
In A.F. Blackwell & E. Bilotta (Eds). Proc. PPIG 12 Pages 99-122

12th Workshop of the Psychology of Programming Interest Group, Cozenza Italy, April 2000 www.ppig.org

Cognitive Dimensions of Use Cases -
feedback from a student questionnaire

Karl Cox

Empirical Software Engineering Research Group
School of Design, Engineering and Computing

Bournemouth University
coxk@bournemouth.ac.uk

Keywords: POP-II.B. Use Cases; POP-II.B. Scenario-Based Design; POP-III.C. All Cognitive Dimensions;
POP-V.B. Questionnaire Analysis

Abstract

The Unified Modelling Language (UML) has become the standard object-oriented design language in
software engineering. An important part of the UML is the use-case notation. This paper reports on
results of feedback from a student questionnaire about the use-case diagram notation and use-case
descriptions. The questions map to Green’s Cognitive Dimensions in an attempt to help understand
the strengths and weaknesses of use-cases from the perspective of those actually applying the
notation. Feedback from the questionnaire suggests that the notation causes confusion especially
concerning the use-case relationships. However, the feedback also shows that the notation is
relatively easy to change when moving from diagram to description and back again.

1. Introduction

The use-case notation became popular in software engineering with the publication of Ivar Jacobson’s
book (Jacobson et al 1992). Since then the most popular software engineering methods have added
the use-case notation to their repertoire (e.g. Booch 1994, Rumbaugh 1995). The Unified Modelling
Language version 1.1 (Rational 1997), adopted and adapted Jacobson’s use-case notation. A newer
version of the UML (and use-case notation) - version 1.3 - has been released (Booch et al 1999). Use
cases are intended to help the developer elicit and analyse all the functional requirements for a
system. The notation is simple and has the advantage that both developers and clients should be able
to understand it, though semantic weaknesses have been suggested (Cox & Phalp 1999).

There are a large number of different scenario approaches from many fields, such as usability
engineering, HCI, participatory design as well as software engineering; for examples see (Carroll
1995). It is necessary to describe why and how scenarios are useful to enable an evaluation of them to
occur (Antón & Potts 1999). Recently, classification frameworks have been proposed to describe
scenario approaches (Filipiddou 1998, Rolland et al 1998, Antón & Potts 1999). However, these
frameworks are perhaps overly complex and are certainly time consuming to complete. The Cognitive
Dimensions framework (Green 1989, Green & Petre 1996) provides a simpler and quicker means of
describing scenarios than the three scenario classification frameworks referenced. The Cognitive
Dimensions framework classifies visual programming languages and design notations from the
perspective of the practitioner actually using the notation. This makes classification more relevant to
the practitioner in that they know and understand the strengths and weaknesses of the particular
notation they are using. The purpose of the dimensions is expressed by Green as: "The dimensions
provide a language in which to compare the form and structure (rather than the content) of notations,"
(Green 1989). To help understand the use-case notation and attempt to identify its strengths and
weaknesses, a questionnaire was issued to students containing questions that map to the Cognitive
Dimensions. 14 students were asked to complete a questionnaire on use cases (diagram and
description) as part of an assignment. The complete questionnaire can be viewed in Appendix A. The
complete results data set can be viewed in Appendix B.

Cox ii

PPIG 2000, Cozenza Italy www.ppig.org

The paper takes the following format: Section 2 describes the use-case notation. Section 3 describes
Green’s cognitive dimensions. Section 4 discusses the questionnaire and issues in this study. Section
5 describes the results from the questionnaire. Section 6 discusses some interdependencies of
cognitive dimensions for the use-case notation. Section 7 draws some conclusions and discusses
future work.

2. Use Cases and The Use-Case Notation

In simple terms, the use case is intended to aid the requirements engineer in discovering and
describing all of the functional requirements for the system they are developing. The use-case
diagram notation is relatively simple, thus making it easy for clients and users to understand. Readers
are referred to Booch et al (1999) for a fuller explanation.

Actors, drawn as stickmen, (see figure 1) are considered external to the system being designed.
Actors can be other systems and machines as well as human users. The system is bounded to separate
what is outside the system from what is inside. The actor begins a use case, interacts with the system
during the use case and receives some kind of meaningful response in return as the use case ends.
There are normally several use cases and several actors in one use-case diagram.

