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Extended Abstract

Pedagogy Required for Teaching/learning Arithmetic Representations

A fundamental aspect of learning arithmetic is understanding and becoming proficient in
abstract representational systems which convey concepts, such as algebra. A way of
helping learners understand, particularly in the primary school, is to make connections
between familiar concrete situations and more abstract symbolic concepts. This may be
achieved through the use of objects which can be manipulated (e.g. base-10 blocks,
sticks, counters, and computer graphics). Piagetian analysis indicates that for young
children, the use of concrete manipulatives is important for the eventual development of
formal operations (Shuard, et al, 1991). Children around 7-12 years of age have the
ability to think logically (i.e. like adults) if their thinking is guided by contact with real or
familiar objects and situations. The physical activity of say moving blocks, eventualy
leads to similar actions being carried out entirely in the imagination, and so at around 11-
12 years of age, mental activities come to dominate and take the form of mental images
which are moved around in the mind. It is the construction of mental images which are
fundamental to the development of logical thinking and thinking in terms of concepts.

Mayer and Wittrock (1996) refer to this learning process as being structure-based,
meaningful, and active. Meaningful learning is particularly appropriate to abstract

concept acquisition, since this is. (a) concerned more with understanding than just a

change in procedures; and (b) influenced by situations and domains as opposed to being
independent from them (Shuell, 1992). A related theory is Constructivism, which asserts

that both the active involvement in a situation by individuals, and the situation itself,

affect cognitive growth (i.e. learning). Such constructive activity is based on Piaget’s
notion of assimilation and accommodation. That is, new procedures may be assimilated
prior to learning, but meaningful learning (i.e. the understanding of concepts) occurs only
after the accommodation of new schemata (Steffe, 1988). Thus, a new concept may be
added to concepts already formed (i.e. constructed) as long as the new concept is
accommodated to the existing concept network through understanding. If understanding
does not take place, then an individual will simply assimilate new information and
cognitive growth will not occur.



Cognitive psychology has grounded this analysis in the concept of mental models. For
example, the theory of language understanding put forward by Johnson-Laird (1983)
suggests that children construct concrete mental models which correspond to the entities
(e.g. people, objects, events) which the language is about (as someone would do when
listening to a story). A child then manipulates and mentally transforms the mental model,
and this enables inferences concerning the language to be drawn.

Greeno (1991a) proposed an idea of mental models related to number sense similar to
Johnson-Laird’s (1983) language theory. Greeno (1991a) suggests that number sense is a
form of cognitive expertise - in other words, it is the ability of a person to construct and
reason with mental models. Thus, understanding the language of mathematics (e.g. a
word problem) depends on learners developing the ability to construct mathematical
situations which include the concepts that the language is putting forward. Greeno
(1991a) refers to this astuated cognition, where the underlying assumptions concerning
learning are: (a) the capabilities which people have with regard to number sense involve
more than just facts and procedures; and (b) the activity of understanding and reasoning
ultimately becomes internal (i.e. implicit) through the use of mental models.

The mental model theories above imply that when confronted with an abstract
proposition, children need not think logically because they construct mental models of a
situation by relating a proposition to the concrete or real world. Furthermore, since
communication necessitates the use of external representations (e.g. with objects,
symbols, and language), it may be assumed that: (a) internal representations (mental
models) are influenced and constrained by external situations - situated cognition; and (b)
connections between internal representations may be achieved as a result of external
activity, thus facilitating the construction of knowledge networks (Hiebert and Carpenter,
1992). Consequently, there should be decreased dependency on the use of physical aids
(e.g. arithmetic blocks) to facilitate thinking. Thus, when attempting to solve a problem
in the conceptual domain of numbers, a person’s reasoning will be guided by his/her
internalised mental models formed through previous interactions of external concrete
situations.

A fundamental aspect associated with both internal mental states of mind and external
concrete situations is the pedagogical considerations of representation. These are
addressed next.



Pedagogical Considerations of Representation

Cognitive Science and the Connection of Representations

Understanding mathematics is associated with the way information is presented and
structured. The presentation of information should enable connections between ideas,

facts, and procedures to be made. Cognitive science suggests that subsequent
understanding will occur once a mental representation of a particular mathematical
concept has become linked to a person’s existing network of representations (i.e. from a
psychological perspective, information has been accommodated).

With regard to representations and understanding, Hiebert and Carpenter (1992) build on
two assumptions from cognitive science research by suggesting the following. Firstly, an
internal representation is influenced by the represented external situation. Thus,
connections between internal representations are influenced by connections between
corresponding external representations, and so external mathematical representations
influence internal mathematical representations. Secondly, internal representations can be
connected. Similarly, Anderson (1993) states that the mind is a reflection of the external
environment. However, Zhang (1997) goes further by arguing that external representation
based problem solving (e.g. arithmetic multiplication) is constrained both by the
environment and the mind of an individual. The fundamental assumption being that
external representations do not have to be re-represented as internal representations in
order for problem solving to be carried out. Zhang suggests that external representations
can activate perceptual operations and provide perceptual information which may be used
in conjunction with cognitive operations, such as existing internal representations (e.qg.
information recalled from memory).

