
Focal Structures in Prolog

Pablo Romero

School of Cognitive and Computing Sciences
Sussex University, U.K.

email: juanr@cogs.susx.ac.uk *

Abstract

Several studies have suggested that the mental structures of programmers of procedural
languages have a close relationship ·with a model of structural knowledge known as Programming
Plans. However, it is not clear that this is the case for Prolog, specially because this language has
important differences when compared to procedural languages. It does not have obvious syntactic
cues to mark blocks of code (begin/end, repeat/until, etc). Also, its powerful primitives (unification
and backtracking) and the extensive use of recursion might influence the way programmers
comprehend Prolog code in a significant way.

This paper reports an experiment that tries to characterise the nature of the mental models that
programmers build when comprehending Prolog code by finding out which of several structural
models, Programming Plans among them, are most relevant for the case of this programming
language. The results suggest that Prolog Schemas, a construct related to data structure
relationships, is of central importance to Prolog programmers. This result contrasts with those
obtained for procedural languages, where Programming Plans, a concept related to functional
information, seems to be the dominant model.

Keywords: psychology of programming, program comprehension, Prolog, Prolog Schemas.

1 Introduction

Program comprehension is a skill that is central to programming, so having a clear picture of
comprehension as a cognitive process is a prerequisite to building models of programming tasks such as
debugging, modification, reuse, etc. Yet comprehension has been studied mainly for languages belonging
to the structured programming paradigm.

Studying programming languages very different from the structured paradigm can offer interesting ways
to test the findings of the area. The Programming Plan concept has been the dominant model used to
represent the structural knowledge comprised in computer programs (Detienne, 1990). It has been
suggested that this model has a close relationship to the mental models programmers build when they
perform program comprehension. However, these claims have yet to be tested for programming
paradigms other than the structured one. A programming language significantly different from this main
trend is Prolog. Prolog is in a class of its own because of its declarative nature and its powerful
primitives.

The nature and characteristics of the mental models built during comprehension for the case of Prolog
are not clear. Several studies have tried, without much success, to find evidence of a relationship
between the Programming Plans idea and the mental models of Prolog programmers (Bellamy &

•supported by a grant from the Mexican Council for Science and Technology, CONACYT

1

Goal: find an occurrence of ?x
CODE

Plan: ?found := false
loop through category of ?x
if ?x then
?found := true

:= ?x

PLAN TERMS
initialise to not found

set it to true
use it

Figure 1: Plan description
From Gilmore and Green (1988)

Gilmore, 1990; Ormerod & Ball, 1993). The experiment described in this paper tries to characterise
certain aspects of these mental models by looking at several structural models proposed for the case of
Prolog (Programming Plans among them).

This document is divided into three sections. The next section gives a brief account of program
comprehension studies, the following part describes the experiment and the final section analyses its
results and compares them to those reported for other programming languages.

2 Program comprehension

Program comprehension is a complex cognitive process that involves the acknowledgement and
understanding of several elements. First of all, the result of this process is a mental model that the
programmer builds of the program she has studied. The qualities of this mental model vary according to
several factors, among them the programmer's skill level, the size of the program, the task in hand, etc.

In order to understand the sources of knowledge that programmers use to build these comprehension
mental models, several structural models of this programming knowledge have been proposed. One of
the most successful of such models is the idea of Programming Plans.

These models propose specific structures that are said to be a good approximation of the internal
knowledge structures that enable programmers to organise programs in a particular way. This structural
organisation sometimes highlights a specific aspect of the code. Pennington (1987) identified structural
models with the term Programming Knowledge and the code aspects with the notion of Text
Abstractions.

2.1 The comprehension process

One of the earliest theories of program comprehension was proposed by Brooks (1983). Brooks proposed
a theoretical framework to understand behavioural differences in program comprehension. He regards
comprehension as a process of domain reconstruction. This reconstruction involves establishing
mappings from the problem domain to the program domain via some other intermediate domains. This
process of establishing mappings consists of generating and refining hypotheses about the executing
program and its relation to other domains. Hypothesis refinement is performed in a top-down fashion.
This process begins with a primary, top-level hypothesis which is decomposed into several subsidiary,
more specific hypotheses. The generation of hypotheses is performed by retrieving structural units from
the programmers knowledge. These structural knowledge units are used to generate more hypotheses or
are matched against the program's code. As a result of this matching process, the code is organised into
meaningful chunks or units. These chunks can be considered as the external analogues of the

2

p(X):
g(X,Y),
p(Y).

