
In A.F. Blackwell & E. Bilotta (Eds). Proc. PPIG 12 Pages 247-266

12th Workshop of the Psychology of Programming Interest Group, Cozenza Italy, April 2000 www.ppig.org

Uncovering Effects of Programming Paradigms: Errors in Two Spreadsheet
Systems

Markku Tukiainen

University of Joensuu
Department of Computer Science

P.O. Box 111, FIN-80101 Joensuu, Finland
Markku.Tukiainen@Joensuu.FI

Keywords: POP-I.B. choice of language, POP-II.B. design, modification, POP-III.B. spreadsheets.

Abstract

Empirical studies of spreadsheet programming have commonly shown high over all error rates but
much less attention has been paid to reasons for these errors. One often mentioned cause for errors is
the low conceptual level of spreadsheet systems. By changing the conceptual level of spreadsheet
system, we wanted to study whether this will produce different type of errors compared to traditional
spreadsheet systems. In this paper we present an empirical study comparing the traditional
spreadsheet calculation paradigm with the structured spreadsheet calculation paradigm that utilizes
goals, plans and spreadsheet data structures in computation. The results show that the error behavior
of novice spreadsheet users is systematically different between paradigms.

Introduction

Traditional spreadsheet calculation systems provide a fast method to express data and to make
calculations, provided that there is some natural way to lay all the data on one or more two-
dimensional sheets. Spreadsheet calculation is the most widely used end-user programming language.
The success of spreadsheet calculation systems has been attributed to their ease of use, users can see
what is to be done and do it (Kay 1984) and to the metaphorical and visual nature of the user
interface (Norman 1986). Despite this ease of use (for more balanced view, see (Lewis & Olson
1987)), spreadsheet applications tend to have a lot of faults (Panko 1997): Even experienced users
made errors in 44% of the cases reported by Brown and Gould (1987). Their study also showed that
the errors were mostly made in entering calculations, not simply in typing constants: Seventy percent
of reported errors were errors in formulae.

There are several reasons for errors in using the traditional spreadsheet systems. First, there are errors
due to the characteristics of the spreadsheets systems themselves. For example, formulae are not
visible all the time; they are represented linearly, whereas the spreadsheet itself is presented spatially,
and the physical distance on the screen between a formula and the cells referred to by the formula is
large. All these features hide the true structure of a spreadsheet from the user, leading to errors
(Brown & Gould 1987). Second, there are errors due to the physical limits of current computer
systems. For example, if the amount of data entered is substantial, the physical limits of a computer
screen force the user to see only a part of the application at a time. Usually, the user divides logically
grouped data into smaller physical clusters in order to see and understand the workings of the
application.

Third, there are errors due to limitations of the current spreadsheet calculation model. For example,
naming the cells is the only way to structure computations (Ronen, Palley, & Lucas 1989), the
specification of absolute and relative cell referencing is vague (Sajaniemi 2000, Doyle 1990), and the
connection between the computation and the data is established by referencing to locations in a sheet,

Tukiainen ii

PPIG 2000, Cozenza Italy www.ppig.org

not the actual data structures in the model. These reasons for errors have been attributed to the low
conceptual level of current spreadsheet systems (Lewis & Olson 1987; Ronen et al. 1989).

The low conceptual level of current spreadsheet systems manifests itself especially in the absence of
the connection between the computation in-the-large and the data areas. The spreadsheet user enters
formulae once and is supposed to remember to make changes to the referenced addresses if the input
data area changes in size. For example, if a user creates a table of values and then writes an
expression using the addresses of the corner cells in the table or a named reference to the table and
later adds a new row (or column) to the end of the table, the calculation (i.e. the formula) is not
updated automatically.

Traditional spreadsheet systems have not changed much computationally since VisiCalc in 1979. The
complexity of the interface and the amount of new features like easy graphing and helping agents
have increased, but the formula specification remains relatively unchanged. One example of change
in specifying the calculation can be found in recent versions of Microsoft Excel: the AutoSum
feature. The user selects an area and then presses the AutoSum button and gets, by default, col-
umnwise sums. Of course, the user can point to a row and press AutoSum and get a rowwise sum and
then copy it across the needed areas. But the problem mentioned above remains the same; if the user
adds a new row of values to the area, the AutoSum-formula is not updated to reflect this change in
data.

Although traditional spreadsheet systems offer no other data structuring tools than range naming the
users of a spreadsheet system do not see spreadsheets as collections of individual cells, but rather as
logical collections of cells (Saariluoma & Sajaniemi 1989). This has led to a new approach to
spreadsheeting called the structured spreadsheet calculation (Hassinen, Sajaniemi, & Väisänen 1988).
One of the main ideas of the structured spreadsheet calculation is to make these implicit structures
explicit so that the users can refer to these structures as a whole and connect these structures to
computation so that the changes in structures will be reflected automatically to the computation. By
offering this kind of abstraction, the conceptual level of the structured spreadsheet calculation
becomes higher than the traditional spreadsheet calculation.

