
r 

r 

r 

r 

r 

r 

r 

r 

r 

r 

r 

r 

r 

r 

r 

r 

r 

r 

r 

r 

COURSEWARE DESIGN SUPPORT 

Robin Johnson 

Dept of Mathematics and Computer Science 
University of Technology, PMB, 
Lae 

Papua New Guinea 

Introduction 
Courseware design, like all design problems, is a complex task. It presents the same kinds of 
problems that other design problems present. It is under constrained, it has many possible solutions 
none of which is optimal, it is not easily evaluated at design- time, and the requirements do not 
suggest an obvious structure for the solution (Guindon 1990; Goel & Pirolli 1992). Additionally, 
courseware designers are expected to possess an extensive model of how users will learn from 
courseware, and hence what makes effective courseware. Even with traditional frame-based, linear 
courseware there was a need to provide support for courseware designers but with the advent of 
knowledge-based courseware design tools the need for support is even greater. 

Knowledge-based courseware design tools, such as, DISCourse (DISCourse 1994), and KAFITS 
(1991 ), utilise multiple knowledge sources to represent content knowledge, instructional knowledge, 
and student modelling knowledge. They provide some kind of adaptation to the learner's 
performance, and the content that is being taught and they allow the designer to implement a wide 
range of tutoring styles, many more than traditional courseware allows. They also provide 
sophisticated forms of interaction between the learner and the software, including the use of 
multimedia. These tools do not produce Intelligent Tutoring Systems (ITSs) but they do provide 
courseware which is much more flexible, reusable, and adaptive than traditional courseware. 

This paper describes the investigation of a support tool for the DISCourse project which uses case
based advice. It also posits some general ideas about the use of case- libraries to support software 
design activities. 

A Courseware design problem 
The main problem that was investigated in this research was how to support designers in the 
production of courseware that adapted to learner attributes, such as, prior knowledge, preferred 
level of control, motivation, learning style etc. I don't wish to argue the merits of this kind of 
adaptation, except to note that it is much simpler to implement than cognitive adaptations of the 
kind used by ITSs. There has been a lot of research into adaptations to learner attributes, both in the 
form of empirical psychological research, and less formal investigations of adaptive courseware. The 
results from this research are incomplete, and contradictory. However, some of the findings from 
this work have become well established as principles which guide courseware development, such as 
the findings which relate locus of control, prior knowledge and levels of ability. Other research has 
been used less widely, such the findings about adaptations to learning styles, and motivation. 

3 



41 

DISCourse decided to adapt to multiple learner attributes, an approach which has not been tried 1 before because traditional courseware has not been powerful enough to implement it. Adaptation to 
multiple attributes introduces several problems of complexity. Firstly, there will be too manv 
combinations of attributes in the learner population to adapt to the learners individuallv and there l are no established principles about how to group learners. Secondly, there is no establi;hed 
knowledge about how to combine adaptations, and lastly their is little understanding about the 
sequencing or timing of different forms of adaptation. 1 
The aim of this investigation was to establish a suitable framework in which this kind of knowledge 

1 could be accessed and used by courseware designers. Not all of the necessary knowledge about 
adaptive design was readily available when this project started but it was believed that experience 
of using this form of adaptation would rapidly expand the available knowledge. In order to make 

1, this expertise available and useful to new designers, and allow it to become an expanding source of 
reusable knowledge, there needed to be a convenient method of storing and accessing it. 

Problems of investigation 
Investigation of this design support requirement was fraught with methodological difficulties, many 
of which are common to the design of new software development environments. The development 
environment was not complete enough to be used by designer subjects, and no designers had any 
experience of designing this kind of courseware. Also, there was no similar work that could be used 
to guide the content of the investigation. 

We were interested in exploring how a passive case library could be used to support designers, and 
in particular whether it was able to guide novice designers with no experience of adaptive 
courseware development. The tool would necessarily need to provide learning/ development 
support for the designer subjects as they learnt how to use a new development methodology, and a 
new set of tools. We were interested in observing how designer subjects used a case library, and we 
were interested in establishing some of the limitations of casQ library support for design. 

Approach 
The approach we used to investigate the requirements for this tool were a combination of 
prototyping and observational study. We set up an observational study using a crude mock-up of 
the design environment, then after the observation we refined the environment and tried it with the 
next subject. The initial mock-up used only paper- based representations for the knowledge-bases, 
and the case library. Once it was validated that the designer subjects could use the different forms of 
representation the mock-up was transferred to hypercard, plus a graphical editor. These two tools 
were hooked together to enable the designer to search through a library of design cases, and to copy 
these cases into a graphical editor and then edit, them into their main design. The indexing and 
search mechanisms for the case library evolved over several trials. 

Findings 
One of the more important decisions that was made during this study was how to represent the 
cases of adaptive instructional design to the designer subjects. There were several options, 
including, a video of the courseware being used, an executable piece of code, a graphical 
representation using a design notation, and a textual description. The graphical representation was 

l 

l 

l 

l 

l 

l 

l 

1 

1 

1 

l 

1 



r 

r 

r 

r 

r 

r 

r 

r 

r 

r 

r 

r 

r 

r 

r 

r 

r 

r 

r 

r 

necessarv as we wanted the designer subjects to actually incorporate the cases into their own 
graphic�! design. The graphical notation clearly needed supplementing in order to provide the kind 
of context that would make it case-like. The video and executable versions were unable to provide 
descriptions of learners and the rationale for the design so a textual representation was opted for. 
The main reservation about this approach was whether the design subjects would be able to 
interpret the graphical design easily enough to appreciate how the design worked. It turned out that 
they could in this situation because all of the design cases were relatively simple, describing a partial 
design that covered at most three levels of a design. 