Figure 2: The before technique

From Bowles and Brna (1993)

length ([],L,L).
length([HIT],LO,L):-

Ll is LO+l,
length(T,Ll,L).

Figure 3: An occurrence of the before
technique

From Bowles and Brna (1993)

programmer's structural knowledge. According to Brooks, in order to perform this organisation of the
program into meaningful chunks, programmers look for specific patterns of code which can confirm the
proposed hypothesis. These patterns of code are known as key segments of the code's meaningful chunks.

The next section describes several models proposed to explain the nature and characteristics of the
programmers' internal structural knowledge used in the comprehension process.

2.2 Structural models

A distinction has to be made between a structural model and the organisation of a specific program
according to the application of a structural model. A structural model is a construct that is used to
explain some aspects of the programming knowledge possessed by programmers, particularly by
experienced programmers. Some segments of the program code are more relevant than others for a
specific structural model. Therefore, these segments of code can be considered as specific instances of
their associated structural model. I will refer to these segments of code as the structural model's
instances.

Several studies have proposed that a concept known as 'Programming Plans' (Pennington, 1987; Gilmore
& Green, 1988; Davies, 1990) can be used to explain some aspects of the programmers' structural
knowledge. These studies suggest that there is a strong link between the mental model that a
programmer builds and an organisation of the code according to a Plan-like structure. Plans are
proposed as the external analogue of the programmers' internal structural knowledge that is used to
organise the program as a hierarchy of meaningful units. These units are considered as frames that
comprise stereotypical programming procedures and whose slots can be filled with variables related to
the specific problem being solved. In this way, Plans can be seen as Data Structures that represent
generic concepts stored in memory. Figure 1 gives an example of a plan instance.

Studies of Programming Plans have considered mainly procedural languages. Some studies have tried,
without much success, to find evidence of a relationship between Plans and Prolog programmers' mental
models (Bellamy & Gilmore, 1990; Ormerod & Ball, 1993).

There are alternative structural models for Prolog. Brna, Bundy, Todd, Eisenstadt, Looi, and Pain
(1991) and Bowles and Brna (1993) propose that Prolog programmers' structural knowledge is related to
'Prolog Techniques'. This structural model is similar to Plans, but it comprises knowledge about how to
perform specific Prolog operations. An instance of a basic programming technique is given in figure 2.
This technique's instance is called the before technique because the value of Y is constructed in the
subgoal g and then sent to the recursive call. Figure 3 illustrates an occurrence of this instance in the
predicate length/:'].

Another structural model for Prolog is 'Prolog Schemas'. Gegg-Harrison (1991) proposes this structural

3

schema_C([EIT],E,<< &1 >>).
schema_C([HIT],E,<< &2 >>:

<E\=H>,
<pre_pred(<< &3 >>,H,<< &4 >>)>,
schema_C(T,E,<< &5 >>),
<posLpred(<< &6 >>,H,<< &7 >>)>,

Figure 4: An example of a simple Prolog schema

From Gegg-Harrison (1991)

model and describes a set of common Prolog Schema instances for list processing. A specific example
from this set is given in figure 4. In this example, < < &n > > denotes any number of Prolog arguments,
and clauses surrounded by <> are optional. This example deals with the task of processing a list until
the first occurrence of an element is found. The base case ensures that E, the element that is being
searched for, is found. The second clause optionally checks that the list element being processed is not
the one which is being looked for, performs an optional process, makes a recursive call trying to find the
element in the tail of the list and calls a second optional process. This schema instance is very similar to
the example of a programming plan instance given in Figure 1.

Techniques and Schemas as structural models for Prolog were proposed for teaching purposes. Their
authors do not claim a relationship between these constructs and Prolog programmers mental models.
One of the purposes of this paper is to explore whether such a relationship exists.

There has been some research about the notion of key segments in Programming Plans (Wiedenbeck,
1986; Rist, 1989; Davies, 1994; Rist, 1995). This indicates that Plans are not monolithic structures but
that there are elements of Plans that are more relevant than others. These key elements represent the
central or focal action of a Plan. For example, if the programming task is to compute an average, the
key element of it will be the place where the division between the running total and the number of items
takes place (Rist, 1995). Wiedenbeck (1986) gives empirical evidence that supports this notion of key
elements. In her study, novices and experienced programmers tried to understand and memorise a short
Pascal program. After this study period, they were asked to recall as much as they could of the program
code. The results showed that experienced programmers, unlike novices, recalled key segments much
better than other parts of the code.