We wanted to examine whether this change of the conceptual level will have an impact on the
number or the type of errors novice spreadsheet users will produce. Especially, if the types of errors
are different this will have important implications on the further development of spreadsheet
calculation systems. In this paper we present an empirical study comparing the traditional spreadsheet
calculation paradigm and the structured spreadsheet calculation paradigm. The study was conducted
using Microsoft Excel (a traditional spreadsheet system) (Microsoft 1994) and Basset (a structured
spreadsheet system) (Tukiainen 1996).

The purpose of the study is to compare two spreadsheet paradigms, traditional and structured, having
different conceptual levels. The subjects are, however, using actual spreadsheet systems (Microsoft
Excel and Basset) that represent these paradigms. Some of the errors that subjects will make may be
due to the specific system features while others may be affected by the paradigm used. Therefore, a
clear distinction must be made between errors evoked by problems inherent to the paradigm and
errors evoked by problems inherent to the spreadsheet system.

Experiment

The traditional spreadsheet calculation paradigm and the structured spreadsheet calculation paradigm
differ quite much in their concepts and approaches. This raises the following question:

Do novice programmers of the structured spreadsheet paradigm produce different kinds of
errors than novice programmers of the traditional spreadsheet paradigm?

In the present experiment, we chose Microsoft Excel to be a representative system of the traditional
spreadsheet calculation paradigm and Basset to be a representative system of the structured
spreadsheet calculation paradigm. Since there are no expert programmers in Basset and the structured

Tukiainen iii

PPIG 2000, Cozenza Italy www.ppig.org

spreadsheet calculation paradigm, we chose to use novice spreadsheet programmers as subjects. We
taught them four hours of spreadsheet calculation in general and then they practiced the use of one
spreadsheet tool (Excel or Basset) for four hours. All subjects did the same tasks but using the tool
assigned to the group. We measured the number of error-free and erroneous solutions and classified
the errors. We were only interested in errors in calculations, not in layout or entering numbers and
headings. The data collected consisted of the files containing the saved spreadsheets and the pre-test
questionnaires of subject’s background. We also videotaped a few random subjects.

Method

The subjects were first-year undergraduate students at the University of Joensuu majoring in various
areas of study ranging from theology to mathematics. They participated in the experiment as a course
requirement for an Introduction to Spreadsheets course. A total of 154 students participated in the
experiment. They were randomly assigned to Basset (74 subjects) and Excel (80 subjects) groups.

The experimental materials consisted of four spreadsheet applications. The tasks were ordered into
24 task sets, which contained all of the possible orders of the tasks. The task sets were distributed
randomly to the subjects. All subjects did all of the four tasks using either Excel or Basset. The
application domain was simple business-type accounting. This was chosen because it is a well
defined domain, students usually have a fair understanding of the domain, and it is easy to design
simple problems in this domain. Also, spreadsheets are heavily used in business accounting. The
tasks chosen for the experiment were quite elementary, but they are representative of real-life
spreadsheet tasks.

We used two types of tasks: construction and modification tasks. In the construction tasks the
subjects had to implement new spreadsheet applications, and in the modification tasks they were
given existing spreadsheet applications to modify. The applications varied in size from 22 cells to 33
cells and the number of formulae in applications varied from 3 to 5. The tasks involved data entry for
numbers and headings, composing formulae with relative and absolute cell referencing, copying
formulae and saving the application. All task instructions contained the headings and the constant
numbers needed in the spreadsheets.

The tasks were:

� Task 1A and 1B: The budget task and updating the budget task. Construction of a new
application. The subjects were asked to create a budget for their income and expenditure. The
income items (3) and expenditure items (4) were given. The solution was to first enter the data
for the income and the expenditure. Then they had to calculate the total sums of the income
and expenditure and to calculate the difference between these sums. At this point the
instructions asked them to save the application (Task 1A). After saving, the instructions asked
the subjects to modify the income by adding one item to the end of the income data (Task 1B).

� Task 2.: The cumulative sum of credit units. Construction of a new application. The subjects
were asked to create an accounting application for their credit units using accumulation. The
instruction showed an example application without the formulae. The subjects were instructed
to create an application with the same information, no demands for spatial layout were made.
The credit units for 6 semesters were given. The solution was to enter the data and to create a
cumulative sum.

� Task 3. Adding new items to existing data structures. Modification of an existing application.
The application had two input data areas, one consisting of prices for 3 products and the other
containing the numbers of sold items for each of the products. The titles for the areas and the
items were taken from real-life settings, i.e., the titles were Prices, Sold Items, Hammers,
Saws and so on. The application calculated sales values for the products using pair-wise
multiplication of the prices and the numbers of items sold. The subjects were asked to add two
new products into the application. The products were to be located as the second and the last
item of the products. The formulae had to be updated to reflect these changes.

