
Component Relationships Depend on Skill in
Programming?

Jeffrey S. Feddon and Neil Charness

Department of Psychology
Florida State University
Tallahassee, FL 32306
Phone: 850-644-9869
feddon@psy.fsu.edu
http://www.psy.fsu.edu/~feddon/homepage.htm

Paper presented at the 11th Annual PPIG Workshop, University of Leeds, UK, January 4-7, 1999.

Introduction

Computer programming studies commonly view programming either as an aggregate task or as a set of
components (subtasks). Shneiderman and Mayer (1979) and Brooks (1977) were early attempts to
model general cognitive processes in programming. The complexity of examining programming as a
single problem-solving task soon became obvious and researchers began following early suggestions
(e.g., Shneiderman, 1976) in focussing intently on individual subtasks. Highly detailed accounts of
programmer behavior now exist in the literature for some subtasks, including software design (Jeffries,
Turner, Polson, and Atwood, 1981), comprehension (Brooks, 1983), and debugging (Vessey, 1989).

For background purposes, the following are examples (with brief definitions) of common subtasks in
programming (Shneiderman, 1976; Koubek, Salvendy, Dunsmore, & Lebold, 1989): (1) Software
Design : deciding problem requirements, designing an optimal solution to the problem, and creating a
mental representation of the procedure; (2) Comprehension: understanding a program--what does a
program do?; (3) Composition: translating a representation to program code; (4) Debugging:
determining why a program does not function or functions improperly; and (5) Modification: making
changes to an existing functional program.

Koubek et al. (1989) argue that subtasks required in programming are distinct, but interrelated.
Unfortunately, very little evidence exists about the nature of these interrelationships (Bishop-Clark,
1995; Pennington, Nicolich, & Rahm, 1995). The most extensive work comes from studies examining
the extent and type (declarative vs. procedural) of knowledge transfer between evaluation
(comprehension) and generation (composition) of LISP procedures (Anderson, Conrad, & Corbett,
1989; Pennington et al., 1995). However, this research is in its infancy and the results are inconclusive.
Further, these studies did not examine the impact of skill on subtask performance (a focus of the present
study).

Some have hypothesized that certain subtasks share common or similar cognitive components (e.g.,
Bishop-Clark, 1995; Koubek et al., 1989; Shneiderman & Mayer, 1979). For example, Bishop-Clark
(1995) says that program debugging requires comprehension. Koubek et al. (1989) say that
"modification requires a programmer to use the combined skills of comprehension, composition, and
debugging" (p. 183). Shneiderman and Mayer (1979) state that program comprehension requires
subtasks of debugging, modification, and learning. Mynatt (1984) makes the claim that "whether
writing, debugging, or modifying software, comprehension is involved" (p. 91). While most of these
statements are logical assertions, not much concrete evidence exists about the extent of subtask overlap.

1 of 11 07/02/99 15:15

ppig_paper http://freud.psy.fsu.edu/~feddon/ppig/subtasks.htm

Moher and Schneider (1982) suggested that understanding the correlation between performance on
various subtasks (including the impact of skill) is an important line of future research. Ideas for the
present study follow from this suggestion and the need for further research on subtask relationships. The
present study sought to investigate the degree of relationship between subtasks of comprehension,
debugging, composition, and modification. Subjects were college students who had knowledge of the C
programming language. They were designated to one of three possible skill categories (novice,
intermediate, and advanced). All subjects solved two programming problems for each subtask.

Statistical analyses consisted of examining relationships between subtasks across skill groups and within
each skill group. Further, we examined mean differences between skill groups for each subtask measure
and for subtask measures combined. Because this was an exploratory study, researchers made no
specific hypotheses beyond general assumptions that subtask relationships would change with skill and
that higher-skilled programmers would do better than lower-skilled ones.

Method

Subjects

Subjects were 35 males and females in three possible skill conditions (novice, intermediate, advanced).
Novices consisted of 11 persons who had just finished a semester course on C programming and had no
previous programming experience other than this course. There were 23 Intermediate subjects. Nine of
these subjects had just finished the same C programming course, but had programming experience
before the course. The other 12 intermediates had previously taken a course on C programming and had
other programming experience. There were three advanced subjects and all were computer science
graduate students, two of which had previously taught a course on C programming.

