
In G. Kadoda (Ed). Proc. PPIG 13 Pages 85-103

13th Workshop of the Psychology of Programming Interest Group, Bournemouth UK, April 2001 www.ppig.org

Designing a Programming Language for Home Automation

Alan F. Blackwell and Rob Hague
Computer Laboratory

University of Cambridge
{Alan.Blackwell, Rob.Hague}@cl.cam.ac.uk

Keywords: POP-I.C. domestic automation POP-II.A. end-user
POP-III.B. ML family languages POP-III.C. tangible languages
POP-VI.C. likely future developments

Abstract

The AutoHAN project at the Cambridge Computer Laboratory is developing a range of technologies
related to next-generation home networking and automation. Several aspects of the project involve
the development of programming languages suitable for use in the home. Languages of this sort will
clearly have a significant impact on the usability of domestic electronic devices, and greatly broaden
the range of users who might benefit from psychology of programming research. As yet, the design of
the AutoHAN languages is not complete. This paper therefore describes the design process and
design criteria that have been applied so far. This is as a basis for discussion at this workshop, and for
planning of further psychology of programming research related to the AutoHAN programme.

Home Automation Background

Home networking technologies are rapidly being deployed, if not in the average person’s house, then
at least in many research environments. Large companies are experimenting with home networking.
Nascent standardisation bodies are competing to define networking and communications protocols
(e.g. Waldo/Sun Microsystem 1999, Microsoft Corporation 2000) by which appliances can
communicate with control devices and with each other.

These trends will soon bring significant challenges to the psychology of programming community.
PPIG researchers have occasionally wondered in the past whether the proverbial impossibility of
programming a video cassette recorder should be a concern of ours. A few people have investigated
the area, but not many. Thomas Green, Alan Blackwell and Rachel Hewson have given some thought
to the programming of central heating systems (Blackwell, Green & Hewson submitted), as have
Anna Cox and Richard Young (2000). Harold Thimbleby (1993) has analysed the programming
interfaces of microwave ovens, and even VCRs (Thimbleby 1991). But even though these results
might bring psychological or usability insights, they are seldom considered to be directly relevant to
programming language design. “Programming” a VCR is not real programming in the eyes of most
computer scientists. But if you want to instruct your VCR to start recording from the front door
security camera for 5 minutes after the time that someone presses the front doorbell, this seems a lot
more like real programming.

So the significance of home networking is that programming in your house may suddenly become a
great deal more complicated. If your VCR can talk to your home security system over the home
network, how will it know what to say? Perhaps the manufacturer will build in all the required
functionality to both devices. But would you trust your VCR manufacturer to do this? Perhaps
manufacturers will just keep themselves to themselves, and won’t be tempted to mess with other
devices in your house. Would you trust them to do that? On balance, it does seem that homeowners
will find themselves with the potential, and maybe the inclination, to define complicated behaviour in
their own homes.

The AutoHAN project

This problem is the main concern of the AutoHAN project in the Cambridge Computer Laboratory.
The Home Area Network (HAN) project continues some years of research, developing hardware and
software tools suitable for home networking. A demonstration house has been wired up with the
original “Warren” system, which can be used to network radio, CD players, video recorders and

Blackwell & Hague 2

PPIG 2001, Bournemouth UK www.ppig.org

telephones to speakers, displays and interaction devices all over the house. All media and control
signals are carried using the high-speed ATM protocol, implemented in low-cost custom chips. The
Warren system has been described elsewhere (Greaves 1997).

AutoHAN is a follow-on project that aims to give homeowners the ability to interact with their home
area network and define its behaviour. This involves many complex pieces of software – a home
registry, an architecture for mobile software, event architectures, media, authorisation, validation and
subscription services. Those aspects of the project have been described elsewhere (Saif, Gordon &
Greaves 2001). This paper is concerned with the development of an interface to these various
facilities for the home programmer.

Other related projects

As we have said above, there are many research groups, companies and consortia who are racing to
develop home networking technology. Some of those have had to consider the issues of how a user
will specify behaviour. The IBM pervasive computing group, in their recent textbook on pervasive
computing (Hansmann et al. 2001), report the findings of their research on usability: such devices
should be both “convenient” and “intuitive” (Hansmann et al., page 23). The Microsoft “Easy
Living” research group have created a prototype living room with a range of networked appliances. If
the occupant wants to define new behaviour, he or she can walk to the computer in the corner of the
living room and write an appropriate program – in 1999, this was accomplished by writing in C
(Brumitt 1999). Our goal in AutoHAN is to improve on these efforts.

