
r

r

r

r

r

r
\..

r

r

r

r

r

r

r
l

r

r

r

r

r

An experimental evaluation of different proposals for teaching
Prolog that is designed to be run over a network.

Mike Brayshawt, Helen Pain2, Paul Brna2, Andrew BowJes2, and Dave
Robertson2

1 Human Cognition Research Laboratory, The Open University, Milton Keynes,
England, MK7 6AA., Tel: [+44] (0)908 65 5015, FAX: [+44] (0)908 65 3169, email:

m.c.brayshaw@open.ac.uk

2 Department of Artificial Intelligence, University of Edinburgh, 80 Southbridge,
Edinburgh, Scotland.

Extended Abstract for PPIG-6, Psychology of Programming Workshop, The Open University,
6th.-8th. January, 1994.

1. Introduction.

The paper will introduce an approach for designing and running experiments that
address curricula issues for Prolog teaching. The primary focus of the paper will be a
discussion of an experimental evaluation of four different approaches for teaching
Prolog. As a secondary issue, we intend this experiment to be run remotely over
computer networks and we will discuss some of the practical issues and design
problems this raises.

The particular domain of interest is how we can improve the teaching of logic
programming. It's been noted elsewhere (e.g. Taylor, 1984, 1987;0rmerod, 1987)
that languages like Prolog seem to present a particular obstacle to novice
programmers. The unification algorithm and backtracking in particular lend
themselves to a series of misconceptions (Fung et al, 1981). This in tum has led to a
number of proposals about how we can improve the learning experience for novices
(e.g. Rajan (1986), Gregg-Harrison (1991), Looi (1988), Bundy et al (1986), and
Eisenstadt and Brayshaw (1991)). Here we wish to complement the above work to
see if there are particular parts of the teaching material that we present to novices that
can be modified in a specific way to help novices learn and to alleviate
misconceptions. Two proposals in particular will be investigated (a) teaching novices
well known programming methods, and (b) attempting to improve the mapping
between course text and exercise material.

2. Motivation

The subject of the evaluation are two proposals for teaching Prolog. Starting from a
curricula which attempts to present a "typical" Prolog course, we will seek to evaluate
the effects of these proposals. The first is the concept of a Prolog technique (Bma et
al, 1991). By technique we mean a common way of writing things in Prolog. This
corresponds to a surface cliche in the code. Please note that no claim is being made
about the psychological depth of such a concept, and no link is being made to the
"Yale" notion of plans. We are merely saying that these are common ways that
Prolog programmers encode their problem solutions. If you like their "tricks of the
trade". By extrapolation it is argued that if it's clear proficient programmers use them,
why should we not teach them explicitly to novices and see if their performance
improves.

55

The second area of concern for Prolog teaching is the arguments for a rigorous
treatment of isomorphism between examples in the course text and set exercises.
Robertson and Kahney (1993) have demonstrated that novices are frequently thrown
by the lack of isomorphism between course text examples and subsequent exercises
and assignments. As Keane et al (1989) argued, this lack of isomorphism can often
be subtle and unintended by the courseware author, but nonetheless fatal to the
analogical mapping process of the novice. Further Robertson and Kahney (ibid.) note
novices often are able to identify some surface features and map then correctly in
similar conditions, but lack the deep model of the relation between the example and
exercise when presented with a more different variant. Thus in this experiment we
were anxious to also see if strict and explicit mapping of information between
example and exercise has any effect on the performance of learners.

3. The Experiment.

The experiment looks to use Hypercard™ as the basis for the experimental materials.
There are two justifications for this, one educational, the second practical. Firstly, the
growing number of educationally based Hypercard stacks already demonstrate the
technology's potential, not least for distance education. Here we aim to combine this
potential with the opportunity it affords us for empirical study of novices. Secondly,
this allows us to mail out a complete experiment to an already large potential
audience of Macintosh based users.

The experiment itself follows a Latin Square design. The control case is an
introductory Prolog course that aims to be typical in its curricula. No attempt is made
to emphasise structural isomorphism or Prolog techniques. Two variations feature
respectively (a) The Techniques Condition: the introduction of the concept of
techniques and how to use them and (b) The Explicit Mapping Condition: contains
explicit structural mappings between exercises and problems. Finally in (c) The
Combined Condition, we integrate these two proposals and present techniques
alongside mapping information.

The core curricula introduces the itemised concepts in the following order.

facts.
facts with arguments
variables and unification
rules
search including backtracking
recursion
lists
lists and unification
listing search (list deconstruction)
list building (list construction)

Each concept is introduced and both procedural and declarative readings are
discussed. The structure of the dialogue is

(a) exposition of concept;

(b) a worked example(s);

(c) an exercise.

56

1

1

�

I

l

1

1

1

1

1

l

1

1

l

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

If the exercise result is better than a predetermined figure, then the student moves on
to the next card. If not they are offered an extra remedial card and it is suggested that
they also go back and study further cards on this topic.

Subjects are first given a questionnaire about their background and experiences. This
includes their age, number of years experience with computers, and details of what
other languages they know and a rating of their proficiency in them. They are
randomly assigned to one of the four experimental conditions. Once in a condition
they are asked how much Pro log they already know. If they are a total novice, then
they are assigned to the start of the tutorial. If not, they are given a series of graded
exercises in order to determine their proficiency, and then placed into the tutorial at
an appropriate spot. This is recorded so that we can correlate perceived proficiency,
observed proficiency, and effects that the conditions had on particular subject
populations. All movements between cards are monitored, as are responses or
changes of answers to questions. The subjects are allowed to wander forwards and
backwards through the cards at will.