Observations of the design subjects confirmed expectations about how the cases would be used. 
They had several overlapping roles: 

educating the designer subject about the graphical representation, about the way the 
courseware should work, and about how to design this form of adaptive courseware. 

ii providing a context/ framework in which to think about the current sub-problem. 
iii providing initial ideas about how the current sub-problem could be solved. These ideas were 

then adapted by the student. 
iv providing nearly complete solutions for sub-problems. These needed minimal changes by the 

student. 

The design notation encouraged a decompositional approach to the design but subjects did not 
generally adopt a top-down approach. As in other studies (e.g. Guindon 1990, Visser 1990) the 
designers were opportunisitic, sometimes being led by the cases that they found, at other times by 
emerging requirements The designer subjects frequently used a bottom-up approach. This has also 
been observed in studies of software designers, t::?specially where they are struggling with a novel 
problem. 

Although the cases were extensively used by all but one designer subject they did not provide a 
sufficiently complete level of support. A comment that was frequently made by the subjects 
expressed concern about the inadequacy of the case library to guide their designs. They felt that the 
case library needed more information about outcomes and that negative cases would have been 
helpful. That is, cases where learners did not learn effectively or where learners found the 
interaction unsatisfactorv. 

From the experimenter·s perspective the case library did fulfil its intended role because 
it was used to suggest ideas about how to complete sub-tasks within the design problem, and in 
some cases, provided solutions that needed very little adaptation. What it failed to do was to help 
the subjects decide whether their adaptations of a case, and their particular use of ideas in a case, 
were appropriate for their problem. It could never do this because by definition a case is a specific 
instance of a problem solution and doesn't provide information about its generality. Also, the cases 
used in this study were only partial designs and they were therefore unable to take account of the 
full context in which they might be used. What subjects appeared to need was information about 
whether to proceed with their design, or not, and if not, which aspect of the design they should 
change. In summary, the subjects appeared to need support in evaluating the suitability of their 
early design ideas. 

Faulty design decisions are often not recognised as such until late in to the design process, thus 
making correction an expensive process. The high cost of correcting mistakes is probably why 
experienced designers have been observed to re-evaluate their design decisions in increasingly 

5 



refined contexts (Goel & Pirolli 1992). The purpose of design evaluation is twofold, a) assessing 
areas that can be improved, and b) identifying areas of the design that are problematic. The latter 
function is seen as the most important one to support novice designers in, and is probably the more 
tractable of the two problems. An evaluation tool to support novice designers identify major 
problems with their adaptive courseware designs has been designed and partially implemented. 
This tool uses well established ruies about adaptive courseware to identify the completeness and 
suitability of the adaptations that the deign will provide. It is intended to highlight gross errors not 
to help with detailed decisions about adaptations as these are likely to be based on the personal 
preferences of the designer. 

Conclusions 

Passive case libraries represented in a textual form can be used to support design activities. 
However they are limited in the extent to which they can support designers assess their designs 
because they are only using analogies of the actual design problem. In order to provide a sufficient 
support tool for novices the case library needs to be supplemented with some form of support for 
design evaluation. As a medium for storing and accessing design knowledge about adaptive 
courseware the case librnry seems to be adequate, although we have not investigated how designers 
would use it to represent new adaptive designs. 

Since many applications programmers are quite narrow in the kinds of application that they build it 
is possible that case librnries could be used to support their design tasks. One doubt about the 
generality of this approach is raised by Maiden & Sutcliffe (1993) in their investigation of how 
design cases can be suggested to a designer. They classified data processing systems in a hierarchy, 
and built an expert to interrogate designers about their current problem. They found that even quite 
experienced designers did not prioritise the importance of system features in the same way they 
had. The system therefore did not suggest the most appropriate cases for the designer's problem. 
This work raises some doubts about building general software support tools from case libraries, 
although it is not clear that the same mistakes would be made if the designers were searching the 
case library directly rather than interacting with a tool that collects information about the current 
problem. 

Bibliography 
DISCourse (1994) DISCourse Final Report (D2008), Dornier GmbH, D-7990 Friedrichschafen, 

Germany. 
Goel, V. and Pirolli, P. (1992) The Structure of Design Problem Spaces. C:,gnitive Science, 16, 3, 395-

429. 
Guindon, R. (1990) Knowledge exploited by experts during software design. International Journal of 

Man-Machine Studies, 33, 279-304. 
Murray, T. (1991). Facilitating teacher participation in intelligent computer tutor design: tools and 

methods. Unpublished PhD thesis, Dept of Computer and Information Science, MIT. 
Visser, W. (1990) More or less following a plan during design: opportunistic deviations in 

specification. International fournai of Man-Machine Studies, 33, 242-278. 

, 6 

1 

l 

l 

1 

1 

l 

1 

l 

l 

l 

l 

1 

l 

1 

l 

1 

l 

1 

J 