Tukiainen iv

PPIG 2000, Cozenza Italy www.ppig.org

� Task 4. Adding new calculations to an existing computation. Modification of an existing
application. The application to modify was the same as in the task 3. Subjects were asked to
add a computation to calculate the sales values in Euros in addition to Finnish marks. The
instruction showed an example application with the results of the formulae. The subjects were
instructed to create an application with the same information; no demands for spatial layout
were made. The solution was to add a cell containing a constant value for the exchange rate
(given in the instructions), and to calculate the sales in Euros using multiplication of the sales
in Finnish marks and the exchange rate.

The experiment took place in the same computer laboratories that the subjects had used for practicing
sessions. The subjects were tested in groups of three to thirteen. The groups were the same as used in
the practicing sessions. First the subjects were given a background questionnaire to answer. When all
were ready, (in about five to ten minutes) the task sets with a blank page on the top were distributed
to the subjects and oral instructions about the experiment were given.

The subjects were told that there was going to be five tasks similar to those they had done in the
practicing sessions. The first task would be the same training task for all. Then the four experiment
tasks would follow, being the same for all but in a random order. This was told so that the subjects
would not wonder if the subject next to him would stop working earlier than himself. The subjects
were told that there was a time limit of ten minutes per task. If they would complete the task before
the time limit, they were instructed to open a new blank spreadsheet on the screen and wait until the
instructor would give permission to start working on the next task. If they could not complete the task
in the time limit, they were instructed to save the work as it was, with all the incomplete or erroneous
calculations.

Results

The background of the subjects was controlled in the pre-test questionnaire where we asked their
overall computer experience (variable A: ordinal scale), experience with spreadsheet calculation (B:
years and C: number of applications done, ordinal scale) and experience in programming (D: years
and E: size of largest application done, ordinal scale). Similarity of the groups was tested using
Mann-Whitney Test (variables A, C and E) and t-test (variables B and D). There were no significant
background differences between groups.

Figure 1 gives the overall results of task correctness. There are five tasks because the first task was
divided into two subtasks, which were saved in separate files. The total number of correct sheets was
530 and the total number for incorrect sheets was 151. For various reasons 89 sheets were missing,
the largest number of missing spreadsheets being with task 1 (total of 66 sheets missing). This task
required the most input actions of all the tasks and it is reasonable to believe that the ten minutes time
limit was not long enough for novice subjects and they did not save incomplete sheets. The single
largest number of missing sheets was with Basset group in task 1B. Often the subjects did not finish
the task 1A correctly, so they spend all the time doing that task. This happened in 20 cases of total 22
erroneous tasks 1A.

Tukiainen v

PPIG 2000, Cozenza Italy www.ppig.org

Figure 1 – Overall task correctness in percentages.

 The Chi square test was used to test the interaction between the groups and the tasks. We tested the
interaction between the task correctness (non-erroneous vs. erroneous sheets) and the tool used
(Basset vs. Excel). Interactions were significant in three tasks: Task 1A (χ2=6.945, df=1, p=0.008),
task 2 (χ2=10.496, df=1, p=0.001) and task 3 (χ2=12.449, df=1, p<0.001).

Error Analysis

We classified only errors that constituted distinctive groups. These groups are called error types (see
Table 1). There were few errors that occurred only once or twice and these were not classified. Also
logic errors, i.e., errors in understanding the task descriptions, were not classified. There were four
researchers independently devising the causes for errors and all reasons are listed without taking up
for consideration of their probabilities. Each error type is given a number starting with the letter E
(Excel errors) or B (Basset errors).

We do not include in the possible error types any cognitive factors like losing attention during the
task, because our experimental method was not planned for that type of observation and because such
analysis is not relevant for the purposes of this experiment. We try to explain the errors in terms of
the computation doctrine, i.e., spreadsheet-based computation (as opposed, e.g., to procedural
programming), the spreadsheet calculation paradigm used and the spreadsheet calculation tool’s
usability issues (see Figure 2). Thus in the possible causes for each error type, classes doctrine,
paradigm, and tool are used. In table 1, an error type name is followed by indications of possible
causes for the error type. Each possible cause indication is given a label in which the first letter
denotes the class (e.g. D = doctrine), and second letter denotes the tool (e.g. b = Basset). See
Appendix A for longer descriptions.

Doctrine class includes error causes that could be due to the expected content or workings of the
user’s mental model of spreadsheet-based computation. This class contains also errors in
mathematical concepts underlying the spreadsheet formulae. It has been noted that novice users’
mental models in programming tend to be incomplete and erroneous (Bonar 1985). Doctrine class
errors can arise in both spreadsheet calculation paradigms discussed in this paper.