Stimuli and Apparatus

The stimuli consisted of two test forms (A and B) counterbalanced across skill categories. Each test
form contained eight programming problems (two problems for each of the four subtasks). There were
16 total problems (4 for each subtask) and no problems were the same across test forms. The
researchers developed some problems and selected others from example problems in college-level C
programming books (e.g., Johnsonbaugh & Kalin, 1993). Comprehension, debugging, and modification
problems were less than 30 lines long and composition problems required less than 30 lines of code. All
problems were complete programs (i.e., not code fragments).

To combat possible range effects (e.g., ceiling effects due to easy problems), for all subtasks, researchers
developed problems that ranged in difficulty. Debugging problem difficulty was based on the number of
bugs in the program (problems contained either 5, 4, 3, or 2 bugs). Researchers assessed problem
difficulty for comprehension, composition, and modification problems by two methods. Initially,
researchers used a rating system to assess difficulty level. The rating system allocated a varying number
of points based on the complexity of common programming structures. The five structure categories
(with point values) were: (1) A looping structure (five points); (2) An IF statement (three points); (3) An
array (two points); (4) A variable (one point); and (5) All other statements (one- half point for each
statement). Problems with higher scores were considered more difficult.

An experienced C programmer concurrently validated rating system scores. Researchers asked the
programmer (for each subtask) to sort the four problems on the basis of difficulty: one for most difficult,
two for second, three for third, and four for least difficult. Based on agreement between rating system
scores and sort orders, the researchers and the experienced programmer worked together in reaching a
consensus about difficulty ratings. We developed test forms A and B in the following manner. Form A

2 of 11 07/02/99 15:15

ppig_paper http://freud.psy.fsu.edu/~feddon/ppig/subtasks.htm

contained comprehension problems of difficulty levels 2 and 3, debugging (level 1 = 5 bugs and level 4
= 2 bugs), composition (levels 2 and 3), and modification (levels 1 and 4). Form B contained the
remaining problems and is completely orthogonal to form A.

Researchers developed four practice problems (one of each subtask type) to instruct subjects on the
experimental tasks and to control for practice effects. We used the same problem (with minor
modifications) as an example for each subtask.

Researchers wrote a program that controlled problem display. The program interfaced with the Turbo
C++ 3.0 for DOS compiler IDE. Problems were displayed in the IDE to maintain an ecologically-valid
setting and to allow subjects to have facilities for compiling and debugging programs.

Design

The design used in this experiment was a one-way between subjects multivariate design. Skill level was
the independent variable with three conditions (novice, intermediate, and advanced). The four
dependent variables were scores on each of the four subtask measures. Debugging scores were based on
the number of bugs corrected (seven points possible for each subject). Researchers developed and used a
rating scheme (based on a zero to five scale) to score performance in comprehension (based on
completeness of description), composition, and modification (both based on completeness of solution).
Problems were scored: "5" if a problem was completely correct or had one minor syntax error; "4" if
there was one major (semantic) or two minor (syntactic) errors; "3" if there were two major errors, one
major and one or two minor errors, or three or four minor errors; "2" if there were no more than three
major errors; "1" if the problem was partially correct and contained more than three major errors; and
"0" if the problem solution was insufficient, wrong, or not stated.

We used random counterbalancing to control for order effects. The computer randomly generated
problem orders for each subject. Therefore, each subject was equally likely to receive problems in any
one of the possible permutations for eight conditions.

Procedure

Subjects signed an informed consent form and read a general description of the experiment. Subjects
were then given a brief introduction to the Turbo C++ IDE. The experimenter informed them about
things like how to expand windows, scroll up and down, compile code, save their file, and get to the
next problem. After subjects said they understood what to do and how to use the IDE, they proceeded to
a practice problem phase. The experimenter guided subjects through the practice problems (one for each
subtask) and answered any questions. For comprehension problems, researchers instructed subjects to
describe in their own words what the program does. Subjects were instructed to locate and fix bugs in
debugging problems. For composition problems, subjects were instructed to write a program that meets
stated specifications. For modification problems, subjects were given a program with specifications for
current functionality and provided with additional specifications for modifying the program.

