
In A.F. Blackwell & E. Bilotta (Eds). Proc. PPIG 12 Pages 67-80

12th Workshop of the Psychology of Programming Interest Group, Cozenza Italy, April 2000 www.ppig.org

How do people check polymorphic types?

Yang Jun, Greg Michaelson and Phil Trinder

Department of Computing and Electrical Engineering
Heriot-Watt University, Riccarton, EH14 4AS, UK

{ceejy1,greg,trinder}@cee.hw.ac.uk

Keywords: POP-II.B. problem comprehension, POP-II.B. types of programmer behaviour

Abstract

Polymorphic typechecking algorithms efficiently locate type  errors in programs, but users find error
reporting from such  algorithms hard to comprehend. We are investigating the  development of a new
polymorphic type checker that reports  type errors in a more understandable form. Here we present
the results of experiments into human checking of both  correct and incorrect polymorphic typed
programs, and  briefly discuss their implications for our proposed new checker.

Introduction

Polymorphic typechecking

The Hindley-Milner typechecking algorithm is widely used in contemporary functional language
implementations, for example Standard ML (Milner et al 1997) and Haskell (Peyton Jones et al
1998). The algorithm traverses a program’s abstract syntax tree (AST)1, assigning type variables at
each node. It then applies rules corresponding to syntactic constructs to attempt to resolve the
assigned type variables against specific type information deduced from program contents and context.
For a full account, see Milner (1978).

For example, consider checking the following Standard ML-ish function, which returns a string
depending on the sign of its integer argument:

fun sign 0 = "zero" |

    sign n = if (> n) 0 then "positive"

                        else "negative"

This function has type int -> string, i.e. it takes an integer argument and returns a string
result.

Prior to type checking, it is assumed that:

0 : int i.e. 0 is an integer

"zero" : string i.e. "zero" is a string

"positive" : string

"negative" : string

> : int -> int -> bool i.e. > compares two integers to return a boolean
                                                          
1 An abstract syntax tree is a representation of the meaningful syntactic
structure of a language utterance.

Titolo convegno-volume
© 2000 Edizioni Memoria



Yang, Michaelson and Trinder ii

PPIG 2000, Cozenza Italy www.ppig.org

The rule for a function:

• checks the first case:

• concludes 0 is int from assumptions

• checks the body i.e. deduces "zero" is string from assumptions

• concludes that the first case is int -> string

• checks the second case:

• assumes parameter n has type α

• checks the body i.e. checks the if expression:

• checks the condition i.e. checks the application of  > n to 0:

• checks the application of  > to n:

• concludes that > is int -> int -> bool from assumptions

• assigns the type variable β to the result of the application

• concludes that n is α from assumptions

• unifies the anticipated type α -> β with the type of >, int -> int -> bool

• concludes that α is int and β is int -> bool

• assigns the type variable γ to the result of the application

• concludes that 0 is int from assumptions

• unifies the anticipated type int -> γ with the type of int -> bool

• concludes that γ is bool

• unifies the condition type bool with the required type for a condition, bool

• checks the then branch i.e. concludes that "positive" is string from assumptions

• checks the else branch i.e. concludes that "negative" is string from
assumptions

• unifies the then and else branches, which must have the same type

• concludes that the if has type string

• concludes that the second case has type int -> string

• unifies the cases

 

 To summarise, the algorithm:

• is exhaustive, considering all parts of a program;

• is top-down, left to right;

• introduces a type variable for many constructs before instantiating a construct’s type.

 

 In contrast, in our experience people appear to be far less rigid and rigorous in their checking of
types. They seem to:



Yang, Michaelson and Trinder iii

PPIG 2000, Cozenza Italy www.ppig.org

• be partial, assuming a construct’s type on the minimum necessary evidence;

• be opportunistic, scanning a program as 2D text for sources of evidence;

• seek concrete evidence (e.g. ground types) before introducing type variables.

 

 We might caricature a typical human check of the above example as:

• 0 is int so n must be int

• "zero" is string so the function result must be string

• so the function must be int -> string

 

 We may note that the caricature human check:

• concludes that every case must be int -> string because the first case is int ->
string;

• scans down the columns of patterns as well as across each case;

• focuses on the ground type objects 0 and "zero".

 

 Note that we find that this caricature is not wholly accurate.

 

 Hindley-Milner Error Reporting

 We have observed that the Hindley-Milner algorithm is a poor source of guidance for humans in
the presence of errors (Yang & Michaelson 2000). For example, consider the following incorrect
definition of the Standard ML function map. The map function is supposed to apply a function
argument f to every element of an argument list, for example, given:

 

 fun double x = 2*x

 

 then:

 

 map double [1,2,3,4] ==> [2,4,6,8]

 

 The incorrect definition is:

 

 fun map f [] = 0 |

     map f (h::t) = f h::map f t;

 

 where:

• [] ==> empty list;

• (h::t)==>  pattern where h matches the head of a list argument and  t matches the tail of
that list;



Yang, Michaelson and Trinder iv

PPIG 2000, Cozenza Italy www.ppig.org

• f h::map f t ==>apply f to h and put result on front of list from applying map with f
to t.