85,3

80,3

60,5

75,0
77,6

65,6

76,9

84,5

95,8

76,8

0

10

20

30

40

50

60

70

80

90

100

Task 1A Task 1B Task 2 Task 3 Task 4

Excel Basset

Tukiainen vi

PPIG 2000, Cozenza Italy www.ppig.org

Error type Possible causes
Doctrin

e
Paradigm Tool

E1 Sum includes empty cells at end Pe1, Pe2,
Pe3

Te1

E2 Not all appropriate cells included
in sum

Pe4

E3 An item added to both input
structures

Pe5, Pe6,
Pe7

E4 Missing formula update Pe8, Pe9
E5 First item of cumulative sum is

constant
De1,
De2

Pe10

E6 Malformed formula De3,
De4

E7 Wrong reference in a new formula Pe11, Pe12
E8 Incomplete but correct

computation
Pe13

E9 Missing formula De5 Pe14, Pe15
E1
0

Malformed decimal number Te2

B1 Missing goal Db1 Pb1 Tb1
B2 Wrong goal applied Pb2 Tb2
B3 Wrong arguments for a goal Db2 Tb3,

Tb4
B4 No item added into the input

structure
Tb5,
Tb6

Table 1 – The error types found.

Paradigm class includes error causes that could be brought about the reasons of spreadsheet
calculation paradigm used. These errors can arise only in one of the paradigms discussed. This class
is the most important for the current study because it reveals the error causes connected directly to
calculation paradigms.

Figure 2 – The hierarchy of error origins.

Tool class includes error causes that could be brought about the usability problems in the specific
spreadsheet tool used. This class is less important because we are not trying to study the usability of
the tools but the differences in the paradigms behind the tools.

Doctrine

Paradigm

ToolExcel Lotus 1-2-3 Basset …

Spreadsheet-based
computation

Traditional
spreadsheets

Structured
spreadsheets

Tukiainen vii

PPIG 2000, Cozenza Italy www.ppig.org

Discussion

The error analysis above defined the types of errors the subjects produced in each of the tasks using
the two tools. There were total of 10 different Excel and 4 Basset error types. We will now discuss
about the possible explanations behind these error types.

Doctrine Evoked Errors. Three Excel error types (E5, E6, E9) and two Basset error types (B1, B3)
have possible causes that could be explained by the structure and content of the subjects’ mental
model of spreadsheet computation.

There seemed to be at least four types of possible reasons for subjects’ doctrine evoked errors. First
there were errors concerning misunderstanding of spreadsheet concepts like the difference between a
reference to a cell containing a constant value and using a constant with the same value in
computation. Second there were errors due to fragmentary knowledge of spreadsheet operations and
usage. Examples of this could be when the subjects could not change the layout of the sheet to
compensate the effects of inserting areas. Another example could be a misconception of Copy-
operation. The same Copy-operation is used to copy constants and formulae and the subjects seemed
to think that copying constant values is a kind of dynamic copy so that if the original constant value
will change, the copy of that value will also change.

Third there were errors resulting from cognitively hard tasks, e.g., in the error type E6 subjects could
not devise a plan for cumulative sum. Another example of this could be the errors concerning the
identification of all correct and needed goals for the solution. The error type B1 (missing goals) could
be explained by subject not succeeding in constructing the right goal for the task. Fourth there were
errors in mathematical models underlying the spreadsheet implementations of formulae. These could
be classified to a different (higher) class than spreadsheet-based computation doctrine because they
could manifest themselves in other computation doctrines also.

Paradigm Evoked Errors. For the purposes of this paper, paradigm evoked errors are most
interesting as they may reveal fundamental differences between structured and traditional spreadsheet
paradigms. Eight Excel error types (E1, E2, E3, E4, E5, E7, E8, E9) and two Basset error types (B1,
B2) have possible causes that may be explained by the paradigm specific features of the two tools
used in the experiment.

The conceptual levels of the two paradigms differ. The paradigm errors we found in this study can be
explained by this difference in conceptual levels. The Excel errors deal mostly with the low level
details of formulae. This can be seen as a manifestation of the lack of data structuring tools and poor
connection between data areas and calculations. On the other hand, the Basset errors occur at the data
structure level of computation. We will first elaborate upon Excel errors and then upon Basset errors.

Typical errors in Excel are connected to copying. In the error type E1 the referenced area is too large
and one probable cause is the misunderstanding of the Copy-operation. There are two input data
areas, which are of different size. A subject adds empty cells to the smaller area probably because she
may think that the referenced areas have to be of the same size in order for a Copy-operation to
succeed.

Another misunderstanding of the Copy-operation can be found in error type E5. The same Copy-
operation is used to copy constants and formulae, which may confuse a novice subject to over
generalize the concept of Copy-operation. Furthermore, the traditional spreadsheet calculation para-
digm does not separate constant value cells from formula cells in the cell surface appearance. This
may make it hard for a novice subject to distinguish between the concepts of a copy of the cell
content and a reference to the cell.