After practice, the experimenter told subjects that they should attempt to solve all eight programming
problems, providing a best possible solution to each problem. The experimenter told subjects that they
had complete control over their rate of progress, but that they should work as quickly as possible.
However, the experimenter emphasized accuracy (good solution) over speed (fast solution). Subjects
were told that if they had extreme difficulties with a problem (e.g., felt they could progress no further),
they should move on to the next problem. Subjects could take breaks (at their leisure) between
problems. The experiment ended when subjects finished all problems. At this point, the experimenter
debriefed subjects and answered any questions.

3 of 11 07/02/99 15:15

ppig_paper http://freud.psy.fsu.edu/~feddon/ppig/subtasks.htm

Results

We scored problems (using the above rating scheme) by comparing each problem to an idealized
solution. Two persons (one researcher and a volunteer) scored problems. The researcher scored all
problems (these scores were used for data analysis), while the volunteer scored a sample of problems
(one novice--form A, one novice--form B, two intermediates--form A, two intermediates--form B, one
advanced--form A, and one advanced--form B). A significant Pearson correlation (r = .76, p < .001)
showed modest inter-rater agreement across all subtask problems. A look at inter-rater agreement by
subtask shows that while agreement was high for debugging (r = .94, p < .001) and composition (r = .89,
p < .001) problems, agreement was lesser for modification (r = .71, p < .002) and not very good for
comprehension (r = .41, ns) problems. A probable cause for such low agreement for comprehension
problems is a lack of sensitivity of the rating scheme. While the scale is more objective for problems
containing "program code" responses, it is more susceptible to subjective interpretation when subjects
were to provide English language descriptions for comprehension problems.

The experimenters aggregated problem scores in arriving at a subtask score for each subject.
Comprehension, composition, and modification scores were obtained by adding results of the two
problems for each subtask. Given that five was a maximum score for each problem, subtask scores are
based on the number of points out of 10. The two debugging problems (for both test forms) contained a
total of seven bugs and scores were first based on the number of bugs corrected out of seven. The
experimenters then converted debugging scores to a 10-point scale by the following computation
[Debugging Score = ((number of bugs corrected) / 7) * 10]. Therefore, there were 40 total points
possible across the four subtasks.

We checked test forms A and B for equivalence by examining total score averages and subtask score
averages between the forms. The total score means for form A (26.65) and form B (27.46) were very
similar and not significantly different. No significant differences were found between form A and B
subtask score means (Comprehension - 7.74 (A), 7.81 (B); Debugging - 6.54, 6.96; Composition - 5.84,
6.81; Modification - 6.53, 5.88). These results provide confidence that the test forms were equivalent.

The following figures provide descriptive statistics information. Table 1 shows the means and standard
deviations for each skill level and subtask, including totals across each variable. Figure 1 is a line graph
of the subtask score averages for each skill level. Figures 2 is a stacked bar graph of mean subtask
scores and shows the aggregate mean for each skill level.

One-way ANOVAs examined total (aggregate) score average and subtask score averages between skill
levels. The ANOVA for total score average [F (2, 32) = 4.51, p = .019] was significant. The ANOVAs
for debugging [F (2, 32) = 3.15, p = .056], composition [F (2, 32) = 3.09, p = .059], and modification [F
(2, 32) = 2.90, p = .070] were marginally significant, while that for comprehension was not significant
[F (2, 32) = .69, p = .511].

Tukey post hoc tests were done on the significant and marginally significant ANOVAs. For total score,
there was a significant difference between novice (22.75) and advanced (33.71) group means, but neither
differentiated from the intermediate group (28.30). For subtasks, debugging score showed the only
significant pairwise difference between novice (6.30) and advanced (9.05) groups.

Table 2 shows the overall (across skill level) correlations between subtasks. Notice that the correlations
between composition and modification (r = .61, p < .001) and between comprehension and composition
(r = .35, p = .039) were significant. Tables 3, 4, and 5 show correlations between subtasks broken down
by skill level (novice, intermediate, and advanced). For novice programmers, while no correlations were
significant, the strongest correlations were between comprehension and composition (r = .47) and
composition and modification (r = .39). For intermediate programmers, the correlation between
composition and modification was significant (r = .69, p < .001) and no other correlations were

4 of 11 07/02/99 15:15

ppig_paper http://freud.psy.fsu.edu/~feddon/ppig/subtasks.htm

significant or very strong. Given that there were only three subjects in the advanced condition,
correlations are not worthy of discussion.

