
An Investigation Into Strategies Employed In Solving A Programming Task

Using Prolog

J Siddiqi, Computing Research Centre, She_tfic:ld Hallam University
B Khazaei, School of Computin� and IT, University o.f Wolverhampton
R Osborn, Computing Research Centre, Slwtf"icld Hallam University
C Roast, Computing Research Ct!ntre, She_ffidd Hallam Unirersity

Abstract

This paper highlights the carry over effects in changing from a procedural to a declarative approach.
The results of a case study into programming in Prolog for a relatively simple problem is reported.
This paper describes the different methods of solutions that these subjects used to solve the
problem and argues that they can be explained on the bases of strategies used for problem
decomposition and the choice of data representation. It argues that the methods of solutions used
suffer from a ··carry over effect" based on a procedural approach. In particular, that the choice of
data representation used appears to be more important than the parudigm used.

1 . Introduction

Programming in a logic based paradigm makes use of predicate logic which allows one to state a
programming solution in a declaratin� torm, and it is argued that this is more natural than a
procedural form for a large number of problems [I]. Some cognitive scientists [2) have questioned
the issue of naturalness of declarative forms.

>From a human factors point of view th� problem of "PD-programmers" (ie
those traditionally trained und experienced in a procedural approach) learning Prolog programming
is twofold. One the one hand, they are required to express their solutions in a logic paradigm which
is a novel idea because they are used to "procedurnl thinking". On the other hand, they would need
to know and consider the "control tfow" uf a logic based langunge which may or may not be identical
to procedural features they are familiar with. This combination in some c�ses can be confusing. At
present there is some empirical �,·idence reporting this phenomenon.

One study reports that progr;immers \\'ho have been trained in and used programming principles
based on the procedural style have difficulties in adapting to the declarntive style [3]. We believe
this is because these programmers seem to continue to use the principles of the former rather than
the latter style. It is not unreasonable to expect this because it is known that people have strong
tendency to apply knmvn methods r�ther than learn new methods. Therefore, we argue that for
Prolog programming the underlying execution mechanism used by PD-programmer relies heavily on
procedural/ operation;il "thinking". This tendency produces what we call "carry over effects" which
in certain circumstances Gm lead to misconceptions. There is an absence of detailed published
empirical evidence which elaborates lll1 these carry over effects. The aim of our invention is to
provide an insight into the crucial bsues that need attention in order to ease the transition of PD
programmers from a procedural style to a tfoclarative style of programming. In so doing we will
highlight the dual procedural and ded�uati\·e models used by PD-programmers.

l

l

l

l

l

1

l

1

l

1

l

l

1

1

,

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

Section 2 details the specifics of a G1se study .. md the results of this are presented in Section 3.

2. Case Study

32 second year under-graduate comput�r science students undertook an assessment for a one
semester module on functional and logic programming.
The students for nearly t\\'o academic years, hud received trnining in and used a procedural
approach to programming. The exercise was to produce a Proiog program for the ''Bridge Hand
Problem··. The statement oi the problem is as follows;

Write a Prolog program which accepts as input a representation of a bridge hand consisting of 13
cards supplied in random order. The program is required to produce as output:

(a) the hand of cards arranged in descending order by rank within each

(b} the points \'alue ot the hand <wunting 4, 3, :!, 1, for Ace, King, Queen and Jack resp.)

An example output is as iollows:

CLUBS K 10 9
DIAMONDS J 9 4 3

HEARTS A Q 10 8 2
SPADES 7

POINTS VALUE= 10

The Bridge Hand problem \\'as the subject of a previous observational study into designer behaviour
involving programmers using a procedural approach [-1-]. The choice of problem was therefore well
suited for an initial comparative study between procedurnl and declarative paradigms.

Although the majority oi the students had difficulties in providing a complete working solution to
this problem, sixteen of them succeeded in producing comprehensive working programs. The
analysis carried out were similar to that ot Siddiqi [5] that is the solutions were compared to
identify distinct approaches. The classification chosen was in terms of decision made concerning
"the choice of representatic.m··. This led to subjects attempts being classified into two solution types.
One in which the subjects d10se to trunsform the input representation to the desired output
representation (ie an ordered set of values> by means ot an explicit sort routine, hereafter referred to
as transform type. The method ot solutions involves splitting the hand into four newly created lists
according to suits. Each card in the hand is inserted into the appropriate list according to its value.