Changing the input data area, e.g., adding new elements to the data, seemed to be a hard operation for
novice subjects. The traditional spreadsheet paradigm utilizes a fixed grid of cells in its user
interface. Adding new cells to the grid moves old areas to right or down and the new area looks good.
But all the other input data or calculation areas that were stretching over the same rows and columns
as the new added area, are mutilated.

Tukiainen viii

PPIG 2000, Cozenza Italy www.ppig.org

In the experiment, this kind of addition of new cells to a particular input structure was done by most
of the Excel subjects in such a way that the result looked like new empty cells were added in the
middle of the other input structures also. This seemed to confuse the novice subjects, because they
did not probably comprehend what did happen. Also, if the added cells were at the end of an old area
the formulae was not updated to contain the new cells automatically. The novice subjects often forgot
to update the referenced areas. Error types E3, E4, E7 and E9 could be explained by this type of
action.

Subjects can comprehend homogeneous areas as objects. The error type E7 (adding new items to the
input structures) changed the references in formulae, the formulae differed perceptually and the
subjects did not perceive the formula area as a homogenous area although the cells were laid out
uniformly. This probably caused them to switch their strategy from copying formulae (used in
homogenous areas) to writing formulae one by one. It seems that in Task 3 subjects selected this
strategy to correct and add new multiplication. This caused a lot of errors in formula referencing.

Overall the Excel subjects in this study seemed to interpret some type of objects consisting of
multiple cells and sometimes they seemed to think that these objects could be used in calculations.
This type of interpretation has been verified in empirical studies of spreadsheets earlier (Saariluoma
and Sajaniemi, 1989, Sajaniemi et al., 1999). Other empirical work on spreadsheet calculation
describes also similar cases, where user feels that the spreadsheet system should calculate using task
specific larger structures than one cell (e.g., see subject Sue in Hendry and Green study (Hendry and
Green, 1994)).

The Basset error type B1 (missing goals) could be explained by the amount of details in goal
descriptions. The distinction between available goals can be small and that could be why a subject
could not select the appropriate goal. The higher conceptual level of the structured spreadsheet
calculation paradigm could also explain B1. The paradigm forces a user to think globally of the
solution, i.e., to plan and design the solution before starting the implementation. This causes a lot of
mental load for novices and is against the novices’ preferred strategy to think locally of the solution
(e.g., see Spohrer et al. (1985) for a discussion of Pascal novice strategies). This error manifests itself
in the tasks where there is a chain of goals, i.e., tasks 1 and 4.

The number of concepts that is required to successfully use Basset is quite high. The concepts of
structures, the types of the structures, the modification of structure sizes, ready-made goals and the
concepts of calculation have to be mastered. The subjects did perform quite well, but in some tasks
they seemed to make decisions based on fragmentary knowledge of the structured spreadsheet
calculation and some surface level details of the goals in Basset. Studies of novice Pascal
programming have demonstrated similar behavior (Bonar and Soloway 1985).

The error type B2, the selection of a wrong goal could also be explained by the larger amount of
details to look for in Basset than in Excel even at the beginning level of spreadsheet calculation. The
novice user has to master the goals of Basset in order to know what kind of computations there are in
the system. The goal descriptions have to be read carefully in order to distinct the goals from each
other. Some of the subjects did not pay attention to this and selected wrong goals for the task. In
budget task most of the wrong goals were Pairwise Sums instead of Pairwise Difference. It could be
argued that the time to learn Basset was too short for mastering all of the goals in the system.

Tool Evoked Errors. Two Excel error types (E1, E10) and four Basset error type (B1, B2, B3, B4)
have possible causes that may be explained by the usability features of the two tools used in the
experiment.

Both tools have some strange features at their user interface and operations. For example, Excel
shows the area to be copied surrounded by a flashing line, which is not a normal feature of MS
Windows standard. This seems to be distracting to novice users. Also Basset for example does not
ask the user whether she wants to save the spreadsheet if it is not saved and the user opens a new
sheet.

Tukiainen ix

PPIG 2000, Cozenza Italy www.ppig.org

This category explains errors that were most likely caused by the low-level details of usage. There
were total of two Excel and six Basset tool type error causes found in the experiment. The first Excel
tool type error cause was in E1 (sum includes empty cells at end). Excel’s AutoSum-feature
automatically includes empty cells between the referenced number area and the cell in which the
formula is written. This does not produce an immediate error in computation but is a potential error
cause for the future use of the sheet. The second Excel tool type error cause was in E10 (malformed
decimal number). This happened because some of the subjects confused the usage of comma and
period. They used period as a currency value in task 4 and Excel misinterpreted the content of the cell
as text. The text value could not be used in computation.

The first and second Basset tool type error causes were in Basset error types B1 (missing goal) and
B2 (wrong goal applied) respectively. Basset is still a prototype implementation of the structured
spreadsheet calculation paradigm. There are problems with the menu selections, the order of elements
in menus and the division of goals into submenus. These problems cause extra mental load, which
could be an explanation for these Basset error types in many cases. Basset usability problems with
menus were often mentioned at after the course questionnaires.