A scatterplot of skill level and total score reveals extensive individual differences within novice and
intermediate groups (range = 22.14 and 23.29, respectively), suggesting that subject’ skill classification
based on a broad measure of experience is not very robust (cf. Collani & Schömann, 1995). While the
correlation was significant (r = .47, p = .004), skill categories captured only 22% of the variance in total
scores (see Figure 3).

While acknowledging sample size limitations, a final examination of the data entailed doing an
exploratory factor analysis (principal component analysis with varimax rotation) for the four subtasks
across all subjects. Two distinct factors were extracted with Eigenvalues of 1.926 and 1.036, accounting
for 46% and 26% (~72%) of the total variance, respectively. Composition (.843) and modification
(.914) loaded heavily on the first factor, while comprehension (.713) and debugging (.863) loaded
heavily on the second factor.

For a finer-grained inspection, factor analyses were done separately for novice and intermediate groups.
For the novice group, two factors were extracted with Eigenvalues of 1.884 and 1.084, accounting for
47% and 27% of the variance. Comprehension (.768), composition (.776), and modification (.795)
loaded heavily on the first factor, while debugging (.940) loaded heavily and exclusively on the second
factor. For the intermediate group, again two factors were extracted (Eigenvalues of 1.806 and
1.213--accounting for 45% and 30% of the variance), but composition (.895) and modification (.932)
loaded heavily on the first factor, while comprehension (.798) and debugging (.791) loaded heavily on
the second factor.

Discussion

Providing some exploratory evidence about the relationships between subtasks and differences between
subtask performance based on skill level, were the major goals of this research. At the outset, we wish
to note that sample size in the advanced group is a severe limitation for data analysis. However, this
research is still in progress and we plan to get more novice and advanced subjects to equalize sample
sizes. A further limitation is the insensitivity or lack of objectivity of certain aspects of the rating system
used with some subtasks (e.g., comprehension). While acknowledging these problems, we wish to focus
here on examining and interpreting the data.

At the present stage of the research, results suggest that relationships between subtasks depend on skill
level and that some subtasks (e.g., composition and modification) are more strongly related than others.
Further, there is some evidence to support hypotheses discussed earlier. For example, factor analysis
results support Bishop-Clark's (1995) statement that program debugging requires comprehension.
However, results suggest that this may be skill-dependent, as the intermediate group results provide
stronger evidence than the novice group.

It may be useful to offer an interpretation for the two factors extracted in the overall factor analysis. At
least two questions are relevant: (1) What underlying process(es) might composition and modification
use that comprehension and debugging do not and vice versa?; and (2) Are these factors sensitive to skill
differences? By definition, modifying a program requires one to do some coding (composition).
Alternatively, both comprehension and debugging require one to inspect/scan a program, to build an
understanding and to locate problems. Possibly, factor one is related to generation processes and factor
two involves evaluation processes (cf. Anderson et al., 1989; Pennington et al., 1995). To address the
second question we examined the correlation between each factor and skill level. The correlation
between factor one and skill level was significant (r = .38, p = .024), while factor two did not
significantly correlate with skill level (r = .27). A tentative interpretation is that generation processes

5 of 11 07/02/99 15:15

ppig_paper http://freud.psy.fsu.edu/~feddon/ppig/subtasks.htm

may be more skill dependent than evaluation processes, but further work is needed to increase
confidence in such claims.

While ANOVA examinations of mean differences did not reveal a great deal, graphs show a trend of
increased performance with separate subtasks (Figure 1) and for subtasks aggregated (Figure 2). Besides
small samples, insensitivity from extensive individual differences for novice and intermediate groups
may explain few significant mean differences (see Figure 3). Apparently, large individual differences
are common in computer programming studies. Moher and Schneider (1982) suggest that, "in several
reports, it has been noted that variability due to subject differences often outweighs variability due to
independent variables...to date, the classification of subjects has generally been based on very rough
measures, usually relating to academic backgrounds" (p. 73).