 

 In SML, all function cases are supposed to return the same type. Here, however, the first case
returns the int 0 but the second case returns a polymorphic list.

 Given this definition, the SML of New Jersey system (Version 0.93) reports:

 

 example.sml:1.19-2.37

  Error: rules don’t agree (tycon mismatch)

   expected: (’Z -> ’Y) * ’Z list -> int

   found:    (’Z -> ’Y) * ’Z list -> ’Y list

   rule:

     (f,h :: t) => :: (f h,<exp> <exp> t)

 example.sml:1.1-2.37

  Error: pattern and expression in val rec dec

         don’t agree (tycon mismatch)

   pattern:    (’Z -> ’Y) -> ’Z list -> ’Y list

   expression: (’Z -> ’Y) -> ’Z list -> int

   in declaration:

     map = (fn arg => (fn <pat> => <exp>))

 

 Note the:

• use of the system type variables2’Y and ’Z, which do not appear in the original function;

• failure to identify explicitly the clash between the types of the first and second cases as the
source of the error;

• error messages refer to the abstract rather than the concrete syntax;

• same error is reported in two different ways.

 

 

 Edinburgh SML is somewhat more succinct, reporting:

 

 Type clash  in:

  (f,(h :: t))=>((f h) :: ((% %) t))

 Looking  for a:  int

 I have found a:  ’a list

 

 Both systems use the Hindley-Milner algorithm as the bases of their typecheckers.

 

                                                          
2 i.e. α and β for non-Greek keyboards...



Yang, Michaelson and Trinder v

PPIG 2000, Cozenza Italy www.ppig.org

 Experiment

 We are interested in automating the provision of helpful explanations of polymorphic type
checking, especially for naive users. To that end we have conducted a small study of human
polymorphic type checking, to try to identify “best practice” as the basis for an automated system.

 Based on 12 years experience of teaching functional languages to undergraduate and postgraduate
students, we  hypothesised that human type checkers would:

• focus on ground or known types first;

• use vertical relationships between patterns and cases in resolving and assigning types, which
we term 2D text inspection;

• only introduce type variables as a last resort;

• only partially check functions.

 

 We have carried out two experiments where experts were video taped type checking sets of SML
functions, following a ‘’speak-aloud’’ protocol.

 

 Question classification

 We have been unable to locate standard sets of type checking problems either for evaluating
automated type checkers or for use with people. The questions in our experiments are drawn from the
type checking problems that we set our 1st year Functional Programming students (Michaelson
1995), augmented with additional questions. Each question consists of an untyped function definition
and the subject is required to identify the type, or explain why there is a type error. Questions  are all
formed in a pure functional subset of SML, comprising base types, lists and tuples. The questions
were chosen to reflect a range of function types. For the 34 error free questions, the function types
were:

• ground types (1)

• ground and list types (3)

• ground, list and tuple types (4)

• ground types and type variables (1)

• ground and list types, and type variables (1)

• ground, list and tuple types, and type variables (2)

• function argument and ground types (2)

• function argument, ground and list types (4)

• function argument, list and tuple types, and type variables (2)

• function argument, ground, list and tuple types (1)

• function argument types and type variables (2)

• function argument and ground types, and type variables (1)

• function argument and list types, and type variables (4)

• function argument, ground and list types, and type variables (3)

• function argument, ground, list and tuple types, and type variables (1)



Yang, Michaelson and Trinder vi

PPIG 2000, Cozenza Italy www.ppig.org

• list and tuple types, and type variables (1)

• type error... (1)

 

 The 34 error questions may contain multiple errors. Identifying the errors might involve locating:

• unresolved overloading (6)

• ground type conflicts (8)

• constructor type conflicts (3)

• inconsistencies between left and right hand sides of definitions (12)

• swapped bound variables (6)

• inconsistencies between cases (7)

• inconsistent numbers of arguments (3)

• non-universally quantified type variable (1)

 

 Subject classification

 8 subjects took part in the type correct experiment and 7 in the type error experiment. 6 people
took part in both experiments. The subjects all have:

• at least post-graduate Computer Science experience;

• programmed extensively in polymorphic typed languages;

• implemented Hindley-Milner type checkers or worked extensively with them when
implementing functional languages;

• tutored undergraduate students.

and may thus be considered experts rather than beginners. Subjects were given up to 30 minutes to
complete each set.