There has not been any research of this kind for the case of Prolog Techniques and Prolog Schemas yet,
but the definition of Schemas includes the notion of compulsory and optional elements inside these
structures. The compulsory elements could be considered as the key segments for Prolog Schemas.

2.3 Code aspects

A structural organisation sometimes highlights a specific aspect of the code. Code aspects refer to the
different ways in which a program can be interpreted, or in Pennington's words, to the different kinds of
information implicit in the program text. Some of these different kinds of information can be Function,
Data Structure, Data-flow and Control-flow. Function refers to what the program does, Data Structure
to the programming language objects that are used in order to implement a solution to the programming
problem. Data-flow refers to how these objects are related in the program and Control-flow to the
sequence of actions that will occur when the program is executed (Pennington, 1987).

Programming Plans, and specially their key elements, seem to be related to functional information. It

4

seems clear that in the previous example about the Plan to compute an average, the place where the
running total is divided between the number of items is related to what the Plan is meant to do.

Prolog Techniques are concerned with how instantiations of Prolog objects are linked through the
program. This characteristic seems to link this model to Data-flow information, while the stress on well
known Data Structures and the operations performed over them make Schemas related to Data
Structure information.

3 Which structural model?

The experiment described here was concerned with exploring the nature of the mental model Prolog
programmers build. It investigated this by finding out which structural model is most relevant for them.
The comparisons were made taking into account the key elements of these structural models.

To measure the relevance of a specific structural model, the experiment considered a recall task similar
to the one in Wiedenbeck (1986). Subjects were asked to understand and memorise a small Prolog
program, and then recall what they could of it. This code was analysed in terms of the different models
of structural knowledge of Prolog and their associated key segments. The relative success of recollection
of the different key segments was compared against the relative success of recollection of the rest of the
program to establish the relevance of these structural knowledge models for Prolog programmers. The
main difference with Wiedenbeck's study is that the present experiment compared several structural
models for program comprehension, while Wiedenbeck's only took into account Programming Plans.
The structural models taken into account in this experiment are Plans, Prolog Techniques, Prolog
Schemas and Recursion Points. This last model highlights Control-flow information, and is concerned
with how recursion is handled in Prolog.

Additionally, and to confirm differences due to experience, there was a function identification task in the
experiment. Besides recalling the code, the programmer subjects were asked to describe the program's
function. The accuracy of these descriptions was compared for novice and experienced subjects to
confirm whether there were any differences between these two groups in terms of their program
comprehension skills.

Note that this experiment was concerned with small programs and with short comprehension sessions.
In professional, and some times even in academic environments program comprehension is a task that is
normally performed over large programs and in extended periods of time. The average length of the
experimental programs was 24 lines and the amount of time that subjects were allowed to study them
was 3 minutes.

3.1 Aims

The aim of this experiment was to find out for which model of structural knowledge there is a difference
in accuracy of recall between key and non-key segments. This finding might suggest which structural
model seems to be more relevant to Prolog programmers and therefore will provide information about
the nature and characteristics of Prolog mental models.

3.2 Design

This experiment considered one independent variable, level of programming skill (experienced
programmers, novice and non-programmer) and nine dependent variables, the success of recollection for
the key segments and the non-key segments of four different structure models of comprehension (Plans,

5

Prolog Techniques, Prolog Schemas and Recursion Points) and the accuracy of Function identification by
the programmer subjects.

3.3 Subjects, procedure and materials

There were 30 subjects: 10 experienced programmers and 10 novice Prolog programmers and a group of
10 non-programmers. The group of experienced programmers had at least three years of Prolog
experience and were either university lecturers or research fellows. The group of novices had taken a
three month introductory course in Prolog and were either undergraduates or masters students. The
group of non-programmers did not know anything about computer programming. The novice population
was :inexperienced in Prolog, but not in programming in general. Most of them knew three or more
programming languages apart from Prolog. Also, they often had more recent contact with Prolog than
some of the experienced programmers.

This experiment used a control group, the group of non-programmers, because recollection experiments
might confound pure memorisation and real comprehension of the code.