The third and fourth Basset tool type error causes were in B3 (wrong arguments for the goal). This
was a serious error producing many erroneous spreadsheets in tasks one and four. The arguments of a
goal are assigned when the goal is applied in Basset. This operation’s usability in Basset is poor. A
user has to first select the first argument and then select a structure using several user interface
operations. After this the user has to select the next argument and so on. The arguments appear in the
order they are originally written into the goal specification and this may not meet the requirements of
the user.

The fifth and sixth Basset tool type error causes were in B4 (no new item added into the input
structure). The error type B4 happened in task 1B but the same subjects could perform the same
operation (add new items) correctly in task 3. One likely explanation is that the subjects performed
the operation correctly in task 1B but forgot to save the file.

Results summary. The Excel subjects performed significantly better in task 1 than the Basset
subjects. This could be explained by strategic differences of the tools. Basset forces a user to work
with a more global approach to the solution. The user has to plan beforehand what kind of input
structures to use, whether there is an appropriate goal existing etc. Excel allows a user to work at the
local cell level, concentrating upon the details of the current cell entry at a time. The local cell level
entry strategy seems to work for simple application at the novice level faster than Basset’s approach.
Also the task 1 required largest amount of cell entries. Entering the cells is slower with Basset than
with Excel because Basset requires creating the input structures first and adding the titles require
much extra work with multiple menus and dialog windows. This could have slowed Basset users
down resulting the numerous incomplete applications.

The Basset subjects performed significantly better in tasks 2 and 3 than the Excel subjects.
Accumulation seemed to be a hard calculation for novice spreadsheet users. The Excel subjects used
the largest assortment of different plans in task 2. They also made the most errors in this task. The
accumulation is a system-implemented goal in Basset. For the Basset subjects it was enough that they
understood the goal and could apply it within the system. This explains the difference in groups’
performance in task 2. In task 3, inserting new items to existing data and calculation areas in Excel
was difficult for the novice subjects because the insertion mutilated other data structures and the cell
references in existing formulae. In Basset insertion is an operation applied to an input data structure
and the necessary changes in computations will be done automatically by the system. It seems that
Basset’s higher conceptual level helps the novice users in more complex spreadsheet tasks.

The error classification revealed the largest number of error causes in the class paradigm evoked
errors. There were 8 paradigm evoked error types in Excel and 2 in Basset. The overall error numbers
were smaller in Basset than in Excel and the classification revealed less paradigm evoked errors than
other errors. This result is interesting because it suggests that raising the conceptual level of
spreadsheet system benefits the users.

Tukiainen x

PPIG 2000, Cozenza Italy www.ppig.org

In the doctrine evoked error class, there were 3 Excel error types and 2 Basset error types. These are
not so interesting because their reasons cannot be remedied by changing the tools and they disappear
when users’ expertise in spreadsheet-based computation increases. In the tool evoked error class,
there were.2 Excel and 4 Basset error types . This shows that Excel is more mature tool than Basset.
These errors are fortunately easy to fix. They just require usability testing and software engineering.

Conclusions

The results show that the error behavior of novice spreadsheet programmers is systematically
different between the traditional spreadsheet calculation paradigm and the structured spreadsheet
calculation paradigm. The reasons for these error behaviors were considered in the context of the
content of subject’s mental model of the spreadsheet-based computation doctrine in general, the
characteristic differences between the two spreadsheet calculation paradigms, and the usability of the
two tools used. We classified the error types into these classes and discussed the probable causes for
each error type.

There were 8 paradigm evoked error types in Excel and only 2 in Basset. To our opinion this shows
that Basset has succeeded in raising the conceptual level of spreadsheet calculation preventing some
of the problems of the traditional spreadsheet paradigm to occur in structured spreadsheets. The
remarkably low error rate in Basset users group for paradigm evoked errors makes it evident that
chancing the conceptual level of spreadsheet systems will have a significant effect on the number and
the type of errors novice spreadsheet users will produce.

In doctrine evoked error class, there were 3 Excel error types and 2 Basset error types. These are
errors that can only be remedied by learning and experience. This was a study of novice subjects and
the difference between the paradigms in this error class is not great. There were only 2 Excel and 4
Basset error types in the class of tool evoked errors. These are the easiest error causes to fix because
they require only minor changes in the user interface of the tools.

The traditional spreadsheet calculation paradigm has been criticized for it’s low conceptual level. It
has been argued that this low conceptual level causes many errors in spreadsheet development and
use. Our study supports this view by finding a large number of traditional spreadsheet paradigm
evoked errors. Yet there has not been many attempts to change the conceptual level of spreadsheet
calculation (Napier, Lane, Batsell, & Guadagno 1989). The structured spreadsheet calculation
paradigm is one effort to help the users of spreadsheet calculation to avoid errors by raising the
conceptual level of spreadsheets.

