
r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

DOCUMENTATION SKILLS IN NOVICE AND EXPERT PROGRAMMERS:
AN EMPIRICAL COMPARISON

Jean-Fran9ois Rouet. Catherine Deleuze-Dordron and Andre Bisseret
National lnstitut for Research on Informatics and Automation (INRIA)

INRIA

Language and Communication Lab.
95 avenue du Recteur Pineau
F-86022 Poitiers Cedex
rouet@isis.imag.tr
email rouet@isis.imag.tr

Paper proposed to
Psychology of Programming Interest Group Meeting (PPIG)

Edinburg, Scotland, 4-6 January 1994

extended abstract

1. Introduction

This study is part of a broader project which aims at studying the use of natural language
documentation in design activities. A particular objective is to identity the cognitive factors that
may influence description of software components.

Software design problems often involve ill-specified objectives and constraints. Moreover,
several solutions may be proposed to solve a given problem. Thus, software design requires
a planning activity that leads to the progressive specification of the relevant problem space
(Newell and Simon, 1972), until implementable solutions can be defined. Previous research
has evidenced that the planning involved in software design is opportunistic (Hayes-Roth
and Hayes-Roth, 1979), i.e. the designer may depart from the original decomposition scheme,
as a function of intermediate results, unexpected difficulties, and information found en route
(e.g., Guindon. 1990; Hoc, 1988).

Documentation plays an important part in design activities, however its relationships with
design problem solving are still obscure. A series of preliminary studies (Deleuze-Dordron.
1993) suggested that comments inserted into programs may vary with respect to their role
(e.g., describe vs. explain the program) and the level of entities commented (high vs. low
level entities). Moreover, expert designers seem to possess specific criteria when evaluating
the relevance of comments (e.g., is the comment redundant?).

In the present study we wanted to characterize the influence of design expertise on the type,
location and strategy of production of inserted programs. A general hypothesis is that
comments retied the designer's cognitive representation of the entity being commented. The
cognitive representation may vary depending on the context in which an entity is being
examined, whether or not the context provides meaningful information about the role or
purpose of the statement.

The program representation is also influenced by the designer's expertise: Novices tend to be
influenced by surface features of the program, whereas expert designers organize their
representation according to the underlying solution scheme. Consequentty, we hypothesized
that expert designers may be more able to exploit a meaningful context when commenting a
piece of software.

Rationale of the experiment. We designed an experiment in order to check the following
interaction hypothesis: Novices and experts would produce merely descriptive statements
when commenting isolated statements; When presented with statements within a meaningful
context (procedures or whole program) expert designers would produce more semantic
explanations (i.e., comments about the solution being implemented) than novices.

73

Rouet. Deleuze-Dordron & Bisseret - Documentation skills in novice and expert programmers

2. Method

Materials. We used a set of programs and program excerpts in ADA based on several
programming manuals. The excerpts were chosen so as to be understandable by novice and
expert programmers. The final sample was made of a series of 20 isolated statements, four
isolated procedures and two short programs (53 and 62 statements).

Subjects were 27 programmers at two levels of expertise: Novices (Freshmen from a two
year computer science program. N=20) and experts (faculty members and industrial
jesigners. N=7). The terms 0novices" and "experts 11 are used for purpose of clarity although
:he subjects· actual level of skill was heterogeneous both in the novice and the expert group.

Procedure: The experimental task consisted in commenting ADA statements "so as to make the
program more understandable by programmers at your level', in three conditions or tasks:

Task 1 - lsoiated statements: Subjects were asked to select and comment 1 o
statements among 20 presented.

Task 2 - lsotated procedures: Subjects were asked to insert 5 or 6 comments in each of
four procedures (two of which were common with task 3).

Task 3 - Sjmoie programs: Subjects were asked to comment two simple programs.

Each subject was asked to perform the three tasks. Novices participated in one collective
session. Experts were run in small groups in the course of several sessions. Completion time
was identical for all subjects.

Dependent measures concerned the choice of statements commented and the nature of the
issued comments. The experimental hypothesis was that experts would produce more
explanations on high level entities than novices. but only when a meaningful context was
available.

3. Results

At the present stage data are still being analyzed and only partial results will be reported in
the present abstract. For this reason, no statistical generalization can be made.

Content analysis of the comments: Based on an informal examination of the protocols we
built up a categorization framework including five main categories (Table 1).