The novice and experienced programmer subjects of this experiment performed three similar sessions. In
each session, they were given a hardcopy of the experimental program and were asked to study and
memorise it. This study period lasted 3 minutes. After this, the subjects were given 5 minutes to recall
and write down what they could remember of the program. Finally, these subjects used another period
of 3 minutes to write down a short explanation of what, according to them, the program did.

The control group of non-programmers followed a slightly different procedure. They were not instructed
to comprehend but only to memorise the programs. Also, they were not asked to write down an
explanation of what the programs did.

In each case the order of presentation of the experimental programs was randomised.

There were three experimental programs. These were, a Prolog version of the 'rainfall' program (Davies,
1994), of the bubble sort and a program that performs a binary to decimal conversion. Figure 5 shows
the Prolog version of the 'rainfall' program.

These programs were analysed in terms of key segments of Plans, of Prolog Schemas and of Prolog
Techniques according to the definitions by Rist (1995), Gegg-Harrison (1991) and Bowles and Brna
(1993) respectively. In the case of Prolog Schemas, the key segments were considered as the compulsory
elements of Gegg-Harrison's definition. The choice of key segments for the case of Prolog Techniques
was not obvious, so the experiment considered the whole occurrences of the :instances of Techniques. The
programs were also analysed in terms of their Recursion Points, and the key segments this time were
considered as the lines where recursion was invoked or where it stopped. Figure 5 shows the occurrences
of the key segments for the case of Plans and Prolog Schemas in the 'rainfall' program.

Finally, as the experimental task included the :identification of the programs' functionality, 'disguised'
versions of these programs were presented to the subjects. The criteria to 'disguise' these programs is
similar to the one used by Wiedenbeck (1986).

3.4 Results

The data of this experiment was analysed in two parts. First, the performance of the programmer
groups was compared in terms of the accuracy of the :identification of the programs' functions. In the
main part of the experimental analysis, the percentage of recollection of key and non-key segments was
compared for each one of the four structural models considered.

6

/* average(-,-) * /

average(Average,Max) :
read__rain(RainList),
totaLrain (RainList,O,Sum,O, Tota!Days,O,Max),
Average is Sum / TotalDays.

read...rain(RainList):
write('enter rainfall'),
read(Rain),
next_ value(Rain,RainList).

next_ value(99999, [)).

next_value(Rain,[RainlRest]):
Rain =\= 99999,
write('enter rainfall'),
read(NewRain),
next_ value(NewRain,Rest).

totaLrain([] ,Sum,Sum,Tota!Days, Tota!Days,Ma..-x,Max).

totaLrain([Rain I Rest] ,InSum,OutSum,InTota!Days,OutTotalDays,InMax,OutMa..-x) :
ma..-x(InMa..-x,Rain,TempMa..-x),
Temp TotalDays is In TotalDays + 1,
TempSum is InSum + Rain,
totaLrain(Rest,TempSum,OutSum,TempTota!Days,OutTota!Days,TempMa..-x,OutMax).

max(Ma..-x,Min,Ma..-x) :
Ma..-x >= Min.

max(Min,Ma..-x,Ma..-x) :
Min< Ma..-x.

Figure 5: Key segment occurrences for Schemas (in bold) and for Plans (in italic) for a version of the
'rainfall' program.

7

Kind ol Segment

Key

"=-- - - - -�- - - - -�.
Non-key

NoN_pR

N0ylce
ExpER1 OGRAMM

ENcEo
ERs

Figure 6: Percentage of recollection for key
segments of Schemas and lines outside them

Figure 7: Percentage of recollection for key
segments of Plans and lines outside them

In the first case, the programmers' statements were considered as correct only if they mentioned the
major functions performed by the programs. It was not surprising that the experienced programmer
group was more successful in identifying the function of the programs. Their percentage of correct
identification was 70%, while for the novices it was 23.3%. A Chi-square test showed that this difference
was significant (F(l) = 15.15, p << .01).

As mentioned earlier, this first part of the analysis was performed to confirm that there were differences
in the degree of understanding of experienced and novice programmers.

The hand written record of the subject's recollection of the code was the raw data for the main part of
the experimental analysis. This analysis compared the percentages of recollection of the occurrences of
the different kinds of key segments versus the percentages of recollection of the program lines that did
not contain occurrences of these key segments. For example, it can be seen in figure 5 that the lines 1 to
8, 11, 12, 13, 17, 18, 19 and 21 to 24 do not share elements with the instances of Schemas. Therefore the
analysis for Schemas compared the percentage of recollection of these lines (and similar lines in the other
programs) with the percentage of recollection of key segments of Schemas. Figures 6, 7, 8 and 9
illustrate the results of these comparisons for the four kinds of structures.

