
Computer Science Undergraduates Learning Logic Using a
Proof Editor: Work in Progress

J. C. Aczel1, P. Fung1, R. Bornat2, M. Oliver3, T. O’Shea 4 & B. Sufrin 5

1 Institute of Educational Technology, The Open University

 2 Department of Computer Science, Queen Mary & Westfield College, University of
London

3 Learning and Teaching Innovation and Development, University of North London
4 Birkbeck College, University of London
5 Oxford Computing Laboratory, University of Oxford

 Extended Abstract

Introduction

Computer science undergraduates can experience certain difficulties in employing formal
reasoning methods (Fung & O’Shea, 1992; Fung et al, 1993; 1996). Although the role of
visualisation in assisting the reasoning process in abstract situations appears to be complex
(Cox, Stenning & Oberlander, 1995; Cox & Brna, 1995), it is clear that there are software
tools - such as Tarski’s World (Barwise & Etchemendy, 1992) - that are considered by
students to be not only useful for learning the syntax and semantics of first order logic but
also enjoyable (Fung et al, 1994). However, the extent to which visualisation tools can assist
the learning of heuristics for constructing proofs is uncertain.

The ongoing research outlined here aims to explore the benefits of a particular tool called
Jape (Bornat & Sufrin, 1996) that enables students to construct, revise and test formal
proofs. The cognitive processes at work when students work on proofs - when using Jape
and when using pencil-and-paper - are of particular interest. In doing this it is hoped to
increase understanding of the effectiveness of such tools in software engineering. In
particular, a contribution might be made to understanding the appropriateness of this
approach for different user groups, the features of software engineering tools that best
support learning formal reasoning for software development, and the role of visualisation
in the reasoning process.

Brief Outline of Jape
Jape takes a description of a particular logic as a system of inference rules. The program has
been applied to several logics, including predicate calculus, operational semantics, Hindley-
Milner type assignment, axiomatic set theory, a functional programming logic, and a Hoare
logic of program refinement. During proofs in these logics the proof tree is directly

manipulated simply by clicking on a formula with the mouse. Jape has a tactic language in
which actions may be bound to mouse clicks, menu items, and keystrokes, and is used to
control the display of proofs and to perform simple searches. The syntax of logical
formulae, the form of judgements, the rules used, the entries in menus, the effect of
selection and double-clicking are under the control of the person who encodes the logic.

So, for example, in proving using natural deduction, clicking on
the implication-introduction entry in the rules menu changes the proof record to look like
this:

The formula on the right hand side of the turnstile is now a conjunction, so one could use
the conjunction introduction entry on the rules menu to make the next step. But the
designer of this presentation of the logic built in some direct manipulation rules, so simply
double-clicking the formula to the right of the turnstile invokes the appropriate proof rule
for the topmost connective of the formula, and the proof record changes to look like this:

Proofs can also be displayed as boxes:

Description of the Study
It should be stressed that Jape offers great versatility both in the logic being studied and in
the construction of a learning environment. However, it is currently only being evaluated
with respect to a particular implementation designed for the learning of natural deduction
in a term-long course in introductory predicate logic. This implementation uses the Fitch
boxes rather than tree display:

 a natural-deduction proof in progress

The study involves approximately 170 first-year computer science undergraduates at Queen
Mary & Westfield College, University of London. In order to provide a thorough evaluation
of the effectiveness of the software tool, a combination of qualitative and quantitative
methodologies that have been developed for previous work in this area will be adopted.

In the first phase of the research, initial profiling of the students is intended to provide a
baseline for use in evaluation of the tool. The data has been gathered by adapting
instruments developed as part of the previous evaluation of visualisation tools (Fung &
O’Shea, 1992). Profiles, although not generated at the time of writing, will be used to inform
the analysis of performance indicators taken throughout the course. Students are from a
variety of backgrounds: - not all will have A-levels, for example; some will be taking a
degree in, say computer science and linguistics, or computer science and business studies;
not all have prior programming experience; and motivations may vary from the intellectual
satisfaction of learning rigorous methods to anticipated financial rewards. Data is also
available from a number of short mathematical and reasoning tasks. The use of control
groups was discounted on both ethical and pragmatic grounds. However, an analysis of the
comparative effects for different backgrounds of the student population will be possible.