Such theories are particularly useful when considering the design of learning
environments in the field of arithmetic problem solving. Goldin (1987) describes the goal
of mathematics education as being able to foster the development of cognitive (i.e.
internal) representational systems. Consequently, Goldin points out that a teaching
system needs to foster maximal development of pupils’ internal representations using
external representations which facilitate transfer of learning. The above assumptions from
cognitive science suggest that having the ability to select an action in one external
representation which can then be translated to other connected external representations
would be a powerful pedagogical tool for activating and providing perceptual information
and also representing ideas mentally. In this respect, the computer is extremely useful,
because several different external representations can both be linked and structurally
equivalent in order to facilitate the translation of actions carried out by pupils.

The distinction between internal and external representations helps understand why a
particular technology may be better suited to the teaching and learning of arithmetic



representations which involve the use of a caculator. Internal representations are the
mental images people formulate in their minds which correspond to reality, whereas
external representations are actual commodities which people can physically see and/or
manipulate to depict reality, such as: symbols (e.g. algebra, diagrams, pictures); and real
objects (e.g. arithmetic blocks, Cuisenaire rods, etc.). A representation may therefore be
considered as being comprised of the three components. mental images, symbols, and
real objects (Janvier, 1987).

Severa different (i.e. multiple) types of external representation may be used to depict the
same abstract concept, which in turn could help to promote understanding. For example,
different types of external representation typically used in classrooms include: text books;
writing/diagrams on white/black boards;, and manipulable objects. However, Dufour-
Janvier, et al. (1987) point that multiple external representations will only be useful if a
child understands them, and where this occurs a learner will also be expected to: (a) find
one representation which best enables a given task to be completed; (b) reject a
representation because it is less effective than othersin a given problem situation; and (c)
move from one representation to another.

The movement between representations is problematic when considering how a solution
isarrived at from a given problem statement. For example, Lesh, et al. (1987) found that

pupils have “translation” (p. 36) difficulties associated with the re-representation of initial
word problem information into ways of describing, illustrating, and manipulating ideas
which may then be used for the solving of a problem. They point out that these
difficulties arise not only within the context of word problems, but also with the
translation to subsequent pencil and paper computations. Both the translation of
information from word problem statements, and the subsequent translation of information
to computations, are seen as significant factors in influencing mathematical learning. The
translation difficulties highlighted by Lesh et al. will by implication also be apparent
when considering the use of abstract calculator representations to facilitate computations.

The processes of mathematical thinking required to overcome such problems are based
on complex relationships between the external representations encountered during
learning, and internal mental processes (De Corte, et al. (1996). A theoretical model
which classifies the unobservable thinking behaviour (i.e. internal representations) taking
place in individuals is Goldin’s (1992b) model of internal representational systems. The
model depicts complex processes of interaction between the following five internal
representational systems: verbal/syntactic; heuristic (e.g. planning, and monitoring);
formal notation (i.e. symbolic); affective; and imagistic (i.e. visual, spatial, auditory,
tactile).

Conventional teaching tends to place an emphasis on verbally-mediated thinking during
mathematics teaching (e.g. through explanations), and the use of formal types of notation
(e.g. algebra). Consequently, De Corte, et al. (1996) point out that Goldin’s (1992b)



model of mathematical thinking goes far beyond the presumed influence of verbal and
formally written mathematics. Goldin’s model implies that mathematical understanding
(and thus teaching) needs to address the influence on learning of non-verbal imagery (i.e.
visually mediated thinking), as well as the use of verbal and formal notational systems.
This implication supports Paivio’s (1986) dual-coding theory.

Having addressed relevant issues of learning and representation, the following section
considers the pedagogical problems of teaching and learning using calculator
representations.

Pedagogical Problems With Using Calculator Representations for Teaching/Learning
Arithmetic

Previous research asserts that the construction of concepts should precede the use of
skills (Kaput, 1987; Hiebert, 1988). However, calculator usage typically promotes skills
before arithmetic understanding. This is evident when one considers the theories
underlying: meaningful learning, constructivism, mental models, and internal/external
representations, all of which suggest that calculators will be of little educational value
unless pupils understand the formal/abstract representations used.