Relationships between use cases can be added to give a "clearer" understanding of connections
among the functions in a system. UML version 1.3 has three types of relationship: <<include>>,
<<extend>> and generalisation. The relationships for version 1.3 are shown in figures 2, 3, 4 and 5
(all actors and system boundaries are excluded from figures 3, 4 and 5 for simplification).

Figure 1: example use-case diagram

There is an inheritance mechanism between actors. This allows an actor to inherit all the functionality
of another actor, that is, instantiate use cases, without having to draw the communication association
lines another time. Figure 2 shows the Store Manager actor inherits the functionality of the Checkout
Operator, thus it is not necessary to draw a line from the Store Manager to the Purchase Products use
case.

Figure 3 shows that the use case Track Order makes use of the Validate User use case. Thus, when an
actor wishes to Track an Order, they must also ‘Validate the User’ as part of that function.

the system

Access Records
Academic User

actor

use case
bi-directional
communication association

system boundary

Cox iii

PPIG 2000, Cozenza Italy www.ppig.org

Figure 2: inheritance structure in actors

Figure 3: the <<include>> relationship;
taken from (Booch et al 1999)

Figure 4 shows the normal or base use-
case Sign Insurance Policy being
extended by the exceptional use case Sign
Car Purchase Contract. These
<<extend>> use cases are exceptions to

the normal behaviour of the system or
alternative courses through a system that might be used, for example, five times out of a hundred.

Figure 5 shows both <<include>> and generalisation relationships. The generalisation relationships
to the use cases Check Password and Retinal Scan are, in fact, specialisations of the Validate User
use case. The generalisation relationship imposes a kind of hierarchy of use cases, like an inheritance
structure in object-orientation.

Figure 4: the <<extend>> relationship; adapted
from (Eriksson & Penker 1998)

Figure 5: the generalisation
relationship; taken from (Booch

et al 1999)

3. Cognitive dimensions

The 13 cognitive dimensions of
notations listed by Green and

Petre are shown below. For "programmer" read "analyst" or "designer":

"Abstraction gradient: What are the minimum and maximum levels of abstraction? Can fragments be
encapsulated?

Closeness of mapping: What ’programming games’ need to be learned?

Consistency: When some of the language has been learnt, how much of the rest can be inferred?

Diffuseness: How many symbols or graphic entities are required to express a meaning?

Error-proneness: Does the design of the notation induce ’careless mistakes’?

Hard mental operations: Are there places where the user needs to resort to fingers or pencilled
annotation to keep track of what’s happening?

Hidden dependencies: Is every dependency overtly indicated in both directions? Is the indication
perceptual or only symbolic?

Premature commitment: Do programmers have to make decisions before they have the information
they need?

Progress evaluation: Can a partially-complete program be executed to obtain feedback on ’How am I
doing’?

Store Manager

Checkout Operator
Purchase Products

Track Order

Validate User

<<include>>

<<extend>>

Sign Car Purchase Contract

Sign Insurance Contract

<<include>>

Track Order

Validate User

Check Password

Retinal Scan

generalisation

Cox iv

PPIG 2000, Cozenza Italy www.ppig.org

Role-expressiveness: Can the reader see how each component of a program relates to the whole?

Secondary notation: Can programmers use layout, colour, other cues to convey extra meaning, above
and beyond the ’official’ semantics of the language?

Viscosity: How much effort is required to make a single change?

Visibility: Is every part of the code simultaneously visible (assuming a large enough display), or is it
at least possible to juxtapose any two parts side-by-side at will? If the code is dispersed, is it at least
possible to know in what order to read it?" (Green & Petre 1996).

The questionnaire does not cover all the dimensions because some are not considered applicable to
the use case in this study. The dimensions that are considered are consistency, error-proneness, role-
expressiveness, viscosity, visibility and juxtaposability, hard mental operations and hidden
dependencies (see sections 5 and 6). The secondary notation dimension was not considered because
the UML allows for extensions to the notation such as adorning "notes" to the diagram. In this
particular study it was not possible to get any progressive evaluation because the study was part of a
student assignment. The students did not go on to design and build the checkout system so it was
impossible to judge premature commitment. There are not many symbols to the notation: two types of
arrows (linking use-case relationships and inheritance in actors), ellipses (the use case), guillemets
<<>> (to surround text e.g. <<extend>>), lines (communication association - between actors and use
cases), box (’system boundary’ which is optional) and stick men (actors) so diffuseness is not a
problem. We did not consider the abstraction gradient dimension in this study because there was only
one (small) system under consideration. It can be supposed that, at a textual level of abstraction, the
use-case descriptions could quite reasonably describe the functionality of how the final system is
going to work from a user perspective and so there is a (abstract) closeness of mapping. In terms of
how the final system visually looks, this is not the case.