Observation of the students has been undertaken during their weekly practical sessions,
and this data is supplemented by students’ reflections on their learning. When Jape is being
used, a logging mechanism is in operation which provides data on how long each student
spends on each proof. It may therefore be possible to find out which proofs appear
particularly difficult, and whether the duration and frequency of program usage is
associated with better test results. However, it should be noted that some students may be
using Jape at home, for which timings would not be available. It has not been possible at
this stage to obtain more detailed records of the particular rules applied by students during
proving - ideally, a complete record of each student’s interactions with the program would
be captured, but this may not be logistically possible for this study. So qualitative
investigation of student use of Jape includes in-depth studies with a number of students
who are being individually observed using the program over a period of time and who are

interviewed about their experience of using the tool. Video evidence is available. Paper-
and-pencil behaviours in response to natural deduction items for students before and after
using Jape may allow an opportunity to demonstrate any transfer of skills - for example to
parsing expressions.

Preliminary Results
A number of issues have been raised as a result of the data collection; but the limited
analysis that has taken place so far means that the preliminary results are sketchy at the
time of writing. It does seem, however, that student have some difficulty in recalling proof
heuristics that were developed a week before. Moreover, the relationships between the
completed proof, the pencil-and-paper process of constructing that proof, and the Jape-
supported process of constructing the same proof appear subtle. This is more than just a
conflict between the way the proof is constructed by hand, and the apparent sequential
nature of the final product. In supporting students’ constructions, Jape seems to encourage
a particular way of working that "feels" quite different.

Although there are interface issues involved here - especially to do with which line of the
proof is to be clicked in order to apply a particular rule - a more interesting aspect seems to
be the steps that students find that they cannot make using Jape, even when these steps
might be unhelpful or illegal. Also, several students suggested that they were confused at
certain points in particular conjectures about whether, when they selected a rule, it would
be applied "forwards or backwards", and it is not at all clear yet whether this is purely an
interface issue or whether there a lurks in this a deeper misconception about the nature of
the formal reasoning process.

Looking at specific rules, there appeared to be some doubt about whether the rule "Ù -E(L)"
selected or removed the left-hand-side of the formula. A similar doubt did not appear to
occur for or-introduction. The implies-introduction and implies-elimination rules were
apparently applied without difficulty. Meanwhile, and-introduction was found
straightforward when the and-formula already existed, but it was sometimes not clear to
the students how to create a particular formula - they were seeking a way to select the two
components and then "and" them together (which is not at this time possible using Jape).
Conjectures without assumptions seem to be viewed as potentially harder a priori.

Suspicion of the or-elimination rule was widespread, to such a degree that students would
often prefer to attempt or-introduction from the "bottom up" rather than attempt or-
elimination from the "top down". A typical case of this would occur in a conjecture such as
(P ∨ Q) ∧ (Q ∨ P). Mentally checking using informal meanings for the logical connectors that
it would be possible to prove a later line from earlier lines was an uncommon strategy. The
negation rules were seen as very difficult. The "undo" feature, however, was universally
praised as an excellent way to explore the utility of rules to make progress at a particular
point in the proof. A number of strategies for judging such utility were noted, including
looking at the size and number of scope boxes, the appearance of new propositions (labelled
with an underscore) or variables, and the closeness of lines to what is desired.

With a mid-term test approaching, nearly all students reported that they would be "learning
the rules" from the lecture notes in order to prepare for the test, rather than using Jape.
There is much data to analyse from these sessions, but it is possible to hazard a guess as to
why the students would be using lecture notes at this stage to address the knowledge gaps
that they have perceived rather than Jape. The main perceived advantage of Jape, as
expressed by several students, was that it allowed experimentation in order to work out
proof strategies. The two main disadvantages appeared to them to be firstly that it was
often difficult to work out how to apply a given rule to given formulae, and secondly that it
was not easy to work out what the "difficult" rules did, or how or when they might be
useful. This latter point appeared corroborated after later work in which progress with
conjectures involving quantifiers appeared slow in the early stages. A number of students
commented that it might very well be useful to be able to check using the computer a proof
already constructed without the computer; and that is was certainly very useful to be able
to explore using the computer the range of possibilities when an impasse has been reached
in a proof being constructed without the computer; but that it was difficult to use Jape
without at least some sort of "grasp" of the rules.