The current study clarified some error types in both the traditional and the structured spreadsheet
paradigms. This provides a promising area for further investigation of the underlying reasons for
these error types, the advancement of both paradigms and the development of better tools to support
spreadsheet users.

Acknowledgements

The author would like to thank Jorma Sajaniemi for his deeply thought advice and warm
encouragement during this work, Kari Hassinen, Marja Kuittinen and Jorma Sajaniemi for their
insightful explanations of the spreadsheet errors, and Juha Hakkarainen for running one half of the
experiment sessions.

References

Bonar, J. G. (1985). Understanding the Bugs of Novice Programmers. Ph. D. Thesis, University of
Massachusetts.

Tukiainen xi

PPIG 2000, Cozenza Italy www.ppig.org

Bonar, J. G., Soloway, E. (1985). Preprogramming Knowledge: A Major Source of Misconceptions
in Novice Programming. Human-Computer Interaction, 1(2), 133-161.

Brown, P. S., & Gould, J. D. (1987). An Experimental Study of People Creating Spreadsheets. ACM
Transactions on Office Information Systems, 5(3), 258-272.

Doyle, J. R. (1990). Naive users and the Lotus interface: a field study. Behaviour & Information
Technology, 9(1), 81-89.

Hassinen, K., Sajaniemi, J., & Väisänen, J. (1988). Structured Spreadsheet Calculation, Paper
presented at the 1988 IEEE Workshop on Languages for Automation, 129-133.

Hendry, D. G., & Green, T. R. G. (1994). Creating, Comprehending and Explaining Spreadsheets: a
Cognitive Interpretation of What Discretionary Users Think of Spreadsheet Model. International
Journal of Human-Computer Studies, 40, 1033-1065.

Kay, A. (1984). Computer Software. Scientific American, 251(3), 41-47.

Lewis, C., & Olson, G. M. (1987). Can Principles of Cognition Lower the Barriers to Programming,
Paper presented at the Empirical Studies of Programmers: Second Workshop, Washington, D. C.

Microsoft. (1994). Microsoft Excel User's Guide ver. 5.0. Ireland: Microsoft Corporation.

Napier, H. A., Lane, D. M., Batsell, R. R., & Guadagno, N. S. (1989). Impact of a Restricted Natural
Language Interface on Ease of Learning and Productivity. Communications of the ACM, 32(10),
1190-1198.

Norman, D. A. (1986). Cognitive Engineering. In D. A. Norman & S. W. Draper (Eds.), User-
Centered System Design (pp. 31-61). Hillsale, NJ: Lawrence Erlbaum.

Panko, R. (1997). Spreadsheet Research (SSR) http://panko.cba.hawaii.edu /ssr/. (5.1.2000).

Ronen, B., Palley, M. A., & Lucas, H. C. J. (1989). Spreadsheet Analysis and Design.
Communications of the ACM, 32(1), 84-93.

Saariluoma, P., & Sajaniemi, J. (1989). Visual information chunking in spreadsheet calculation.
International Journal of Man-Machine Studies, 30, 475-488.

Sajaniemi, J. (2000). Modeling Spreadsheet Audit: A Rigorous Approach to Automatic Visualization.
Journal of Visual Languages and Computing 11(1), 49-82.

Sajaniemi, J., Tukiainen, M., & Väisänen, J. (1999). Goals and Plans in Spreadsheet Calculation
(Technical Report A-1999-1). Joensuu: Department of Computer Science, University of Joensuu.

Spohrer, J. C., Soloway, E., & Pope, E. (1985). A Goal/Plan Analysis of Buggy Pascal Programs.
Human-Computer Interaction, 1, 163-207.

Tukiainen, M. (1996). ASSET: A Structured Spreadsheet Calculation System. Machine-Mediated
Learning, 5(2), 63-76.

Appendix A:
Legend: D = Doctrine, P = Paradigm, T = Tool, e = Excel, b = Basset.

De1 Subject does not comprehend the difference of a reference to a cell and a constant with the
same value. It is easier to write a constant number 12 than a reference =A7.

De2 Subject comprehends spreadsheets to consist of constants and calculations (formulas) where
the distinctive feature of calculations is that they include operators or function calls. The
formula =A7 does not have operators, so it may be perceived as not being calculation and so
the subject uses the constant number 12 instead of the formula.

Tukiainen xii

PPIG 2000, Cozenza Italy www.ppig.org

De3 Subject has not enough knowledge to implement the right formula. Especially in task 2 the
cumulative sum is a cognitively quite hard plan. We saw a total of seven different ways to
produce the right result and six incorrect versions of these ideas.

De4 Subject has no mathematical model for the computation needed, so she cannot implement it
with a spreadsheet

De5 Subject does not have the right mathematical model to calculate the currency exchange, so she
cannot implement the computation.