4. The questionnaire and the students’ task

The questionnaire consists of 9 questions, with many of the questions composed of several parts. The
first 2 questions are general information questions. Questions 3-9 concern themselves with cognitive
dimensions. Question 1 (asking about length of use-case descriptions) can be used as a check to
question 7c - there are some discrepancies between the two sets of answers (see Appendix B).

The 14 students who completed the questionnaire are post-graduates studying on a MSc conversion
course in Software Engineering at Bournemouth University. The majority of the students have no
previous software engineering experience. There are some anomalies to this in that one student has
15 years programming experience and another has 6 years systems analysis experience. However,
none of the students had (noticeable) knowledge of use cases or the UML prior to starting the course.
The students received a half-day lecture on use cases, which included discussion of abstraction levels,
the use-case description as well as a close examination of the UML’s use-case notation version 1.3.
The students drew example diagrams and wrote example descriptions in this session. As part of a
follow-up experiment the students wrote a use-case description, implementing different sets of
guidelines to help write the descriptions (Cox & Phalp 2000). The students then had, as part of a
continuing assignment, to develop the experiment use-case diagram further to describe the complete
system, as well as write descriptions for each use case (the system was a checkout machine for a
supermarket). The students had four weeks to complete their assignment (as well as 3 other
assignments). They could use any references or tools they considered appropriate. As part of the
assignment, the students also had to complete the questionnaire discussed in this paper. There was a
nominal reward of 5 marks for completed and returned questionnaires.

An obvious weakness of this study is that there are only 14 participants to get feedback from. Also,
because the participants are students it is not valid to apply any generalisms across the software
engineering community as a whole.

Cox v

PPIG 2000, Cozenza Italy www.ppig.org

5. Feedback from the questionnaire

The complete questionnaire can be seen in Appendix A. Questions 1 and 2 are not related to
cognitive dimensions so are not discussed here.

5.1 Consistency

Question 3 addresses the Consistency dimension; that is, how much of the notation can be inferred
when a certain amount has been learned?

Question 3(a): From an initial understanding of the use-case notation, how much of the rest of the
notation can be inferred and used correctly? Table 1 shows the responses from the questionnaire.

All 0 out of 14

Most 4 out of 14

About half 8 out of 14

Some 2 out of 14

None 0 out of 14

Table 1: Answers for question 3(a)

None of the students thought that all of the rest of the notation could be inferred from an
understanding of some of it. The majority (57%) responded that about half of the notation could be
inferred. It has been suggested that the notation can be counter-intuitive with respect to the
relationships and directional arrows (Cox & Phalp 1999).

Figure 6: <<extend>>

Figure 6 shows why the
<<extend>> relationship is
counter-intuitive. As the

Extending use case is pointing to the Base use case, we might be forgiven for thinking that the
Extending use case has initial control and that the Base is dependent upon the Extending use case.
Once control is passed to the Base use case we might still be forgiven for thinking that the Actor is
then dependent upon the Base use case. Reality is the reverse. In fact, the Base use case has control
and is interrupted by the <<extend>> use case if the condition is right for the base use case to be
extended. We would imagine the arrowhead pointing towards the extending use case, not the Base.
The UML is clearly counter-intuitive in this example.

The <<include>> relationship is more intuitive (see figure 7) in that the Base Use Case "points" to
the use case it wishes to include.

5.2 Error-proneness

Questions 3(b)-3(d) relate to the Error-proneness dimension of the notation: they ask about specific
parts of the notation that cause confusion. 3(b) asks about the (probably) most confusing part of the
notation, the difference between <<include>> and <<extend>>. Questions 3(c) and 3(d) concern
themselves with generalisation and <<extend>>. The results of the questionnaire are shown in table
2.