Table1 · Analysis framework used to score the comments

Category Definition
Statement

1-PARAPHRASE Comment paraphrases i:=i+1
program statement and
does not include any
new information.

2- LABEL Comment based on if prime (nber. beg)
SEMANTICS meaning an entity label then

EXPLANATION Comment includes
infonnation ...

3- SYNTACTIC - about programming current:=
rules. current.next:

4- SEMANTIC - about solution being
implemented.

cont_dig:=
codeid mod 1 O:

5- META- Statement about function PGCD (k,
COMMENT commenting. 1 :integer).

Example
Sample comment

"i is incremented by 1"

"if number ts prime then1

'

''going through the list
'couranr"

"extraction of last digit of
code"

"describe functioning
and parameters"

1

l

l

l

1

l

l

l
,,

1

l

l

l

l

l

1

l

,

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

Rouet. Deleuze-Dordron & Bisseret - Documentation skills in novice and expert programmers

Definitions presented in Table 1 were made operational with a number of scoring rules. Then
the scoring framework was refined iteratively. Finally the framework was tested for reliability on
the basis of a sample of protocols. An independent double scoring showed an inter-rater
agreement higher than 80%.

Effects of context and expertise. Figure 1 shows the main categories of comments issued
by novices and experts.

Insert Figure 1 about here

When no context was available, novice programmers issued mostly paraphrases of the
presented ADA statements (see Table 1). In contrast expert programmers also issued other
types of information, including syntactic explanations and meta-comments.

When a restricted context was available, the frequency of semantic explanations increased in
large proportions. The increase was larger in the expert group.

Finally, when a full context was available both novices and experts issued mostly semantic
explanations.

The results did not exactly confirm our initial hypothesis. We observed indeed that there was
an increase in semantic explanations when a context was made available. However the main
difference between novices and experts occurred when no context was available. Apparently
experts were able to draw syntactic explanations from their general knowledge of the
language. They also made comments about what they might say if a context was made
available (see Table 1, "meta-comments"). Novices merely re-phrased the statement, with
very little elaboration or contextual information.

Experts were also better at taking advantage of a limited context. When presented with a
single procedure. they were able to issue semantic explanations of the solution scheme
underlying the procedure. Novices were also able to do so, although to a lesser extent.

Finally, when asked to comment a full program, both novices and experts managed to provide
semantic explanations. It should be noticed that in the present case the programs were quite
simple and could be understood even by beginners. In fact, we obtained preliminary evidence
that when the problem was less familiar, the proportion of semantic explanations tended to
decrease: Task 2 (partial context) included a procedure implementing a concrete problem
(isolate figures in a Roman number) and a procedure implementing a string problem (check if a
number is "perfect", a simple but unfamiliar notion as evidenced by a pre-test). The types of
comments issued for these two procedures are shown in Figure 2

Insert Figure 2 about here

As indicated in Figure 2, the percentage of semantic explanations was higher for the familiar
procedure in both groups. From these partial results it may be suggested that the effect of
domain expertise is distinct from the effect of general software design expertise. In other terms
even experienced programmers may have trouble commenting a program if they do not have
a good understanding of what it does.

Finally we looked at the entities commented when a full context was available (task 3).
Results are presented in Figure 3.

Insert Figure 3 about here

As shown in Figure 3, comments were not distributed randomly throughout the program.
"Structural" statements e.g., procedure declarations, beginning of loops and function calls were
most frequently commented. input and output received less comments. Finally, ··end" and
"begin" instructions (which are redundant in ADA) were seldom commented. Figure 3 also
indicates that the experts tended to produce more comments than the novices, especially for
statements concerning local structures (LOOPs, CALLs, EXITs). However at the present
stage there is no clear evidence for an interaction.

75

Rouet, Deleuze-Dordron & Bisseret - Documentation skills in novice and expert programmers

4. Discussion and conclusion

The main purpose of this experiment was to investigate the role of expertise in the production
of computer program comments

The analysis of comments elicited several categories of information: paraphrases, syntactic
and semantic explanations, meta-comments ana inferences from labels. Overall paraphrases
were more frequent in novices which support previous findings that novices are influenced by
surface features of the program. The experts issued more explanations and other comments
regardless ot the task.

Although we did not observe the expected interaction. we did find a relation between
expertise and context of production. The main novice-expert difference occurred when no
context or only a limited context was available. When the full program was available, both
novices and experts issued merely semantic explanations, and their did so mostly for program
statements high in the hierarchy. The only difference then was that experts tended to produce
a larger number of comments.