Overview of AutoHAN programming

Researchers on the AutoHAN project are currently working on several different programming
languages. These are aimed at different types of users, and some of them might only ever be used by
computer science researchers (members of our project team). The two main languages (which only
have provisional names at this stage) are referred to as “Iota.HAN” and “Media Cubes”. Both of these
languages are only partially specified at present. It may seem strange that a research paper is being
written about a partially specified language, but this is completely intentional, as described below.

Iota.HAN

The Iota.HAN language is intended to be a systems programming language for AutoHAN. Some of
the design objectives for this language are: that it should be suitable for manipulating the home
registry (with data stored in XML format); that it should be suitable for processing and responding to
events; that it should be possible to update the set of programs while the network is running; and that
it should be possible to carry out some automatic analysis of programs written in the language to
check for correctness, or for violation of secure constraints (e.g. do not allow any appliance
controlled by teenage residents to debit the household account without authorisation). The designers
of Iota.HAN have more general interests in language design, which they are pursuing under the name
“Iota”. Iota.HAN is a customised version of Iota (and also the first implemented version of Iota)
dedicated to AutoHAN.

Media Cubes language

The Media Cubes language is intended for “end-user” programming in the home. It has very little
resemblance to a conventional programming language. The syntactic elements are small physical
blocks (cubes about 5cm on each side) containing a range of sensing and communication interfaces,
including infrared transceivers for communication with the home network, and induction coils that
sense the proximity of other cubes. Programs are created in the Media Cubes language by placing
cubes next to each other, and instructing the system to record that arrangement somewhere within the
network.

Blackwell & Hague 3

PPIG 2001, Bournemouth UK www.ppig.org

Other languages

The AutoHAN project has also involved the development of a number of other programming
languages. A predecessor to Iota.HAN was the Cambridge Event Language (CEL), which was
originally developed in another research group of the Computer Laboratory. It was developed for use
in a real-time event database, and could be used to describe and retrieve generalised events from the
database. In AutoHAN, CEL would have been used to define policy – what other actions should be
taken when given event combinations occurred. One student worked for two years on the adaptation
of CEL to AutoHAN, but this work has been discontinued, as a result of the student leaving the
Laboratory.

CRISP (“C*** LISP”) is a command language with LISP-like syntax, designed as part of an
AutoHAN event server. It was written quickly, largely as an exercise, and as such, little effort was
put into the language design. The intended use of the language was to allow system administrators to
alter the configuration of a server at runtime. Work on CRISP resulted in some ideas with a wider
application, such as having a standard XML representation of the language.

Relevance to PPIG

At present the languages being developed on the AutoHAN project are only research tools. There
may never be real users struggling to program a toaster in these languages. But research tools have a
funny way of turning into commercial products. It may not turn out be our particular languages that
become commercial products, but somewhere in the world, a research team is developing a language
for home automation that will be the core of an actual future standard that we will all have to live
with in our houses.

This gives an unusual opportunity for PPIG research. PPIG researchers spend a lot of time looking at
the standard languages of today (C++, for example), and asking each other “why did the designers do
this?” In the case of C++, the author of the language did publish a book justifying his decisions
(Stroustrop 1994), but it might be sensible to take a sceptical view of the accuracy of his recall –
especially where there have been mistakes or backtracking. In the AutoHAN project, there is a chance
to observe language designers in their native environment, designing languages that, even if they do
not become international standards, are “like” the languages that will become the standards. They are
“like” in the sense that they are being developed in a similar environment, using similar tools, in the
background of similar previous research. This observation can therefore give us some insight into the
very early stages of designing a language for usability.

