�
Al +---- -----.-rrr---------�
18 """'"'"""""""'"'"""''""'

":::;' ! :====�;t�����
"""'

----f ----1 ti
0

very fairly not very not at all

ratings chosen by students to describe level of interest

Figure 3 The interest factor

26 ,---------------------.
2A +---i--4------------------1
22 -t----+-+----------------1 ,.,,,,,""""=:-:�=

":,�;' ! i1
very fairly not very not at all J�}iJ)�:�:i,;:li ! !:::Ji

ratings chosen by students to describe level of relevance

figure 4 The relevance factor

The Calulator Project

Viewed at this level, it is relatively easy to pull out which courses ,vere rated
more interesting than others, which seemed to present most difficulty to most
of those students and which these s tuden ts considered most relevant. This
however raises the 'why ' ques tions - why did the interest rating for IDS peak
above that of the other courses? Why did the relevance rating behave similarly
for the course P2? Why did so many students find P1 not very or not at all easy,
yet also rate that course to be fairly or very relevant? We attempted to gain
insight on these aspects from the more detailed questionnaire comments and
through the in-depth interviews in which we hoped to learn what criteria
students used in rating the courses, what factors they took into account in
rating a course as interesting, which aspects of a course meant that students
found it 'very easy' or 'not all easy'.

I nterpreting the data

In the event, not unexpectedly, there were no straightforward answers to many
of the questions, but across the number of studen ts interviewed, it was possible
to discern certain recurring themes. These concerned factors which the students
interviewed saw as contributory to their ability to succeed on the individual
courses and indicated how those students perceived the relevance of the
courses to their compu ter science studies. In summarising these themes it is
convenient to classify them broadly as occurring at a general level, a subject
level and, in relation to the perceived relevance of courses, at a personal level.
This classification is to a certain extent an arbitrary one, since the relationship
between the factors which affect students' learning, or their perception of their
learning, is not one which can in practice be so easily unravelled.

At a general level, as we have chosen to call i t, students saw the transition from
school to university as an important factor in their progress. For many of them
this mean t adapting to a very different work style. Some saw this as a challenge.
For others it posed problems. For them, the change from the relatively
regimented framework of s tudies at school, to an environment where the
responsibility for organising one's own work schedule, attending lectures,
meeting deadlines etc., u l timately lay with oneself, had not been easy. A t this
level, the lecturing skills of those taking firs t year courses were most keenly
appreciated. Interes t in a lecture/ course seemed to be stimulated by a clear
presentation, the use of relevant examples where appropriate, the ability of a
lecturer to 'communicate' with the students (as some interviewees phrased it),
and the cons tant setting of each lecture in the wider context of the
semester's /year's studies. Interest generated in this way seemed to have helped
a number of those students interviewed to persevere at points where they
would have categorised the course as 'not very easy'.

A t a c;ubiPct l evel . l ll m ;i n v C"r! �Pc; , c; tu rl Pn f� f'f' rrPi v0rl n� .l f tlw n i ffi n 1 l l i ,"c: + h r,v
- . .

had experienced on courses were due to their lack of 'background' knowledge.
Computing or programming experience was not a pre-requisite for the
computer science degree course. A number of s tudents who had no previous
computing experience fel t disadvantaged however, in relation to those
studen ts with computing experience and saw this as having been a source of
their difficu1ties. These s tudents felt that the time which they had to spend

The Cal ulator Project 6

fa m i l i a r i s i ng the ms e l ves w i t h t h e computing en vironment left them
considerably less time to come to grips with the formal reasoning techniques to
which they were being introduced.

Another source of difficulty at this subject level, as perceived by the students
interviewed, was that given the time constraints of the first semester, the
system of formal notation used in program proofs was too complex for them to
manipulate confidently . While they were able to follow the steps, albeit with
some difficulty, when these were explained to them, they found that carrying
them out for themselves was a slow process with a high possibility of error
given their lack of familiarity with the notation.

At a personal level this perception of the difficulty of formal reasoning was for
�ome s tuden ts stren�thf\nPrl hv thei r view, at this early stage of their degree
course, of its lack of relevance to the course. This is not immediately apparent if
we look back at the charts (fig.1 to 3) showing the ratings given to the course P1
on the questionnaires. What we see there is that a relatively high number of
students found the course 'not very' or 'not at all ' easy, as was confirmed by the
information we gathered from interviews. However, the charts also show that
the interest ratings for P1 were not particularly low and that the relevance
ratings were in fact h igh .