The observed novice-expert differences are of special interest given the large heterogeneity
within each group: Some novices had quite a lot of experience in at least one programming
language; the experts came from very different areas of activity. Despite these differences,
we were able to observe different patterns of commenting across groups.

This experiment supports the hypothesis that there is a tight relationship between the
cognitive representation of a program and the type of comments provided. This finding
suggests that producing quaJity documentation is not just a matter of being careful or rigorous.
but may require specific forms of expertise.

We are currently in the process of analyzing in more detail the entity-comment relationship.
Subjects' opinions and self-reports about documentation usage will also be considered.

The experimentaJ data aJso have to be checked against actual documentation strategies in the
course of real life design projects. In this perspective we have conducted a case study of
documentation during design with reuse, in cooperation with a team of expert designers (Rouet
et Deleuze-Dordron, 1994). It might also be of interest to related documentation in software
design with information usage in other areas of expertise (e.g., architectural design).

Natural language documentation is a central component of design activities which has been
rather overlooked so far. Further research on documentation skills may contribute to a
comprehensive model of design.

Acknowledgements

This study was supported as part of the ESPRIT-SCALE project. The authors wish to thank
the students and staff at IUT de Valence (France) as well as the industrial designers for their
contribution to this study.

References

Deleuze-Dordron, C. (1993). Analyse de l'activite de documentation de programmes: premiere
exploration. Memoire pour le DEA de Sciences Cognitives, Grenoble: INPG, 1993.

Guindon, A. (1990). Designing the Design process : Exploiting Opportunistic Thoughts.
Human Computer Interaction, 5, 305-344.

Hoc, J.M. (1988) - Cognitive psychology of planning. London: Academic Press.

Rouet, J.-F. & Deleuze-Dordron, C. (1994). Design with reuse and software documentation:
Some cognitive and human factors issues. INRIA Rhone-Alpes, working paper.

1

l

.,
l

l

l

l

1

1

1

l

l

l

l

l

l

l

1

l

l

Rouet. Deleuze-Oordron & Bisseret - Documentation skills in novice and expert programmers

Q)
u ...
Q)

Q)

100

50

0

100

u 5 0

C.

Q)
u
Q)

C.

0

100

50

1 a. NO CONTEXT (Isolated statements)

Paraphrase Semantic

explanation

Type of comments

. . . .

Other

1 b. PARTIAL CONTEXT (Isolated procedures)

Paraphrase Semantic

explanation

Types of comments

Other

1 c. FULL CONTEXT (simple programs)

o !JIIIIIIII:· =· ·=· l..· 4-
Paraphrase Semantic

explanatlon

Types of comments

Other

• Novices

D Experts

m Novices

D Experts

II Novices

D �xperts

Figure 1: Types of comments as a function of context and expertise level.
NB. For partial and total context, only common procedures have been included.

77

Rouet. Oeleuze-Oordron & Bisseret - Documentation skills in novice and expert programmers

C:
(1)

(1)

C.

C:

(1)

(1)

C.

1 a. FAMILIAR DOMAIN (string decomposit ion)

100

90

80

70

60

50

40

30

20

1 0

0

Paraphrase Semantic Other
explanation

Types of comments

II Novices

D Experts

2b. LESS FAMILIAR DOMAIN (perfect numbers)

100

90

80

70

60

50

40

30

20

1 0

0

Paraphrase Semantic Other
explanation

Types of comments

• Novices

D Experts

Eioure 2: Types of comments as a function of domain familiarity
(task 2. isolated procedures #3 and 4).

78

Rouet. Deleuze-Dordron & Bisseret - Documentation skills in novice and expert programmers

·-

� 0

90

80

70

60

50

40

30

20

1 0

0

DPROC LOOP IF CALL

EXIT

DVAR PUT AFFECT END

GET

Types of statements

II Novices

D Experts

BEGIN

DPROC: Declaration of procedure, function ou AFFECT: Allocation of value to variable
package

LOOP-IF: Beginning of local block

CALL-EXIT: Call or exit of procedure

PUT-GET: Input-output

DVAR: Declaration of variable or type

END: End of block

BEGIN: beginning of bloc

Figure 3: Frequency of comments (% of subjects) as a function of type of statement
(total context. mean frequency for programs 1 et 2).

79

