
r 

r 

r 

r 

r 

r 

r 

r 

r 

r 

r 

r 

r 

r 

r 

r 

r 

r 

r 

r 

Validating Knowledge Based Systems with Software Visualization 
Technology 

John Domingue 

Human Cognition Research Lab 
The Open Cniversity 

\1ilton Keynes. UK 

The validation of a Knowledge Based System tKBS) involves comparisons between an 
external reference model and a system's component parts. In this paper I will describe how 
such comparisons can be aided by the application of Software Visualization <SV) 
technology. Software visualization is the use of filmcraft, cartoon animation and graphic 
design techniques to display data structures, programs. and algorithms. The described 
approach cases the task of mapping between the comparates by the use of dynamic code, 
design, and domain oriented visualizations of KBS execution. 

The interactions between the \'isualizations arc summarised in the figure below: 

Executable Code Code Visualization 

where the labels in figure above denote the following: 
A the transformation. G1rricd out by the design compiler, of the design model into 

executable code. 
A' 

B 

C 

D 

E 

the ability to view or edit the source code representation for a design model 
component. 
the ability to map back from segments of code to the associated design model 
component. 
the bi-directional mapping between the static code representation and the code 
visualizations, 
the ability to obtain a code level visualization for a particular execution of a design 
model fragment, 
the synchronisation of the design task and domain visualizations. 

Within the knowledge acquisition field, validation is of importance because a KBS cannot 
be totally formally specified. Current approaches provide static knowledge level 
visualizations with little or no link to code level execution. This places the knowledge 
engineer in the arduous situation ot having to synthesise knowledge and code level 
connections whilst burdened with the difficulties of the validation task. The approach 
outlined in this paper alleviates this by integrating SV techniques into the design and 
implementation tools and by providing static and dynamic: 

• domain views which easily map onto the domain ontology, 

• design views showing how components of the design interacted, and 
• code views showing the execution at the code level. 

1 