Future Directions

Our current work involves plans of formulating methods of predicting and/or extracting out extensive
variability from individual differences. Specifically, we are developing a theory to describe the
underlying structures used in programming that includes specific predictions about the circumstances
under which one would expect relationships to occur between subtasks and how these relationships
might be affected by an individual’s basic capacity (hardware) and accumulated knowledge structures
(software). At this juncture, we will be in a better position to address the goals of the present
exploration more critically. Plans are to develop studies that enable us to work in parallel on these
issues.

References

Anderson, J. R., Conrad, F. G., & Corbett, A. T. (1989). Skill acquisition and the LISP tutor. Cognitive
Science, 13, 467-506.

Bishop-Clark, C. (1995). Cognitive style, personality, and computer programming. Computers in Human
Behavior, 11, 241-260.

Brooks, R. (1977). Towards a theory of the cognitive processes in computer programming. International
Journal of Man--Machine Studies, 9, 737-751.

Collani, G. V., & Schömann, M. (1995). The process of acquisition of a new programming language
(LISP): Evidence for transfer of experience and knowledge in programming. In K. F. Wender, F.
Schmalhofer, and H. D. Böcker (Eds.), Cognition and computer programming (pp. 169-191). Norwood,
NJ: Ablex Publishing Corporation.

Jeffries, R., Turner, A. A., Polson, P. G., & Atwood, M. E. (1981). The processes involved in designing
software. In J. R. Anderson (Ed.), Cognitive Skills and Their Acquisition (pp. 255-283). Hillsdale, NJ:
Lawrence Erlbaum Associates, Inc.

Johnsonbaugh, R., & Kalin, M. (1993). Applications programming in ANSI C (2nd ed.). NY: Macmillan
Publishing Company.

Koubek, R. J., Salvendy, G., Dunsmore, H. E., & LeBold, W. K. (1989). Cognitive issues in the process
of software development: review and reappraisal. International Journal of Man--Machine Studies, 30,
171-191.

6 of 11 07/02/99 15:15

ppig_paper http://freud.psy.fsu.edu/~feddon/ppig/subtasks.htm

Moher, T., & Schneider, G. M. (1982). Methodology and experimental research in software engineering.
International Journal of Man--Machine Studies, 16, 65-87.

Mynatt, B. T. (1984). The effect of semantic complexity on the comprehension of program modules.
International Journal of Man-Machine Studies, 21, 91-103.

Shneiderman, B. (1976). Exploratory experiments in programmer behavior. International Journal of
Computer and Information Sciences, 5, 123-143.

Shneiderman, B., & Mayer, R. (1979). Syntactic/Semantic interactions in programmer behavior: A
model and experimental results. International Journal of Computer and Information Sciences, 8,
219-238.

Vessey, I (1989). Toward a theory of computer bugs: An empirical test. International Journal of
Man-Machine Studies, 30, 23-46.

Wiedenbeck, S. (1986). Beacons in computer program comprehension. International Journal of
Man-Machine Studies, 25, 697-709.

Table 1 - Means and Standard Deviations

Figure 1 - Subtask Means

7 of 11 07/02/99 15:15

ppig_paper http://freud.psy.fsu.edu/~feddon/ppig/subtasks.htm

Figure 2 - Subtask and Aggregate Means

Table 2 - Total Correlations

8 of 11 07/02/99 15:15

ppig_paper http://freud.psy.fsu.edu/~feddon/ppig/subtasks.htm

Table 3 - Novice Correlations

Table 4 - Intermediate Correlations

9 of 11 07/02/99 15:15

ppig_paper http://freud.psy.fsu.edu/~feddon/ppig/subtasks.htm

Table 5 - Advanced Correlations

Figure 3 - Skill Level by Total -- Rsquare = .22

 1 = Novice, 2 = Intermediate, 3 = Adanced

10 of 11 07/02/99 15:15

ppig_paper http://freud.psy.fsu.edu/~feddon/ppig/subtasks.htm

11 of 11 07/02/99 15:15

ppig_paper http://freud.psy.fsu.edu/~feddon/ppig/subtasks.htm