<<extend>>

Extending use case
End User

Base Use Case

<<include>>

Included use case
End User

Base Use Case

Cox vi

PPIG 2000, Cozenza Italy www.ppig.org

Figure 7: <<include>>

Question 3(b): Did you find you had to rely on your interpretation (at least, in part) of the differences
between the <<include>> and the <<extend>> relationships?

Question 3(c): Did you find you had to rely on your interpretation (at least, in part) of how to use
generalisation in use cases?

Question 3(d): Did you find you had to rely on your interpretation (at least, in part) of the differences
between generalisation and <<extend>> in use cases?

Option 3(b) 3(c) 3(d)

Yes 8 out of 14 6 out of 14 6 out of 14

No 5 out of 14 2 out of 14 2 out of 14

N/A 1 out of 14 6 out of 14 6 out of 14

Table 2: answers for questions 3(b), 3(c) and 3(d)

57% of the participants had problems with the difference between <<include>> and <<extend>>.
This is not surprising considering the often confusing nature of these relationships (Jacobson 1994 -
here Jacobson discusses the <<uses>> relationship, the earlier version of <<include>>). It was not
necessary to implement the generalisation relationship in the assignment. This is probably why 43%
responded with "N/A" (not applicable) to questions 3(c) and 3(d). However, 43% also responded to
"Yes" for these questions; we assume this to mean that they considered using generalisation in their
assignment, though none of the students actually did use it.

Table 3 shows the percentage amount of interpretation thought necessary by participants who
answered "Yes" to questions 3(b)-3(d).

Scale 3(b) 3(c) 3(d)

100% your
interpretation

2 out of 8 2 out of 6 1 out of 6

75% your interpretation 2 out of 8 1 out of 6 1 out of 6

50% your interpretation 3 out of 8 1 out of 6 2 out of 6

25% your interpretation 1 out of 8 2 out of 6 1 out of 6

< 25% your
interpretation

0 out of 8 0 out of 6 1 out of 6

Table 3: percentage interpretation

Table 3 shows there is a fairly even split of percentage interpretation across all questions.

Question 3(e): Did you find that you tried to avoid these relationships because of the uncertainty of
their meaning?

Yes 6 out of 12

No 5 out of 12

N/A 1 out of 12

Table 4: number of participants trying to a avoid using use-case relationships

Two of the participants did not answer this question. There is some problem in the understanding of
the notation and this is highlighted by the fact that 6 participants tried to avoid using the use-case

Cox vii

PPIG 2000, Cozenza Italy www.ppig.org

relationships altogether. However, all the participants used at least one use-case relationship in their
assignment answers.

Question 4 also discusses the Error-Proneness dimension by questioning individual parts of the
notation. Table 5 shows how many participants had such difficulties. Table 6 shows how regularly
participants made mistakes with the notational parts.

Question 4(a): Was using the <<includes>> relationship difficult?

Question 4(b): Was using the <<extend>> relationship difficult?

Question 4(c): Was using the generalisation relationship difficult?

Option 4(a) 4(b) 4(c)

Yes 5 out of
14

5 out of
14

4 out of
14

No 4 out of
14

8 out of
14

3 out of
14

N/A 5 out of
14

1 out of
14

7 out of
14

Table 5: Number of participants finding parts of the notation difficult.

It is interesting that twice as many participants had no difficulty with the <<extend>> than the
<<include>> relationship. The <<extend>> is generally considered more difficult to use than the
<<include>> relationship. However, 36% of participants responded to "N/A" for the <<include>>
relationship, meaning that they did not use it.

Scale 4(a) 4(b) 4(c)

Always 0 out of 5 0 out of 4 1 out of 3

Often 0 out of 5 1 out of 4 1 out of 3

Usually 1 out of 5 1 out of 4 1 out of 3

Occasionally 4 out of 5 1 out of 4 0 out of 3

Rarely 0 out of 5 1 out of 4 0 out of 3

Table 6: rate of occurrence of mistakes made with the notational parts.

For 4(a) one "Yes" participant did not answer the second part but one "No" participant did. ("No" put
Occasionally).

For 4(b) two "Yes" participants did not complete the second part but one "No" did ("No" put Rarely).

For 4(c) one "Yes" participant did not complete the second part.