The design of the Media Cubes language

Language style and origins

The Media Cubes language is intended for use solely as an end-user programming language in the
home. It was conceived as an alternative to an earlier proposal in which the HAN would be
programmed by an infrared wand incorporating voice-recognition facilities. The drawback of that
proposal was that the user would never be able to see the program under construction – it would
consist solely of a sequence of transient gestures and spoken commands. The Media Cubes proposal
was for a relatively large number of physical control elements, each communicating with the
network, and each corresponding to some class of program functionality – e.g. representing the
occurrence of an event, the state of a media channel, a time of day etc. These cubes could be arranged
on a surface (or in the user’s hands) so that the ordering of cubes and contact between specific faces
represented the required program. The program under construction would be visible, and could be
manipulated directly without use of a computer. This concept is clearly related to previous proposals
for physical programming interfaces where flowcharts are constructed by assembling elements such
as Lego bricks (Suzuki & Kato 1995). In the Media Cubes language, however, the program elements
are not those of a conventional programming language. They are intended to correspond to the
conceptual operations performed with remote controls – and hence to familiar physical renderings of
abstract appliance functions.

Blackwell & Hague 4

PPIG 2001, Bournemouth UK www.ppig.org

Overview of current design

Figure 1 – Mockup showing Media Cube functions

The current conception of the language design centres on the notion of placing the faces of two cubes
adjacent to each other, and pressing the buttons on the cubes to explicitly indicate a relationship
between the two. The faces of the cubes are labelled with operations or values. It is expected that
some of these values will be transient, for example a face that has taken on the value of a particular
time, while others will be fixed, such as a “Play” operation for media streams. Figure 1 shows a
physical mockup of the Media Cubes constructed to demonstrate this.

Each cube may also have an associated action that is triggered by pressing the button while there are
no adjacent cubes. Used in this way, the cube acts like a simplified version of a conventional remote
control.

As well as referring to other cubes, the Media Cubes language can be extended into the environment
by fixing coils onto devices. This allows a device to be specified directly, by physically placing a
cube next to it, as opposed to indirectly, by a specification such as “tv004” or “that wide-screen TV
in the corner of the lounge”, or a selection from a list or map. One type of cube has a single face
labelled “Clone”. When this face is placed against another cube face and activated, the “Clone” face
takes on the identity and function of the other face, allowing users a “shorthand” for referring to
physical (and virtual) objects.

An extension of the clone cube is the list cube. This has three active faces – “Add item”, “Remove
item” and “Contents”. Each cube has an associated list of items that it “contains”, and the “Contents”
face aliases this list. A type system is to be used to ensure that the contents of the list “make sense”.
Note that the list is not stored in the cube itself, but in a proxy object residing in a server. The cubes
themselves are identical and interchangeable, aside from their labels and a unique identifier that used
to discriminate between their infrared signals.

The “cubes” used for programming need not be uniform. A “time” cube, for example, may take the
form of a clock face or digital display on which one can set a time, and have a face that takes on the
value of the displayed time, and another that, when programmed with an action from another cube,
performs that action at the specified time.

Standard consumer remote controls may be integrated with the Media Cubes language via adding
coils, or exploiting the directionality of their infrared signal. This allows users to create abstractions
of the functions normally associated with the controllers. For example, we point the television IR
controller at the TV and press `1' it turns on the TV on BBC-1. If instead we point the same controller
at the `time' cube described above, then pressing the `1' button on the IR controller defines a one-time
program to turn on the TV on BBC-1 at that time tomorrow.

Language design activities

The Media Cubes language is still at an early stage, and as such much of the design work done to date
is exploratory in nature. As there are few similar languages, ideas have been adapted from other

Blackwell & Hague 5

PPIG 2001, Bournemouth UK www.ppig.org

domains, such as Visual Programming. The novelty of the language, coupled with the relative
immaturity of the hardware, has also meant that, in parallel with the language design, many technical
aspects of the language implementation have had to be addressed.

One question that was raised early on in the language design process was the computational power
required by the language; in particular, should the language be Turing powerful? Although current
home control interfaces are certainly not, we decided to experiment with the inclusion of higher order
operations having the potential to support powerful abstractions. This allows us to investigate both
the new applications that such a language allows, and any potential pitfalls that it brings about.

Another factor in the language design is the degree to which the arrangement of cubes may be
dynamic. The design outlined above is highly dynamic, in that the associations between faces that
define the arrangement may be created over a period of time. A static arrangement, in which the
entire program is laid out at once, would have the advantage of ensuring that the program as a whole
was visible. However, in this type of system, the complexity of the program is limited by both
physical constraints (eg, not having enough space to lay out the program you desire, or wanting to
placed several cubes next to a single face of another), and by the number of cubes available.

