
r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

The evaluation of TED, a techniques editor for Prolog programming

Tom Ormerod
Department oi Psychology

Lancaster lJniversitv

Linden Ball
School of Health and Communitv Studies

Derby University

Submitted to PPIG 7, Edinburgh January 1995.

This note forms part of a larger paper to be submitted for publication by the
full TED project team whose additional memebers are Dave Robertson, Andy
Bowles and Helen Pain from Edinburgh Cniversity, Pual Brna from Lancaster
University, Mike Brashaw and Hank Kahney irom The Open Univeristy. We
report only the work carried out by the authors as part of the overall project
when they were both at Loughborough University.

Aims

The aim was to evaluate both the utility ot a techniques approach to teaching
Prolog, and also to evaluate the extent to which the TED editor facilitates the
application of a techniques approach. In addition, the evaluation enabled
research to be undertaken into the nature oi Prolog expertise, in particular the
extent to which Prolog expertise is dictated by internalised knowledge about
Prolog program structures, by strategic knowledge about program design,
and by external features of the programming environment.

Method

The Prolog course

Three groups of students were taught a course in Prolog programming over
consecutive years. The course involved ten weeks of lectures and practicals, in
which students were required to complete weekly programming exercises
under tutors' guidance. In order that the teaching process could be ·equated
across the different student groups, a standard 'CCP' (Cases, Control &
Processes) method was used throughout for the development and explanation
of all programs. CCP describes the order in which students were encouraged
to consider the design of Prolog programs.

Subjects

Subjects were 32 students studying various Information Technology courses.
All had a small amount of prior programming experience with a variety of
languages, though none were more than novice level in terms of experience or

35

proficiency at any other language, as assessed by a student questionnaire.
None had any previous experience of Prolog programming.

Design

The first group of students (N = 10) received a standard course in Prolog
without any techniques instruction and using the MacProlog environment.
The second group (N=12) were taught essentially the same course except that
all instruction and programming involving recursion was based around a set
of seven techniques developed at Edinburgh, again using the MacProlog
environment. The third group (N=lO) received exactly the same course as the
second group, except that the TED editor was used as the sole programming
environment.

Tasks, materials and procedure

Data were collected at the end of the course using three main paradigms. The
first consisted of a program recall task, in which students were required to
reconstruct a complex recursive Prolog program presented to them for a short
duration over repeated trials. The recall paradigm can indicate the extent to
which students internalise techniques knowledge as they acquire Prolog
skills. The second paradigm consisted of problem and program
categorisation tasks, in which students were required to sort sets of cards
showing either problem statements or Prolog programs for simple recursive
procedures into categories of the students' own choosing. The categorisation
paradigm can indicate whether students recognise techniques within
programs and whether they can utilise techniques knowledge in
understanding problem statements. The third paradigm consisted of six
program writing tasks, in which students were required to produce coded
solutions to problem statements requiring simple recursive procedures. The
writing paradigm can indicate whether students are able to apply techniques
in the design and coding of Prolog solutions.

Six program writing tasks of increasing complexity were presented to
subjects. All programs required the development of two-arity procedures
containing list_head, same, arithmetic_after and arithmetic_before techniques.
For example, the problem statement and possible solution for question 2 was
as follows:

Problem: "Write a procedure which finds the number of items in a list. For
example, the number of items in the list [e,e,s] is 3."

Solution: count([], 0).
count([H IT], N):­
count(T, �1),

N is N1 + l.

As well as the collection of quantitative measures of student performance,
verbal and keystroke protocols were also recorded from students performing
each of the three tasks to provide qualitative data, giving a total in excess of
200 hours of recorded protocols. In addition to data from these three tasks, a

l

1

l

1

1

l

1

l

l

l

l

l

l

l

1

l

l

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

written log was kept throughout each course to detail specific issues that
influenced students! performance, in particular any ergonomic problems
affecting the usability of the TED editor. These were used in part to inform
the design at Edinburgh of the final TED interface, but also provide an
ergonomic evaluation of the TED interface itself.

Resujts

The results reported here focus on the program writing tasks, since they
indicate whether a techniques approach to writing Prolog programs is
beneficial and whether the TED editor facilitates this process. A complete
description of the results from all three paradigms is presented in Ormerod &
Ball (1994, in preparation). The keystroke logs were codedto identify the
major edits made along with edit times and errors (error data are from on
questions 1-4 only: only one error of each type was scored for each subject on
each question, and errors were recorded only if present when the program
was tested). For each problem, a number of measures were examined, from
which we focus on three: solution times, technique-related errors and other
errors. Additional measures, such as the order in which techniques were
added to programs and the time taken to reach a successful addition of a
technique are reported by Ormerod & Ball (op. cit).

1. Time to solution: Figure I shows mean solution times for each group on
each question. Both the TED and Techs-only groups reached solutions faster
than the No techs group for questions I and 2. There was no clear difference
between the three groups' solution times ior questions 3 and 4. The Techs­
only group reached solutions faster than the TED and No techs groups for
questions 5 and 6.