Pe1 No affect in computation. Subject perceives empty cells as white space and includes them into
the calculation, because there is nothing in the cells that could affect the sum calculation.
(This does not result an error in computation, but can be a potential error cause in future use of
the application)

Pe2 Wrong symmetry demand. The referenced area for the sum of the first input sequence is
enlarged to the same size as in the case of the second input sequence (i.e., four cells), although
the size of the first input sequence is only three cells.

Pe3 Misunderstanding of Copy-operation. The sum formula of the second input sequence (four
cells), is copied as the sum of the first input sequence, although the size of the first input
sequence is only three cells.

Pe4 Misusage of Copy-operation. The formula for the sum of the first (smaller) input sequence is
copied for the second sequence, but the referenced area is not enlarged. The subject perceives
the input sequences as objects that the computation should use, so copying a formula referring
to one structure should work for another structure.

Pe5 Adding a new item to the first input sequence using Insert rows-operation accidentally adds a
new item to the middle of the second input sequence because the sequences were laid out
horizontally next to each other. This new empty cell is automatically added to the referenced
area of the sum of the second input sequence. Subject comprehends adjacent cell areas as
independent objects and thinks that a spreadsheet system operation affects the individual
object only.

Pe6 Subject does not know any other way to insert new items to an input structure than using Insert
rows-operation. Possible work around is to lay out the structures vertically, as was done in
almost all of the error-free application.

Pe7 Subject does not care of extra empty cells in the reference area of a function as they do not
affect the result.

Pe8 Some insertion operations are automatically reflected in the computation (i.e., if the insertion
is at the middle of the area), so a subject may think that all insertions are reflected in the
computations, although adding a new item to the end of an input sequence requires changing
the formulae referencing this area

Pe9 Subject perceives the data areas as whole objects that the computation uses, so adding a new
item to a object should be reflected in the computations accordingly.

Pe10 Misusage of the Copy-operation. Subject might think that she has made a dynamic copy of the
constant value cell using Copy-operation (so that if the cell content changes, the copy will
change also).

Pe11 The subject does not use mouse pointing when inserting references to a formula and makes a
visual slip when determining the cell reference for typing

Pe12 (Task 3) There were 3 items in both input sequences and a computation for their pair-wise
multiplication. The places for new items occurred in the middle of the input sequences. The
Insert rows-operation was applied to different places in the input structures, because the
structures were laid out horizontally next to each other but not starting from the same row.
This caused the cell references in some of the following formulae to change so that they did
not refer to successive rows anymore. Thus the successive formulae in output structures did
not have a similar visual form anymore. This may have confused subjects to select a wrong
formula to copy.

Tukiainen xiii

PPIG 2000, Cozenza Italy www.ppig.org

Pe13 The subject gets confused when the references in formulae updated are automatically after
inserting new data items into input structures. The references in adjacent cells cross each
other. This can confuse the novice subject to believe that the formulae are somehow wrong.
The subject chooses a strategy to write over the old formulae by hand so that they will be
“right” again. This takes longer time and they have not enough time to complete all formulae.

Pe14 Subject does not understand the concept of absolute references. The calculation should refer to
the multiplier cell with an absolute reference and the subject cannot enter it.

Pe15 (Task 3) Subject comprehends homogeneous areas as whole objects. In almost all cases the
input areas were constructed correctly. Either this took all the time or adding new items to the
input structures changed the references in formulae and this caused subjects extra mental load
and prevented them from devising the new formulae.

Te1 Subject separates the data and the calculations with empty cells and then uses Excel’s
AutoSum-feature, which automatically includes empty cells below the number area.

Te2 Subject uses period instead of comma as decimal number separator in currency values and
Excel misinterpreted the content of the cell as text.

Db1 Subject does not succeed in constructing the right goal for the task.
Db2 Subject’s mental model for mathematical operation does not differentiate which of the

arguments is the subtrahend and which one is the minuend.
Pb1 Distinction between goals is too delicate. Appropriate goal is not identified among related

goals.
Pb2 The distinction between available goals is so small that a wrong goal is selected.
Tb1 Subject looks for the goal in the wrong submenu. In Task 1 the Pairwise Difference goal

cannot be found in the Table submenu
Tb2 The goals are listed in a single long list without any order (e.g., alphabetic) and the goal

Pairwise Difference is at the end of the list of over 10 goals, so the subject can forget what
goal she is trying to select.

Tb3 The argument selection is a tricky operation. It is easy to make the selection in an erroneous
way.

Tb4 The wording used in the implementation of computation selection is not natural for the
subject. People do not usually "select arguments for subtraction operation", they say "a-b".

Tb5 Subject does not know how to add a new item into the existing structure.
Tb6 Subject does not save the file after the change. Basset does not remind users to save the

changes when quitting or opening a new sheet.