Students' changing perceptions

This apparent anomaly was explained in the course of the interviews and that
explanation supported by additional comments on some of the questionnaires.
A remark, often repeated, common to most of the interviewees, as wel l as
appearing in some 'additional comments' slot on the questionnaires, was that
the relevancy of P1 had become apparent only in subsequent semesters. It
would seem that many of those students rating the relevancy of Pl as high on
their questionnaires, were doing so with hindsight. From the i nterviewees, it
became apparent th et t the formal reason i ng a pproach to programming,
introduced in P1 in their first semester, had not only seemed difficult, but that
at the time, it had been hard to appreciate the relevance of the concepts being
taught.

In conversation it became clear that for the majority of those interviewees with
pre-university experience of programming, their view of the activity had been
shaped by that experience . Presented with an approach to programming which
advocated prior reasoning about the correctness of a program in relation to its
specification, they had felt frustrated. Time not spent sitting at the keyboard
actually working out a program by trial and error had seemed to them, at that
stage, time wasted. For these students, this latter approach was what they
expected to find on a programming course. Their initia l reluctance to employ
formal reason ing techn iques was perhaps expressed most clearly in the
comment ' I don ' t believe programmers in the real world do'. For them, coding
in immediately their first pass at what they think would be a solution to the
programming problem and then adjusting this program unti l i t produced a
satisfactory answer, was what 'real' programming was about.

The Calulator Project 7

This did not necessarily mean that for those wi thou t programming experience
i t was easier to see the relevance of using formal techniques. According to one
such student, 'it was difficult to grasp abstract and theoretical aspects wi thou t
having any of the basic computing concepts' .

Nevertheless, wi th or wi thou t prior programm ing exper ience, students'
perceptions of the re le vance of learning formal reasoning techniques were
modified in the course of their studies . Of twelve studen ts interviewed, ten
mentioned tha t they had not found it initia lly easy to appreciate the relevance
of the techniques they were being taught, but explained that by a later s tage, in
most cases near the end of the first year, they were able to appreciate the value
of formal techniques learnt in their first semester.

Some implications

This s tudy was undertaken as a firs t pass a t viewing the teach ing of formal
methods from the perspective of those students who had followed courses
which incorporated this approach to programming. The interes t of the study
lay in gaining insight into the difficul ties which the students themselves fel t
they had encountered in learn ing formal methods; in hearing from them
whether or not they fel t those in i ti a l courses had influenced their own
conception of what 'programming' was; in learning from their experiences in
which ways they could most effectively be helped to appreciate and to put into
practice this particular approach to programming.

There is a number of areas in which the the study has been useful . At a most
general level, information gained reinforces and justifies the need to approach
first year undergraduate teaching with the enthusiasm and careful preparation
wh ich those s tudents in terviewed had so obviously appreciated . At a level
more specifically rela ted to the formal reasoning contents of the courses in
question, the information obtained ra ises several questions. In what way i s it
possible to help computer science students appreciate the extent to which the
acquisition of initial knowledge and techniques (which are possibly unfamil iar
and unin tuitive to them) w il l make subsequent s tudies and projects easier?
How best to avoid the s i tuation, where, as one student commented, 'you only
realise too late, that the ini tial work is so very useful . But it's very difficult to
rea lise the relevance of someth ing for the next s tep, when you do not know
what the next step is . '

A t a practical level, the study has shown that there i s a need for a means of
automating some of the processes involved in formal reasoning methods. It
has shown that s tudents lack confidence in manipulating formal expressions .
Developing and in troducing on-line tools which make those manipulations
more transparent and reduce the l ikel ihood of s tudents' m istakes i n
performing opera tions on those expressions is a principal goal o f the curren t
research project, currently being undertaken at Queen Mary College. Such tools
should help to alleviate some of the di fficul ties studen ts experience in their
ini tial encounter with formal reasoning techniques . Using such on-line help
tools may also encourage an earlier mod i fica tion of their in i t ial perceptions of
programming in the real world .

The Ca lulator Project 8

� References:

Bornat, R. (1 987) Programming from firs t pri nciples . (series e .C . A . R . Hoa re)
pub . Prentice-Hal l In terna tiona l .

G ries, D. (1991) Calcula tion and discrimina tion : a more effect ive curricu lum .
pp. 50-55 Comm. o f the ACM, March vol 34 no.3.

Jones, C. (1986) Systemat ic Software Developmen t us ing VDM. (series ed.
C.A.R. Hoare) pub. Prentice-Hall In ternational

Reeves, S. & Clarke, M. (1990) Logic for computer science. pub.Addison-Wesley.

The Calulator Project 9