4 out of the 5 participants who answered "Yes" for question 4(a) only had occasional difficulties with
using the <<include>> relationship, suggesting it is relatively straightforward to use.

5.3 Role-Expressiveness

Question 5 considers the role-expressiveness dimension: where do individual parts of the notation fit
with other parts? Is this expressed in the notation? Table 7 shows the feedback from the
questionnaire.

Question 5(a): How easy was it to recognise and know where individual parts of the use-case diagram
fit within the whole diagram?

Cox viii

PPIG 2000, Cozenza Italy www.ppig.org

Question 5(b): How easy was it to recognise and know where individual parts of the use-case
description fit within the whole description?

Question 5(c): How easy was it to recognise and know where individual parts of the use-case diagram
fit in the description?

Question 5(d): How easy was it to recognise and know where individual parts of the use-case
description fit in the diagram?

Scale 5(a) 5(b) 5(c) 5(d)

Easy 8 out of
14

10 out of
14

11 out of
14

9 out of
14

Difficult 6 out of
14

4 out of 14 3 out of 14 4 out of
14

Impossibl
e

0 out of
14

0 out of 14 0 out of 14 1 out of
14

Don’t
know

0 out of
14

0 out of 14 0 out of 14 0 out of
14

Table 7: Role-expressiveness of the use-case notation

The feedback shows that the participants have more trouble recognising where parts of the diagram
fit than with the description (43% and 29% respectively). One participant thought it impossible to
know where parts of the description fit in the diagram. Use-case descriptions have titles that should
exactly match the diagram use case. It is therefore easy to know which use case is being described.
For individual events in the use case this is more difficult. If the event concerns a use-case
relationship such as <<include>> then it is possible to recognise where that event fits because the
relationship should be described in the diagram. However, if that event does not concern a
relationship then taken in isolation it is unlikely that the event can be placed in the diagram at all.

5.4 Viscosity

Question 6 concerns the ability to make changes in the diagram and description - the Viscosity
cognitive dimension. The questions specifically deal with changes from diagram to description and
from description to diagram. The participants were not asked about changes in the diagram alone or
the description alone because this is considered easy to do. Table 8 shows that 86% of the
participants found making a change from diagram to description easy. Going the other way was also
quite straightforward: 75% of the participants said this was easy.

Question 6(a): If you made a change in the diagram, how easy was it to move to the corresponding
part of the description and make that change there?

Question 6(b): If you made a change in the description, how easy was it to move to the corresponding
part of the diagram and make that change there?

Scale 6(a) 6(b)

Easy 12 out of 14 9 out of 14

Difficult 1 out of 14 2 out of 14

Impossible 0 out of 14 0 out of 14

Don’t know 1 out of 14 1 out of 14

Table 8: ease of making changes

Cox ix

PPIG 2000, Cozenza Italy www.ppig.org

5.5 Visibility and Juxtaposability

Question 7 considers the Visibility and Juxtaposabililty dimensions. Table 9 shows that the majority
of the participants state it is possible to see the diagram on one page, the description on one page and
both the diagram and description on the same page. The system in question that the students
described is quite small. As this case is entirely specific no generalisms should be made.

Question 7(a): Is it possible to view the diagram and descriptions side-by-side?

Question 7(b): Can you view the whole diagram on one screen/sheet of paper?

Question 7(c): Can you view an entire use-case description on one screen/sheet of paper?

Option 7(a) 7(b) 7(c)

Yes 11out of 14 13 out of
14

10 out of
14

No 2 out of 14 1 out of 14 4 out of 14

N/A 1 out of 14 0 out of 14 0 out of 14

Table 9: Visibility and Juxtaposability

5.6 Hard Mental Operations

Question 8 relates to the Hard Mental Operations dimension. 57% participants thought that linking
use cases together was either easy or simple. 36% participants thought it difficult, however (see Table
10).

Question 8: If several use cases are linked together, for example, by some <<extend>>, <<include>>
or generalisation relationships, how difficult is it to then comprehend?

Impossible 0 out of 14

Difficult 5 out of 14

Easy 5 out of 14

Simple 3 out of 14

N/A 1 out of 14

Table 10: Hard Mental Operations

5.7 Hidden Dependencies

Question 9 considers the Hidden Dependencies dimension. There is an approximate two thirds to one
third split for question 9(a) in favour of visibility in both directions in the diagram (64% to 29%).
There is also a similar two thirds to one third split for question 9(b) in favour of visibility in one
direction in the description (see Table 11).