37

2000

- 1600
r.n

,:,

y

QJ
1200 r.n

-

r.n -& No techs
QJ

e
.... Techs only

·-

TED -
800

-a-

=
0
·--
:s -
0

.. l()Q en

Q -+---
--

--
------�-----

--
-

0 2 3 5 6

Question

Figure 1. Mean solution times for each question by each training grouo.

For each problem the following 2-tailed tests were carried out using SPSS: (1)
a one-way ANOV A; (2) a post hoc Scheffe at p < 0.05; (3) a post-hoc Scheffe at
p< 0.1; and (4) a post-hoc parametric trend test of linearity in the ordering of
means for the three between-subjects groups (linear direction being TED <
Techs-only < No techs). Only two of the A.L"!OV As were statistically
significant at P<0.05: for questions 2 (F(2, 28) = 6.7976) and question 5 (F(2,
19)= 3.7647). Post-hoc Scheffes tests reveal that both the TED and Techs-only
groups were significantly faster at producing solutions to question 2 than the
No techs group. Also, the Techs-only group produced solutions significantly
faster than the TED group for question 5. There were significant trends of
linearity on question 1 (F = 3.940; p = 0.057) and question 2 (F = 12.6065; p =

0.0014). Interestingly, there were significant trends of non-linearity on
question 3 (F = 3.0861; p = 0.0912) and question 5 (F = 5.6180; p = 0.0285).

2. Technique selection errors: These were explicit in the TED group's
protocols and were inferred from the no-techs and techs-only groups'
protocols. Table 1 shows the total number of selection errors for each group,
(X2 = 9.35, p<0.05), and the four most common selection errors (frequency of
all other errors <4).

l

l

l

1

l

l

1

l

l

1

l

l

l

l

l

1

l

1

,

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

Table 1. Total number of techniaue selection errors for each group
' , .

No techs Techs onlv TED

Same for 9 9

List_head

Arith_before for 8 6 0
Ari th_ after

Llst_head for 2 8

Same

General_after for 0 6

Llst_head

Others :, 10 4

Total 24 39 12

3. Other errors: Table 2 shows the total number oi errors that could not be
counted as technique selection errors for each group, (x2 = 28.19, p<0.01). A
total of 32 discrete error types were identified. These were re-classified
according to six broad categories, whose frequencies are also shown in.Table
2, along with the most common discrete errors in each category that together
account for 49% of all other errors.

39

Table 2. Number of other errors in each category (most common discrete
error shown in brackets: components consist of base case, recursive head or
body, head or body arguments, processes/subgoals, and whole clauses)

No techs Techs onlv TED

Incorrect component 30 35 12
(Incorrect argument in 23 28 9

base case)

Unnecessary component 21 23 13

(Unnecessary process) 12 16 8

Typographical 19 19 8

(Mis-spellings) 4 8 3

Recursive syntax 17 21 0

(List notation in 7 7 0

recursive body
arguments)

Arithmetic syntax 13 16 8

('Xis X + l' errors) 8 8 0

Missing component 12 14 6
(Missing disjunctive 6 6 5
clause)

Total 112 128 47

Discussion

The error data suggest that students in the TED group made fewer errors,
both technique-related and other kinds, than students in the other groups.
Second, the efficacy of TED and the techniques approach seems to depend on
the type of question that is being undertaken. The strongest evidence for an
advantage for TED and the techniques approach can be found on questions 1
(to return a list of squared numbers) and 2 (to calculate the length of a list).
These were relatively simple programming problems, in which much of the
difficulty seems to be in coding rather than in the conceptual design of a
program solution.

The advantage for the TED group is particular! y strong with question 2,
which requires a non-tail recursive solution. This particular problem is
interesting because understanding why the recursion is necessary before the
process generally causes students a lot of difficulty (see also Solowaty et al,
1982, for similar findings regarding read-process versus process-read loops

40 l

l

l

l

l

i
j

l

l

l

l

l

l

l

1

1

1

l

l

r

r

r

r

r

r

r

r

r
r
l

r

r

r

r

r

r

with novice Pascai programmers). The provision oi arithmetic_after and
arithmetic_before techniques within TED seemed to alleviate this problem,
perhaps by making the contrast between them explicit to the students.
Although the techniques-only group received equal tuition in the techniques,
they did not seem to gain as much advantage as the TED group. This may be
because they lacked the explicit reminder of the alternative techniques and
therefore resorted to the more conceptually ·natural' arithmetic_before form.
The error data seem to support this in that no TED students made an
arithmetic_ before for arithmetic_after error whereas half the techs-only group
and most of the no techs group made this error (see Table 1).