The statistical analysis for this part of the study focused on the rate of change across the subject groups
of the difference between the recollection of key segments of structures and lines outside them for each
one of the considered structures. For example, it can be seen that for the case of Schemas (figure 6) this
difference is negative for non-programmers and for novices, and positive for experienced programmers. It
is therefore likely that the rate of change of this difference (interaction effect) is significant. So the
statistical analysis for each structure considered one independent variable (level of skill), and one
dependent variable (Key-Non-key segment percentage of recollection difference). For each one of the four
comparisons, a one-way ANOVA analysis was run after verifying that its assumptions had been met.
The only case for which this rate of change among groups was significant was for Schemas (F(2,29) =
8.57, p < .05).

This analysis only considered the interaction effects because, as it can be seen in figures 6, 7, 8 and 9,
Non-key segments were in general easier to remember than Key segments. This effect had to do with the
fact that the different kinds of key segments had different average sizes, and some of them were
considerably larger than the average line of code. While some kinds of key segments, for example,
typically had short base cases as instances, some others had instances that comprised several long lines.
Another factor that contributed to this disparity in recollection was that the location of some key
segments in the code was not balanced (some of them tended to appear at the bottom of the program).

Although a direct comparison across key segments of the different structures showed that again Schemas
was the most relevant structure for programmers, this comparison was not considered as statistically

8

Figure 8: Percentage of recollection for key
segments of Techniques and lines outside them

Kind of Segment

Koy

"�----------� Non-key

NoN_PRoGR
Nov1cE ExpERIE

N
c

AMMERs
Eo

Figure 9: Percentage of recollection for key
segments of Recursion Points and lines outside
them

reliable because some of these key segments were easier to remember than others. The causes of this
effect are basically the same that made Non-key segments easier to remember than Key segments.

3.5 Discussion

The results show that Schemas, stereotypical patterns of programming procedures related to Data
Structure aspects, seem to be important for Prolog program comprehension. When comparing the
difference between the percentage of recollection of key and non-key segments for each structure,
Schemas were the only case for which the difference between groups was significant. It seems that these
results show that Schemas become more important for the comprehension process as Prolog
programmers develop higher levels of skill.

Following Brooks's hypothesis, it could be said that Schemas seem to be the key elements of structural
knowledge that Prolog programmers use to guide their comprehension process. This contrasts with
procedural languages, where Plans and their key elements seem to be important (Wiedenbeck, 1986;
Davies, 1994).

The finding that information related to Data Structures is important for the comprehension process is in
agreement with the results of Bergantz and Hassell (1991). They found that 'data structure relationships
play a dominant role at the beginning of the comprehension process' (p. 323) for the case of Prolog.
Although the period they considered as the beginning of the comprehension process was approximately
three times of what the present experiment took into account (ten minutes as opposed to three minutes)
and the experimental task was different (program modification), the basic finding is quite similar.

It is interesting to compare these results with those obtained by Wiedenbeck (1986) because the
experiment reported in this paper is similar to hers. She found that key segments of Plans were relevant
for the case of Pascal. Figure 7 can be used to make a closer comparison. With a graph similar to this
one, Wiedenbeck shows how this type of functional information is very important only for experienced
programmers. Her results were not replicated in the present study. It could be argued that the
experimental programs were different, but the results when considering only the bubble sort program,
which is similar to the sort program Wiedenbeck uses, are basically the same to those obtained when
taking into account all three programs. So it seems that the key difference is the programming language
considered, although taking a closer look at this language's properties and at the experiment's
characteristics might offer a more precise explanation for this difference in the results.

It seems reasonable to think that in absence of any other information (neither internal nor external
documentation, and with cryptic variable and procedure names) patterns of typical operations

9

performed over familiar data structures can be very important to start making sense of the code. This
lack of documentation and meaningful variable names seems to be an important issue for Prolog.
Green, Bellamy, and Parker (1987) mention that Prolog, due to its poor 'role-expressiveness', is specially
sensitive to naming style ('Salient variable names are almost the only method of making a Prolog
program "role-expressive" and thereby revealing the plan structures', p. 142). An obvious question is
how naming style influences the program comprehension mental model, or in other words, which aspect
of the program (Data-flow, Control-flow, Data Structure or Function) would be relevant for
programmers when meaningful variable names are considered.