Question 9(a): How visible are the dependencies in the diagram? (i.e. one part of the diagram
explicitly relies upon / is determined by / uses / requires another part of the diagram.)

Question 9(b): How visible are the dependencies in the description?

Options 9(a) 9(b)

Visible in both directions 9 out of 14 4 out of 13

Visible in one direction 4 out of 14 9 out of 13

Not visible 1 out of 14 0 out of 13

Table 11: visibility of dependencies

Cox x

PPIG 2000, Cozenza Italy www.ppig.org

For 9(b) one participant did not give an answer (and had responded "Not Visible" in 9(a)).

6. Interdependencies of the Dimensions

It is possible to describe some interdependencies between the dimensions and implications that arise
for the use-case notation. The Consistency dimension needs to be improved: 57% of participants
answered that they could understand about half the notation from what they had already learned.
About half is much better than nothing but there are risks with the use-case relationships. The
direction of the <<extend>> arrow to and from use cases is confused and counter-intuitive (see
section 5.1). This can lead to more errors, having a negative effect on the Error-proneness dimension
and possibly the Hard Mental Operations dimension (see figure 8).

 The difficulty in understanding use-case relationships led to 50% (6 out of 12) participants to try to
avoid using the relationships all together. This suggests that mistakes were made. The effect on Error-
proneness increases and this probably negatively affects many of the dimensions.

There is interdependency between the Visibility and Juxtaposability dimension and the Viscosity
dimension. It was possible to put the diagram on one page (79% "Yes"), the description on one page
(93% "Yes") and both diagram and description (71% "Yes"). This no doubt made changes relatively
easy. Making changes to the diagram did not cause problems (86% said "Easy"). A similar response
was given to the description (75% said "Easy"). Because Visibility and Juxtaposability score well
there is a positive effect on Viscosity. Making changes from diagram to description was relatively
easy (86% said "Easy") and from description to diagram (71% said "Easy"). This interdependency is
a strength of the use-case notation in that it is often possible to fit the diagram and description on a
page especially if a drawing package is used.

Figure 8: interdependency of Consistency,
Error-Proneness and Hard Mental

Operations

A goal of notations should be to show
dependencies in both directions. The use-
case diagram scores reasonably well in that
64% of participants said visibility was in
both directions. The description scores

poorly with only 29% of participants answering visibility in both directions (64% selected visibility
in one direction from descriptions). One assumes that this has an effect on the Role-expressiveness
dimension (and vice-versa). The relationship appears to be opposite of what one might think. 43% of
participants had problems with the role-expressiveness of the use-case diagram and 29% had
problems with the description. It would have been assumed that because of greater visibility of
dependencies in the diagram that there would be less difficulty in understanding the expressiveness of
the notation. A reason for this apparent contradiction is that the use-case descriptions developed were
text-based. Understanding the role-expressiveness of text should be easier to understand than the
role-expressiveness of a notation that is essentially new to the experience of the participants in this
study.

7. Conclusions and future work

The paper describes an initial and small study into applying the Cognitive Dimensions framework to
the UML’s use-case notation version 1.3. Feedback about the notation came from a student
questionnaire. The use-case notation scores relatively well with the students though there are some

Error-PronenessConsistency

Hard Mental Operations

_ _

_
_

_

_

Key: - <=> worsening/bad effect

Cox xi

PPIG 2000, Cozenza Italy www.ppig.org

problems. This is the well-known problem of understanding and using the differences between the
use-case relationships. This issue needs serious consideration before the next version of the UML is
released. The difficulty in understanding these relationships means that other dimensions of the
notation are negatively affected, such as the Hard Mental Operations dimension. The feedback from
the questionnaire shows that 50% of the participants tried to avoid using the use-case relationships.
The implications of this are: first, that the notation is difficult to grasp, second, many unnecessary
errors will be made and third, revision of the notation needs to be made to clarify this problem.

There are some plus points for use cases: the fact that descriptions and diagrams can often be viewed
on one page means that making changes to the diagram and description is relatively straightforward.
Also, understanding the links from the diagram to the description and from the description to the
diagram makes the notation easier to use. In general, the students found the description fairly
expressive with only 29% of the students having problems about where parts of the description fit.
The diagram faired worse with 43% having problems understanding where parts of the diagram fit.