Children, particularly at primary school level, cannot easily relate abstract data on a
calculator display to concrete or real-life situations, and this will serve to impede mental
model formation and thus learning. More specifically, because internal representations
are influenced and constrained by external situations, and since the external
representations of calculators are themselves abstract, it may be assumed that calculators
constrain the development of internal representations and thus conceptual networks. In
addition, the symbols viewed on a calculator display refer to abstract entities which are
likely to be absent from pupils’ cognitive structures (Greeno, 1991), and if this is the
case, new information may be assimilated but not accommodated. Thus, if learning using
calculators is to take place, it is important that number concepts are represented internally
in a way which promotes understanding.

Unfortunately, conventional calculator representations do not lend themselves to mental
model formation and thus conceptual or procedural understanding, for several reasons.
Firstly, although calculators look concrete, they do not give perceptual representations to
underlying abstractions (e.g. mappings between calculation steps, and evaluation
sequences). In other words, data which is input remains abstract (i.e. in a symbolised
format) which itself is unlikely to facilitate accommodation of knowledge and conceptual
understanding. Secondly, calculators can cause confusion about procedural understanding
(such as order of operations) due to the logic systems used to implement the calculation.
Thirdly, calculators do not show intermediate stages of computations which could serve
to support abstract understanding, and thus help with the construction of mental models



and the accommodation of knowledge networks. For example, the reading of a word
problem to the entering of data into a calculator is probably too large a step for the
understanding of: (a) the entities involved, (b) the relationships between the entities, and
(c) the evaluation sequence of an arithmetic expression. Fourthly, calculators do not
facilitate planning, in particular the editing and reorganisation of data.

The potential pedagogical difficulties with calculator usage affect both teaching and
learning, and so the next section considers a computer-based pedagogy which will be
needed to overcome such problems.

A Computer-Based Pedagogy for Teaching Calculator Representations

Once appropriate information has been elicited from the semantics of a word problem,
what is of concern are the difficulties school pupils encounter with: (@) the trandation of
a problem statement to abstract arithmetic notation; (b) the manipulation of arithmetic
notation for evaluation purposes, and (c) the understanding of calculator behaviour.
Although calculators look concrete, they do not give perceptual representations to
underlying abstractions (e.g. mappings between calculation steps, and evaluation
sequences). In addition, calculators do not show intermediate stages of computations
which could serve to support the conceptual and procedural understanding of arithmetic.
In order to correctly compute an arithmetic function using a calculator which results from
a word problem, it is often first necessary to: (a) identify entities and the relationships
between them; (b) trandlate the entities to arithmetic notation, and vice versa; and (c)
carry out computations through key presses. Consequently, the underlying question
which has been addressed is: what pedagogical requirements will be needed to facilitate
the teaching and understanding of abstract calculator representations when used for word
problem solving? The main requirement is the use of multiple, equivalent, and linked
representations (MELRs). Three structurally different, but equivalent computer-based
representations have been used in the current design. These are: (i) iconic (concrete); (i)
dataflow (intermediate); and (iii) calculator (abstract).

| conic Representation

Real-world icons are used to represent entities from problem statements and the
corresponding arithmetic expressions in a more concrete and familiar way. This has been
done because psychological theory suggests that individuals construct concrete mental
models of entities, and then elaborate these models by manipulating and mentally
transforming them (Johnson-Laird, 1983). In other words, a problem statement is related
to the real world to facilitate understanding in the minds of children. For example,
moving book icons to shelf icons simulates the manipulation of objects (i.e. books to
shelves) in the rea world. This direct manipulation of computer graphics serves three
fundamental purposes during learning: (a) it acts as a spatial metaphor; (b) it enables
problem entities to be concretised in the minds of individuas, and (c) it enhances the
understanding of abstract concepts.



Dataflow Representation

The dataflow representation facilitates conceptual and procedural understanding between
the concrete (iconic) and the abstract (calculator) representations. This is because the
dataflow is an intermediate representation which serves as a pedagogic link due to the
fact that it is neither wholly concrete nor wholly abstract. The intermediate dataflow
representation is designed to help a user make the translation from the problem entities
towards evaluation, and if necessary from evaluation back to the problem much easier,
by: (a) providing a conceptual bridge (or pedagogic link) between the concrete icons, and
the abstract symbols which will be used during calculator data entry; and (b) enabling
usersto carry out arithmetic manipulations prior to using the calculator for evaluations.

Calculator Representation

This is the most abstract of the three representations, and enables the formal system of
mathematics notation to be depicted using a calculator. The calculator may be used either
in arithmetic (four function) or scientific (algebraic) format. The calculator syntax can be
compared concurrently with the equivalent dataflow and iconic representations to
facilitate the understanding of calculation procedures. In addition, the behaviour of the
calculator in terms of calculation sequence and answers to individual calculation steps, in
either the arithmetic or scientific mode, is displayed and recorded next to the calculator.
Users may then return to particular calculation steps to scrutinise possible sources of
confusion with a cal culation sequence.

The design of a prototype system (Entities, Notation, Calculator - ENCAL) is the current
main focus of the research.
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