In addition to raw performance on exercise tasks, at the end of the learning episode
we present a series of short experimental tasks. These include specific problems to
solve as well as fixing and explaining bugs. A comprehension task based on an
adaptation of Kahney's (1983) coloured pens experiment is also included. This
requires students to copy a program. They must study the program on one card, then
move to another and write it down. Each move and changes to the transcribed code
are recorded. This allows us to see how novices are chunking the information they
transcribe. Of interest is if novices exposed to techniques or mapping role fillers use
these concepts as the basis for how they copy the program, rather than doing it in a
purely syntactic left-to-right manner.

4. Running the Experiment, Experiences, and Results.

With the advent of massive new interconnectivity via email and the Internet we have
become interested in using these facilities as a means of interacting with experimental
subjects. A major potential benefit of this approach is access to a large population
base of subjects, an important issue in the psychology of programming where
individual differences plays such an important role. However, this raises a series of
issues for experimental content and structure, including: how it is to be distributed,
how we persuade net users to take part, how we measure their performance, and not
least, how we get the results back! The way we approached these problems was as
follows:

The experiment itself was shipped late 1993. This included posting to the News Net,
BIX, and CompuServe as well as individual email postings. The posting were of two
types. The first was to offer software on an individual self improvement basis as a
"Free introduction to Prolog". The deal is "We'll give you a taster (for free) of what
Prolog is like and show you round a bit of it. However, we're also looking at how to
improve tutorials like this so we'd like to know how you got on. You can do this by
emailing the log file back to us. If you do so we'd be most grateful and you'd be
helping others in future." The second offer was made to teachers. It said that if you
had a Prolog class to teach in the next term here was a free tutorial that took them as
far as lists and recursion. They were free to use it in a classroom setting, but would
they please send us the results on how the students got on. Finally we sent a version
of this second deal out to various colleagues who we'd forewarned and who had
agreed to either be a subject themselves or use it on their own classes. Note was
made of the method each subject got the tutorial and how they used it (alone or in
class).

57

Due to timescale consideration, the paper will not report results as the experiment will
still be running in January 1994. However, we should be able to report initial
responses and have some feel for the take up. Further we will discuss what comments
we have got back and doubtless note further practical hitches that we encountered.

S. Conclusions

The experiment looks to see what effects various proposals have on a specific method
of teaching Prolog. In doing so we'd had to make assumptions. The actual pedagogy
of the tutorial itself, the use of Hypercard™, and the use we have made of it, are all,
to some extent, open issues. The experiment here looks to see if these proposals work
with the types of tutorial techniques that we have used here. Depending on what
results we get will allow us to speculate how this might alter if we changed our
tutorial format. Indeed, this speculation may even tum into another experiment!

6. References

Bma, P.,Bundy, A., Dodd, A., Eisenstadt, M, Looi, C-K, Pain, H, Robertson, D.,
Smith, B, and Van Someren, M, Prolog programming techniques, Instructional
Science, 20(2/3), 1991.

Bundy, A., Pain, H., Bma, P., and Lynch, L. A proposed Prolog story. DAI Research
Paper 283, Department of Artificial Intelligence, University of Edinburgh, 1986.

Eisenstadt, M. and Brayshaw, M. A Fine-Grained Account of Prolog Execution for
Teaching and Debugging. Instructional Science, 16, pp. 407-436, 1990. ISSN 0020-
4277.

Fung, P., Brayshaw, M., DuBoulay, J.M.B., and Elsom-Cook, M.T., A Taxonomy of
Novices misconceptions of the Prolog Interpreter. Instructional Science, 19, pp. 311-
336, 1990.

Gegg-Harrison, T. Learning Prolog in a schema-based environment, Instructional
Science, 20 (2/3), 1991.

Kahney, J. An In-depth study of the Cognitive Behaviour of novice programmers,
Technical Report No. 5 (Ph.D. Thesis), Human Cognition Research Laboratory, The
Open University, Milton Keynes, 1982

Keane, M., Kahney, H., and Brayshaw, M. Simulating Analogical Mapping
Difficulties in Recursion Problems. In A.G. Cohen (Ed.), Advances in Artificial
Intelligence: Proceedings of AISB-89. London: Pitman, 1989.

Looi, C.K., Analysing novices' programs in a Prolog intelligent tutoring system.
Proceeding European Conference on Artificial Intelligence ECAI-88, Pitman
(London), pp.314-319, 1988.

Omerod, T. Content and representation effects with reasoning task in Prolog form,
Behaviour and Information Technology, 5(2), pp. 157-168., 1987.

58

,

,

,

l

1

l

,

�

1

1

1

1

1

1

Rajan, T. APT: A Principled Design for an Animated View of Program Execution for
Novice Programmers. Technical Report No. 19 (Ph.D. Thesis), Human Cognition
Research Laboratory, The Open University, Milton Keynes, 1986.

Robertson, I. and Kaheny, J.H. How do examples Help Solvers Solve Problems? An
Interpretation Theory for Textual Analysis, Technical Report 96, Human Cognition
Research Laboratory, The Open University, Milton Keynes, England, MK7 6AA,

Taylor, J. Why novices will find learning Prolog hard. Procedings of the European
Conference on Artificial Intelligence (ECAI-84), Pisa, 1984.

Taylor, J. Programming in Prolog: an in-depth study of problems for beginners
learning to program in Prolog. Unpublished Doctoral Dissertation, School of
Cognitive Studies, The University of Sussex, Brighton, UK., 1987.

Hypercard™ is a registered trademark of Apple Computer, Inc.

Compuserve is a registered trademark of Compuserve, Inc.

All other trademarks used are registered trademarks of their respective holders.

59