The fundamental problem the use-case notation needs to resolve is use-case relationships. Additional
notational problems have been described in (Cox & Phalp 1999). Application of the Cognitive
Dimensions shows that there are trade-offs between the various dimensions. For example, if the use-
case relationships are clarified this should improve some dimensions such as Consistency and Error-
proneness. This would also improve the role-expressiveness of the diagram, making Hard Mental
Operations less difficult and also improve Hidden Dependencies.

7.1 Critiquing the paper

There are some issues that need further consideration. First, there has been no critique of the
questionnaire itself and as such it is unclear how good its design is. Second, there was no feedback
from the students about what they thought of the questionnaire. Did the "N/A" (not applicable)
responses mean the students did not understand the question? Third, the process of connecting
interdependencies between cognitive dimensions needs more clarification. It is highly subjective.

7.2 Future work

Our aim is to apply the Cognitive Dimensions framework to many scenario-based approaches. The
key rationale for using the Cognitive Dimension framework is that it will help evaluate the scenario
approaches from the point of view of the practitioners as opposed to simply a research perspective.
We will to carry out further surveys of scenario use by means of questionnaire to both students and
industry to try to build a picture of the strengths and weaknesses of different scenario approaches
from the perspective of those actually using the notation.

References

Antón A.I. and C. Potts (1998), A Representational Framework for Scenarios of System Use,
Requirements Engineering Journal, 3 (3/4), 219-241.

Booch G. (1994), Scenarios, Report on Object Analysis and Design, 1 (3), 3-6.

Booch G., Rumbaugh J.and I. Jacobson (1999), The Unified Modelling Language User Guide,
Addison-Wesley.

Carroll J.M. ed. (1995), Scenario-Based Design: Envisioning Work and Technology in System
Development, Wiley.

Cox xii

PPIG 2000, Cozenza Italy www.ppig.org

Cox K. and K. T. Phalp. (1999), Semantic and Structural Difficulties with the Unified Modelling
Language Use-Case Notation version 1.3, OOPSLA’99 workshop on Rigorous Modelling and
Analysis of the UML: Challenges and Limitations, Denver, Colorado, USA, 2 November 1999.

Cox K. and K. T. Phalp (2000), Use Case Authoring: Replicating the CREWS Guidelines
Experiment, EASE’2000 - 4th International Conference on Empirical Assessment and Evaluation in
Software Engineering, Keele University, Staffordshire, UK, April 17th-19th 2000.

Eriksson H. and M. Penker (1998), UML Toolkit, John Wiley.

Filippidou D. (1998), Designing with Scenarios: A Critical Review of Current Research and Practice,
Requirements Engineering Journal, 3 (1), 1-22.

Green T.R.G. (1989), Cognitive Dimensions of Notations, in People and Computers V, Proceedings
of the Fifth Conference of the British Computer Society Human Computer Action Specialist Group, 5-
8 September 1989, edited by A. Sutcliffe and L. Macaulay, Cambridge University Press, 443-460.

Green T.R.G. and M. Petre (1996), Usability Analysis of Visual Programming Environments: A
’Cognitive Dimensions’ Framework, Journal of Visual Languages and Computing, 7, 131-174.

Jacobson I., Christerson M., Jonsson P. and G. Oevergaard, (1992), Object-Oriented Software
Engineering: A Use Case Driven Approach, Addison Wesley.

Jacobson I. (1994), Basic Use-Case Modelling (continued), Report on Object Analysis and Design, 1
(3), 7-9.

Rational Software Corporation (1997), UML Notation version 1.1, http://www.rational.com/uml

Rolland C., Ben Achour C., Cauvet C., Ralyté J., Sutcliffe A., Maiden N., Jarke M., Haumer P., Pohl
K., Dubois E. and P. Heymans, (1998), A Proposal for a Scenario Classification Framework,
Requirements Engineering Journal, 3 (1), 23-47.

Rumbaugh J. (1994), Getting Started: Using use cases to capture requirements, Journal of Object-
Oriented Programming, September, 8-23.

Yourdon E. (1989), Modern Structured Analysis, Prentice Hall.