The absence of a difference in solution times between groups on question 3
('prefix', another relatively simple problem to code) probably reflects the fact
that a related example ('suffix') was given in the course notes that students
had available during the session. The difficulties faced by the No techs group
in coding their conceptual designs to this problem appear to have been
overcome by use of the example. Interestingly, the errors made in this
question seem to reflect an over-reliance on the example. In particular, all the
errors in which a Same technique (as found in the second argument of the
example) was used instead of the required List_head technique occured on
this question. On question 4 (to return a list containing the squares of even
numbers only from an input list) we begin to see the coding advantages of the
TED group being outweighed by other factors. Problems 4-6 present students
with tasks that are more taxing in terms of problem understanding and
conceptual design. For example, problem 4 necessitates the identification of
disjunctive cases (the need for a case to deal with even numbers and another
case to deal with odd numbers). TED students made as many 'missing
disjunctive clause! errors as the other groups.

Analysis of the error data suggests that use oi the TED editor generally
reduced the number of errors made by students. This was particularly the
case with syntactic classes of error, as arithmetic, recursive argument syntax
and typographical errors. There was also evidence of a reduction in errors
associated with semantic features of code, such as the presence and
correctness of clause components. For example, an incorrect base case
arguemnt (e.g. putting[] instead of 0) was the most common error made by
subjects, but the incidence of this error with the TED group was significantly
lower than with the other groups. There were a few aspects of TED use,
however, that created novel problems for students. For example, a common
error made by TED group students but not by any other group was an 'Xis Y'
process statement, casued by the selection of arithmetic techniques without
alteration of the edit dialogue boxes.

A number of ergonomic issues emerged during the evaluation of TED. A
sample of these is as follows:

• insisting that code is 'undone' rather than ·edited' means that much
work is required if a mistake is made at an early stage in program
construction. Whilst this feature may encourage students to think

41

•

•

•

•

harder about their program before commit ting i t to code, it tends to
discourage exploration of possible program soiutions.
when adding arithmetic techniques , subgoals are always added
directly after the recursive call . This means that if a series of techniques
are to be added in order to carry out a calculation in a particular
sequence, they have to be added in reverse order.
the use of the term ·head variable' in the arithmetic techniques is
confusing. It appears that it refers to the variable in the head of the
clause, as opposed to the head of any lists . This occasionally led to
confusion.
there is no scrolling on the subgoal field when adding arithmetic
techniques (or any of the fields?). This causes a problem when trying to
construct programs using sensible variable names.
when displaying subgoals which include the mod /2 operator, the
editor removes the leading space. \Vhils t this is a very minor problem it
did, on a few occasions, cause some contusion.

Of these points the restrictive Undo feature was the source oi most problems
and irritation. In removing all later edits, i t requires the programmer to
reconstruct all the edit sequences that contributed usefully to the program. A
possible solution to this problem s to res trict the application of program
construction histories and restrictive lJNDO to technique edits only. In this
way, the addition of sub-goals and extra arguments would not be affected.

Conclusions

There is evidence that TED can facili tate the coding of programs, especially
where the design requirements for program solutions are relatively simple. In
its current form the editor has a few features tha t cause s tudents unnecessary
difficulty and repetitive action, notably the res tricted 'undo' editing mode.
Nevertheless, students generally coped very well wi th the TED interface, and
found no difficulty in moving round the program window or using the
menus.

A useful avenue of further research would be to examine how TED might be
extended to support the conceptual design oi programs, so that the coding
advantages offered by the editor can be maximised. Furthermore, the error
analysis has revealed systematic differences in the errors made by each group.
The error analysis enables us to to generate a set of re-design rules for future
versions of TED. For example, the most common error, that of incoi:rect base
case arguments, might be limited further by linking techniques and base case
additions, either as a single edit or as a series of linked edits in which obvious
errors (e.g. associating a list in the base case wi th an arithmetic technique) are
trapped.

The project to evaluate TED has been successful, not only in assessing the
relative merits of TED and a techniques approach to Prolog programming, but
also in showing us the importance of program design activities. Much of this
has come from our related work with Prolog experts, where we have
examined the nature of expert design strategies (Ormerod & Ball, 1993).

l

J

l

......

�
I

1

l

1

l

l

1

1

l
�

l

l

1
j

,

l

r

r

r

r

r

r

r,

r

r

r

r

r

r

r

r

r

r

r

Acknowledgements

Th TED project was supported by the Joint Councils' initiative in Cognitive
Science/ HCI (evaluation at Loughborough University under �RC grant
number G9030402).

References

Ormerod, T.C. & Ball, L.J. (1993) Does Prolog programming knowledge or
design strategy determine shifts of focus in Prolog programming? In C.R.
Cook, J.C. Scholtz & J.C. Spohrer (Eds.), Empirical Studies of Programmers:
Fifth workshop. Norwood, NJ: Ab lex.

Ormerod & Ball (1994, in preparation). Evaluating TED, a techniques editor
for Prolog programming novices. Unpublished manuscript, Department of
Psychology, Lancaster University.

Soloway, E. , Erhlich, K. , Bonar, J. & Greenspan . J . (1982) . \Vhat do novices
know about programming? A.Badre and B.Sdmeiderman (Eds.), Directions in
HCI. Norwood, NJ: Ablex.

43