Analysis and results

Initial inspection of the video taped sessions led to identification of 13 major inference techniques:

1. locate ground types

2. locate overloaded operators

3. locate other “system” operators of known types e.g. constructors

4. construct type skeleton for whole function corresponding to the number of arguments

5. locate commonalities across patterns

6. analyse top-down, from nodes to leaves of AST

7. analyse bottom up, from leaves to nodes of AST

8. search forwards and backwards from a known type

9. use type variable

10. identify argument type from use in function body



Yang, Michaelson and Trinder vii

PPIG 2000, Cozenza Italy www.ppig.org

11. identify body construct type from known argument type

12. construct and refine type skeleton for local construct

13. refine function type skeleton

used during type checking. Each subject’s attempt at each question was then analysed and sequences
of the above techniques were recorded.

The small number of subjects is not enough to form a  basis for statistical analysis. Nonetheless, we
are able to identify a number of clear trends by combining technique counts for all subjects.

Overall comparison of attempts at questions with and without errors

Table 1 summarises the numbers of questions attempted and behaviour instances identified:

subjects question
attempts

attempts/
subject

techniqu
e

count

count/
attempt

no errors 8 147 18.38 1830 12.45
errors 7 235 33.57 1663   7.08

Table 1 - Total questions attempted and technique counts.

Far more questions were attempted per subject and less techniques were used per question for those
with type errors than for those lacking errors. Naively, this implies that the subjects found identifying
type errors easier than inferring types, but we would need to assume that both tasks require equal
effort. However, as we shall see, subjects are slightly more likely to take a more exhaustive approach
to type inference for error free questions. Furthermore, it may be that locating dissonance is
intrinsically easier than verifying consistency, but we cannot substantiate this speculation without
further experimentation.

Error free question set

Table 2 shows the use of techniques in the error free questions, in descending order of technique
counts:

Inference Technique tech.
counts

count/
total%

  3. locate known system
operators

317 17.32

13. refine type skeleton 280 15.30

10. identify argument type 161   8.80

12. construct/refine local
skeleton

156   8.52

  4. construct function skeleton 151   8.25

  6. top down 136   7.43

  1. locate ground types 123   6.72

  5. across patterns 112   6.12

  7. bottom up 105   5.74

  9. use type variable 100   5.46



Yang, Michaelson and Trinder viii

PPIG 2000, Cozenza Italy www.ppig.org

  8. forward search   82   4.48

  2. locate overloaded operators   55   3.01

  8. backwards search   36   1.97

11. body from argument use   16   0.87

Table 2 - Questions  with no type errors: technique counts for each technique and as a percentage of
all technique uses.

Considerable use is made of type signature skeletons, which we did not anticipate. Typically, a
subject starts with a minimal outline signature (8.25%), with a slot for each bound variable, and for
the result. They then fill in the slots to finer degrees of detail as checking progresses (15.30%),
identifying argument types (8.80%), introducing sub-skeletons for structured bound variables
(8.52%) and identifying the function body type from argument use (0.87%), totaling 40.95% of
technique use.

For example, consider inferring the type of:

fun count0 [] = 0 |

    count0 (0::t) = 1+count0 t |

    count0 (h::t) = count0 t

which counts how often 0 appears in a list of integers:

• initial skeleton: ->

• identify [] as empty list: list ->

• identify 0 as integer: list -> int

• identify (0::t) as integer list: int list -> int

As hypothesised, much use is made of concrete type information.  Type constructors (17.32%) often
appear in patterns in our problem set and will be located early on in a left to right, or left top to left
bottom, scan. Ground types (6.72%) are used less than constructors, which we did not anticipate.
There is little use of overloaded operators (3.01%), reflecting their general absence from our question
set. Concrete type technique use totals 27.05%.

2D inspection of function text, comprising top down (7.43%), across pattern (6.12%), bottom up
(5.74%), forward search (4.48%) and backwards search (1.97%), represents 25.74% of technique use
confirming our hypothesis.

Low use is made of type variables (5.46%), as we hypothesised.

Contrary to our expectations, full checking was carried out for 114 questions (77.55%) and partial
checking for 33 (22.45%).

Error question  set

Table 3 shows the use of techniques in the error questions, in descending order of technique counts:



Yang, Michaelson and Trinder ix

PPIG 2000, Cozenza Italy www.ppig.org

Inference Technique tech.
counts

count/
total%

  3. locate known system
operators

372 22.37

13. refine type skeleton 206 12.03

  1. locate ground types 200 11.73

  5. across patterns 195 10.94

  8. forward search 144   7.58

  4. construct function skeleton 126   6.86

  2. locate overloaded operators 114   6.01

12. construct/refine local
skeleton

100   6.01

  6. top down   87   5.05

  8. backwards search   84   3.85

  7. bottom up   64   2.77

11. identify argument type   46   2.59

11. body from argument use   43   1.86

  9. use type variable   31   0.36

Table3 - Questions with type errors: technique counts for each technique and as a percentage of all
technique uses.