Appendix A - questionnaire

Questionnaire about Use-Case Notation

Please tick only one box per question. (N/A Ø Not Applicable)

1. How long (on average) were the use case descriptions in terms of number of pages?

 1 page or less

 1-2 pages

 2-5 pages

 More than 5 pages

2. How long did you spend on average developing each use case?

 1 day or less

Cox xiii

PPIG 2000, Cozenza Italy www.ppig.org

 1-2 days

 More than a 2 days

3(a) From an initial understanding of the use-case notation, how much of the rest of the notation can
be inferred and used correctly?

 All

 Most

 About half

 Some

 None

3(b) Did you find you had to rely on your interpretation (at least, in part) of the differences between
the <<include>> and the <<extend>> relationships?

Yes No N/A

If yes, how much did you have to rely on your interpretation?

 100% your interpretation

 75% your interpretation

 50% your interpretation

 25% your interpretation

 Less than 25% your interpretation

3(c) Did you find you had to rely on your interpretation (at least, in part) of how to use generalisation
in use cases?

Yes No N/A

If yes, how much did you have to rely on your interpretation?

 100% your interpretation

 75% your interpretation

 50% your interpretation

 25% your interpretation

 Less than 25% your interpretation

Cox xiv

PPIG 2000, Cozenza Italy www.ppig.org

3(d) Did you find you had to rely on your interpretation (at least, in part) of the differences between
generalisation and <<extend>> in use cases?

Yes No N/A

If yes, how much did you have to rely on your interpretation?

 100% your interpretation

 75% your interpretation

 50% your interpretation

 25% your interpretation

 Less than 25% your interpretation

3(e) Did you find that you tried to avoid these relationships because of the uncertainty of their
meaning?

 Yes No N/A

4(a) Was using the <<includes>> relationship difficult?

 Yes No N/A

If yes, how often did you make mistakes with this?

 Always

 Often

 Usually

 Occasionally

 Rarely

4(b) Was using the <<extend>> relationship difficult?

 Yes No N/A

If yes, how often did you make mistakes with this?

 Always

Cox xv

PPIG 2000, Cozenza Italy www.ppig.org

 Often

 Usually

 Occasionally

 Rarely

4(c) Was using the generalisation relationship difficult?

 Yes No N/A

If yes, how often did you make mistakes with this?

 Always

 Often

 Usually

 Occasionally

 Rarely

5(a) How easy was it to recognise and know where individual parts of the use-case diagram fit within
the whole diagram?

 Easy

 Difficult

 Impossible

 Don’t know

5(b) How easy was it to recognise and know where individual parts of the use-case description fit
within the whole description?

 Easy

 Difficult

 Impossible

 Don’t know

5(c) How easy was it to recognise and know where individual parts of the use-case diagram fit in the
description?

 Easy

 Difficult

Cox xvi

PPIG 2000, Cozenza Italy www.ppig.org

 Impossible

 Don’t know

5(d) How easy was it to recognise and know where individual parts of the use-case description fit in
the diagram?

 Easy

 Difficult

 Impossible

 Don’t know

6(a) If you made a change in the diagram, how easy was it to move to the corresponding part of the
description and make that change there?

 Easy

 Difficult

 Impossible

 Don’t know

6(b) If you made a change in the description, how easy was it to move to the corresponding part of
the diagram and make that change there?

 Easy

 Difficult

 Impossible

 Don’t know

7(a) Is it possible to view the diagram and descriptions side-by-side?

Yes No N/A

7(b) Can you view the whole diagram on one screen/sheet of paper?

Yes No N/A

7(c) Can you view an entire use-case description on one screen/sheet of paper?

Yes No N/A

Cox xvii

PPIG 2000, Cozenza Italy www.ppig.org

8. If several use cases are linked together, for example, by some <<extend>>, <<include>> or
generalisation relationships, how difficult is it to then comprehend?

 Impossible

 Difficult

 Easy

 Simple

 N/A

9(a) How visible are the dependencies in the diagram? (i.e. one part of the diagram explicitly relies
upon / is determined by / uses / requires another part of the diagram.)

 Visible in both directions

 Visible in one direction

 Not visible

9(b) How visible are the dependencies in the description?

 Visible in both directions

 Visible in one direction

 Not visible