The Role of Visualisation
In addition to exploring the above issues and hypotheses, the analysis of the data also needs
to consider different aspects of the role of visualisation. Three uses of the term
"visualisation" are to be distinguished for the purposes of this research. Firstly, in the
colloquial sense, simply using the screen record of proof steps may act as a "visual" support
in constructing a proof while using the software. Nevertheless, it may be the case - and this
clearly needs to be investigated further - that students are able to make progress with Jape
without a good understanding of the principles involved in proving a conjecture. They may
be supported in proof construction using Jape, and even learn that only certain
constructions are appropriate in certain situations; but it is possible that they learn little
more than this.

Secondly therefore, the intention of the software is clearly to promote proof-generation
skills that are transferable to situations where the computer is not available. In this sense,
students might be supported in the cognitive task of learning to visualise a proof strategy.
In the same sense, it might also be that students in such situations may, as a by-product of
work with the software, get better at the execution of known syntactical rules applied to
strings - a relatively mundane but crucial chore that was handled by the computer when the
student had the software available. Of rather more interest would be if, when they came to
planning software, students were somehow to draw on their experiences of studying logic.
For example, they might make implicit use of notions of "rigour" or "completeness" or
"logical structure". Again, students would somehow have been supported in the task of
learning a skill - this support could be characterised as the development of strategic theories
(Aczel, 1998) which may or may not be image-based in character.

Thirdly, separate from the encouragement of any specific strategies for manipulating
expressions, constructing proofs, or planning software, students’ perception of the structure
and nature of expressions, proofs and programs may be affected, "perception" in this

context being understood as a form of "visualisation". Any effect which takes place as a
result of this enhanced perception may be indicated not just by the use of more efficient
heuristics but also by the language used to talk about expressions, proofs and programs,
and the recognition of the more significant aspects of particular expressions, proofs and
programs for different purposes. Efficiency itself may be explicitly recognised as a relevant
aspect of proof-generation. Do, for example, students question whether there is more than
one way to prove a conjecture, let alone whether there are more efficient methods? Of the
three senses of visualisation considered here, this third appears to be the most difficult for
which to collect evidence.

References
Aczel, J. C. (1998) "Learning algebraic strategies using a computerised balance model",
Proceedings of the 22nd International Conference for the Psychology of Mathematics Education,
Stellenbosch, South Africa

Barwise, J. & Etchemendy, J. (1992) The Language of First-Order Logic, Cambridge University
Press

Bornat, R. & Sufrin, B. (1996) "Animating the formal proof at the surface: the Jape proof
calculator", Technical Report, Department of Computer Science, Queen Mary & Westfield
College, University of London, ftp://ftp.dcs.qmw.ac.uk/jape/papers/

Cox, R. & Brna, P. (1995) "Supporting the use of external representations in problem
solving: the need for flexible learning environments", Journal of Artificial Intelligence in
Education, 6 (2), p. 293-302

Cox, R., Stenning, K. & Oberlander, J. (1995) "Graphical effects in learning logic: reasoning,
representation and individual differences", Proceedings of the 16th annual meeting of the
Cognitive Science Society, Atlanta, Georgia, p. 237-242

Fung, P. & O’Shea, T. (1992) "Using software tools to learn formal reasoning: a first
assessment", CITE Report No. 168, Open University

Fung, P., O’Shea, T., Goldson, D., Reeves, S. & Bornat, R. (1993) "Computer science
students’ perceptions of learning formal reasoning methods", International Journal of
Mathematical Education in Science and Technology, 24 (5), 749-760

Fung, P., O’Shea, T., Goldson, D., Reeves, S. & Bornat, R. (1994) "Why computer science
students find formal reasoning frightening", Journal of Computer Assisted Learning, 10, 240-
250

Fung, P., O’Shea, T., Goldson, D., Reeves, S. & Bornat, R. (1996) "Computer tools to teach
formal reasoning", Computers in Education, 27 (1), 59-69

A Unix/Linux version of Jape is available from
http://www.comlab.ox.ac.uk/oucl/users/bernard.sufrin/jape.shtml

An Apple Macintosh version of Jape is available from
http://www.dcs.qmw.ac.uk/~richard/jape