65

The other in which subjects chose to process the input representation in its original form with the
honour cards being revalued so as to facilitate the use of the in-built sort routine. TI1is solution,
hereafter referred to as patch it type, involves using a "patching" routine to convert the sorted list
into the desired output. In terms ot Siddiqi·s previous work (5) transform type represents a ''data
driven" approttch, because the prim,1ry focus is on processing the c.fata stream. Whilst the patch it
type represents a ··goal drin?n .. ,1ppwach. because the goal is to "sort" the hand using the built in sort
routine.

From the 32 attempted solutions 2-l (75'1 > were of the patch it type. The most likely explanation for 1 this is that subjects were attempting to use a "do what you can and make the rest fit around it". A
strategy reported by Siddiqi in the study l)f subjects using a procedurnl approach [5]. For the Prolog
solution, subjects recognised the benefits ot making use of the in-built sort routine (ie an island of 1
certainty) and adding ··patches" to facilitate this (fitting the rest around the island). It is
hypothesised that the students who provided the transform type solution had used a data driven
approach and did not rely on the built-in sort routine. l

3. Discussion

There are two important observations, based on the case study, that can be made. First, both the
decomposition strategies empioyed nmnely data-driven and goal driven are direct carry over effects
from procedural programming, and there appears to be little evidence supporting the use of
"predicate logic'' and/or declarative style in these approaches. It would also appear that the
application of these strategies is not carried uut in a top-down manner. Furthermore, as was the
case for our study of procedurnl programming [41, the application of these strategies can be more
readily explained in terms of using ··island driving" that is forming an ··island of certainty" around
what you can do and then extending it in multi-directional manner by taking the rest around this
island.

Second, which concurs \vith the resul ts we obtained in our protocol analysis study [4] where
subjects adopted a procedural ilpproach. the choice of data representation is a determinant factor
in shaping algorithm design. Furthennnre. working in deck1rative style does not appear to
significantly reduce the strong tendency towards simplistic representi"ltions because as mentioned
previously 76% "chose .. the sirnpler but at the same time inappropriate representation for a hand.
Further evidence of this propensity is choice of representation of a card, a significant proportion
again chose the most ob\'ious representation which is less appropriate for the needs of the
processing requirements namely a nt:'Sted list rather than a linear list.

In conclusion, working in the declarati\'e paradigm does not prevent the strongly observed tendency,
when working in a procedural paradi�m {4,6] towards simplistic representntions and inclinations
towards performing problem decomposition on the basis of "'do what you can and make the rest fit
around it". Therefore, it would appear that choice of data representation and decomposition
strategies appears to be more important than the programming paradigm used. Moreover, we assert
that subjects behaviour Gm be more readily expl'1ined in terms of carry over effects due to
procedural approach r,lther than ,1 declarnti\'e approach.

A further study was conducted which identified common misconceptions believed to be direct
results of "carry over effects" imperati\'e programming. These are currently being analysed, some
preliminary results relating to the most frequently observed occurrences of these misconceptions will
be presented.

References

[1) Kowalski, R., (1979), ··Ll1�ic tl)r Problem Solving··, �orth Holland Inc.

l

l

,
1

1

,,
J

l

l

1

l

l

1

,

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

(2)

[3]

[4]

[SJ

Taylor, Josie, (1984), "\Vhy .'\llvices Will Find L�arning Prolog Hard?" CSRP.044, University
of Sussex.

Someren Van. M., (1984), "\1isconceptions of Beginning Novice Programmer, TheAcquisition
of Expertise··, Department ot Psychology ,C niversity of Amsterdam. Memo 30.

Siddiqi, J.I.A., Khazaei, B. "\fodels of Programmer Behaviour: A Comparative Study." The
Twelfth Annual International Computer Software and Applications Conferencel.E.E.E.
COMPSAC 88, 141-146.

Siddiqi, J.I.A., (1984), "An Empirical Investigation Into Problem Decomposition Strategies
used in progrnm design", Ph.D Thesis, University of Aston in Birmingham.

[6] Ratcliff, B., Siddiqi, J.I.A., (1985), "Problem Decomposition Strategies Used in Program
Design", Intern<1tionnl Journ�I of \fan-Mnchine Studies 22, 77-90.

All correspondence should be dirL.l('tt!d to:

Jawed Siddiqi
Computing Research Centre
Sheffield Hallam Universitv
Hallamshire Business Park
100 Napier Street
Sheffield
Sll BHD

Tel: 0114 2 533i81
Fax: 0114 2 533161

Email: J.1.Siddiqi@SHC . .-\C.L'K

67