4 Conclusions

This paper reports an experiment that explored which one of four programming knowledge structures
seems to be important for Prolog programmers at the early stages of the program comprehension
process. These structures are related to Functional, Data-flow, Data Structure and Control-flow
information. It seems that information related to data structures is important in this case. The
experiment involved a program comprehension and memorisation task followed by the recollection of the
program by three groups of subjects: experienced programmers, novices and non-programmers. There
were significant differences when comparing the performance of these three groups only for the case of
Schemas, a structure that emphasises Data Structure relationships. These results suggest that Data
Structure relations are important for the initial comprehension process of Prolog programmers.

The results of this experiment suggest that the mental model that Prolog programmers build when
doing program comprehension is different from the one that programmers of procedural languages
construct. The former seems to be influenced by Data Structure relations while the latter, according
to Wiedenbeck (1986) and Davies (1994), is related to Functional information. This conclusion needs to
be confirmed and its importance needs to be related to a more common programming task such as
debugging or program modification.

Acknowledgments

The author would like to express his thanks to Ben du Boulay of COGS, Sussex University and to
Thomas Green of CBL, Leeds University for their help in the preparation of this paper. Thanks also to
all the subjects for their time and patience.

References

Bellamy, R .. K. E., & Gilmore, D .. J. (1990). Programming plans: Internal and external structures. In
Gilhooly, K., Keane, M. T. G., Logie, R.. H., & Erdos, G. (Eds.), Lines of thinking: Reflections on
the psychology of thought, Vol 1. Wiley, London, U.K.

Bergantz, D., & Hassell, .J. (1991). Information relationships in PROLOG programs: how do
programmers comprehend functionality? International Journal of Man-Machine Studies, 35,
313-328.

Bowles, A., & Brna, P. (1993). Programming plans and programming techniques. In Brna, P., Ohlsson,
S., & Pain, H. (Eds.), World c onference on artificial intel ligence in education, pp. 378-385
Edinburgh, UK. Association for the advancement of computing in education.

10

Brna, P., Bundy, A., Todd, T., Eisenstadt, M., Looi, C. K., & Pain, H. (1991). Prolog programming
techniques. Instructional Science, 20(2), 111-133.

Brooks, R. (1983). Towards a theory of the comprehension of computer programs. International Journal
of Man-Machine Studies, 18, 543-554.

Davies, S. P. (1990). The nature and development of programming plans. International Journal of
Man-Machine Studies, 32, 461-481.

Davies, S. P. (1994). Knowledge restructuring and the acquisition of programming expertise.
International Journal of Human Computer Studies, 40, 703-726.

Detienne, F. (1990). Expert programming knowledge: a schema-based approach. In Hoc, .T., Green, T.
R. G., Samurc;ay, R., & Gilmore, D .. T. (Eds.), Psychology of Programming. Academic Press, Ltd.,
London, U.K.

Gegg-Harrison, T. S. (1991). Learning Prolog in a schema-based environment. Instructional Science, 20,
173-192.

Gilmore, D .. T., & Green, T. R. G. (1988). Programming plans and programming expertise. Quarterly
Journal of Experimental Psychology, 40A, 423-442.

Green, T. R. G., Bellamy, R. K. E., & Parker, .T. M. (1987). Parsing and Gnisrap; a model of device use.
In Olson, G. M., Sheppard, S., & Soloway, E. (Eds.), Empirical Studies of programmers, second
workshop, pp. 132-146 Norwood,N.J. Ablex.

Ormerod, T. C., & Ball, L .. T. (1993). Does design strategy or programming knowledge determine shift of
focus in expert Prolog programming? In Empirical Studies of programmers, fifth workshop, pp.
162-186 Norwood,N.T. Ablex.

Pennington, N. (1987). Stimulus structures and mental representations in expert comprehension of
computer programs. Cognitive Psychology, 19, 295-341.

Rlst, R. S. (1989). Schema creation in programming. Cognitive Science, 13, 389-414.

Rist, R. S. (1995). Program structure and design. Cognitive Science, 19, 507-562.

Wiedenbeck, S. (1986). Processes in computer program comprehension. In Soloway, E., & Iyengar, S.
(Eds.), Empirical Studies of programmers, first workshop, pp. 48-57 Norwood,N.1. Ablex.

11