For the type error questions, less use was made of  type signature skeletons than for the error free
problems, through the introduction of an initial outline (6.85%), subsequent refinement (12.02%),
local skeletons (6.01%), argument identification (2.59%) and body from argument use (1.86%),
comprising 29.33% of technique use.

However, more use was made of concrete type information, through the identification of known
operators(22.3%),ground types (11.73%) and overloaded operators (6.01%), comprising 39.34% of
technique use.

2D inspection of text, involving across pattern (10.94%), forward search (7.58%), top down (5.05%),
backwards search (3.85%) and bottom up (2.77%), comprised 30.19% of technique use. Note that
cross pattern comparison was used far more than for the error free problems.

Type variable introduction (0.36%) was the least used technique, and used far less than for the error
free questions.

Full checking was carried out for 145 questions (61.70%) and partial checking for 90 (38.28%)
questions. There was less use of full checking than for error free questions.

Discussion and conclusions

We have observed a number of important differences between human type checking, as characterised
by our composite expert subject group, and the W algorithm. First of all, people find the elaboration
of a skeletal type during checking extremely helpful in structuring the process. Furthermore, as we



Yang, Michaelson and Trinder x

PPIG 2000, Cozenza Italy www.ppig.org

hypothesised, people rely on identification of constructs of known type to guide checking and make
use of the 2D textual form to locate them. Finally, as we hypothesised, people use explicit type
variables as a last resort.

However, our prediction of people performing partial checking was confounded. We noticed that
partial checking was most prevalent where the final type  lacks type variables. This may suggest that
expert type checkers are more punctilious than the novice students whom we observe from day to
day.

We have not found any comparable research specifically on human type checking. However, there are
interesting correspondences with work on program comprehension. In particular, our observed use of
type skeletons to guide type checking may be an instance of Brooks’ top-down, hypothesis driven
comprehension (Brooks 1983). Similarly, our observed use of  2D inspection and concrete type
features is similar to Wiedenbeck and Scholtz’s identification of the use of surface beacons to guide
successful   program comprehension (Wiedenbeck and Scholz 1989). Wiedenbeck and Scholz note
that  beacon use is particularly helpful for comprehension of programs with unknown purposes: our
questions are uncommented and provide no semantic information through meaningful identifiers.

Here, we have presented a brief overview of our experimental results. We intend to analyse them in
more detail, to try and identify which technique sequences people find useful in general, and to relate
such sequences to the different categories of error and error-free questions.

We are now constructing a type explanation system for our SML subset which will incorporate
heuristics based on these conclusions. The system will be much less efficient than the linear W
algorithm as heuristics may be applied repeatedly. However, we anticipate that system explanations
will prove more useful than those from the W algorithm, especially to naive users. It is likely that
there will be alternative explanations, corresponding to different traversals of the tree of W algorithm
deductions, and that full explanations will include repetitive information. The system will seek to
provide succinct explanations by minimising the explanation length, using explanation pruning
heuristics whose choice will be guided by our observations of human behaviour.

Acknowledgements

We wish to thank Andrew Cook, Mohammad Hamdan, Kevin Hammond, Hans-Wolfgang Loidl,
Robert Pointon and Joe Wells for taking part in our experiments.

Yang Jun wishes to thank ORS and Heriot-Watt University for continuing support.

References

Brooks,R. (1983) Towards a Theory of the Comprehension of Computer Programs, International
Journal of Man-Machine Studies, 18:543-554

Michaelson,G. (1995), Elementary Standard ML, UCL Press

Milner,R. (1978) A Theory of Type Polymorphism in Programming, Journal of Computer and
Systems Sciences, 17(3):348-375

Milner,R., Tofte,M., Harper,R., and McQueen,D. (1997) The Definition of Standard ML: Revised
1997, MIT Press

Peyton Jones,S.L. et al (1998) Report on the Programming Language Haskell 98: A Non-strict,
Purely Functional Language, http://www.haskell.org

Wiedenbeck,S. and Scholz,J. (1989) Beacons: a Knowledge Structure in Program Comprehension, in
G.Salvendy and M.J.Smith (Editors), Designing and Using Human-Computer Interfaces and
Knowledge Based Systems, Elsevier, Amsterdam, 82-87



Yang, Michaelson and Trinder xi

PPIG 2000, Cozenza Italy www.ppig.org

Yang,J. and Michaelson,G. (2000) A visualisation of polymorphic type checking, Journal of
Functional Programming, Vol. 10, No. 1:57-75