Figure 2 – working prototype Media Cubes (with pencil for scale)

To try out and expand on these ideas, a small number of prototype Media Cubes have been
manufactured. Two of these are shown in Figure 2. Each cube has a copper coil on four sides.
Induction in these coils allows a cube to detect when another cube is brought within close proximity
to one of its faces. The cubes also have a single button and can communicate to a base station via an
infrared link. All functions of the cube are controlled by a PIC micro-controller, which includes
power management functions intended to achieve a battery life of about one year. The power
management functions are controlled by a motion sensor, so that they fall into quiescent mode after a
few minutes of immobility, and are immediately reactivated when picked up or moved by a user. The
internal circuitry of a prototype cube is illustrated in Figure 3.

Figure 3 – internal circuitry of a prototype Media Cube

Observed design criteria

The Media Cubes language assumes the benefits of physical manipulation as a programming
technique. Some programming languages have previously been described as “tactile” (Repenning &

Blackwell & Hague 6

PPIG 2001, Bournemouth UK www.ppig.org

Ambach 1996), but in fact still consist of visual representations on a computer screen. The “Tangible
Media” group at MIT has created a number of systems integrating “physical icons” into the
interaction environment – these are regarded as extending the advantages of direct manipulation
(Resnick et al. 1995). The “Lego” ideal of programming as the assembly of interchangeable
components has occasionally been taken literally (Suzuki & Kato 1995). In the Media Cubes
language, however, the main benefit of the language is in the way that users’ previous experience of
remote controls can be exploited to make the cubes both familiar and logically extensible. Nardi
(1993) recommends that end-user programming should exploit existing visual formalisms, extending
the formalism with computational capabilities in the same way as was achieved with the spreadsheet.
In the Media Cubes language, we treat the familiar domestic remote control as a “physical
formalism” that can be extended in an analogous way.

This has resulted in some rather different design criteria when compared to conventional
programming languages. The syntactic elements, rather than being derived from other programming
languages as in the Algoblock system (Suzuki & Kato 1995), have been chosen to correspond to
familiar physical formalisms from domestic devices. They therefore include play and pause
operations, on/off operations and entities that represent broadcast channels, track indexes, clock
settings and telephone numbers. The formal definition of these functions is still under development.

Association of the abstract functions with the behaviour or state of actual appliances in the house will
be achieved by a physical action: the cube will be placed against an appliance in order to associate it
temporarily with the behaviour of that appliance.

The greatest drawback of the Media Cubes proposal is that it is a write-only system at present. Cubes
can be arranged by the user, and the resulting program recorded in the HAN, but if the cubes are then
used to build another program, the original is no longer available for inspection. It is clear that HAN
users will want to inspect and modify their programs. At present, we envisage that completed
programs might be accessible using a program cube type, and that this can be used to display a
previously recorded script on some suitable display device – a TV screen, for example. It is clear that
many of the cognitive dimensions of notations will identify challenging usability issues associated
with this proposal.

Future objectives

It seems that the Media Cubes language may be more generally applicable to defining the interaction
of networked appliances beyond the AutoHAN project. Low cost construction techniques have led
recently to a flurry of small physical devices used for network interaction. The Xerox “Satchel”
system, for example, is used as a token for specifying the transfer of data between systems and to
peripherals (Lamming, Eldridge et al. 2000). Smart card identification tokens are being used to
transfer user sessions between public terminals. The Bluetooth wireless protocol will make such
applications both economical and more robust. Despite these factors, this interaction style has not yet
been applied to the domestic context. The resemblance of the cubes to remote controls should make
them especially appealing in that environment. This commercial potential has led to the precaution of
applying for patent protection (Blackwell 2001), in case of future commercial spinoffs from the
project.

On the technical side, the fact that the Media Cubes have been specified from the perspective of user
functionality has left a substantial gulf between the behaviour of the Media Cubes and the underlying
network applications. Our current objective is that programs created with the cubes should be
compiled into scripts in Iota.HAN, but it is not yet clear how this will be achieved.

We also intend to conduct experimental evaluations of the usability of the Cube language. Our basic
approach will be to familiarise users with the concrete functionality of the Media Cubes, when used
directly as remote control devices. Once users have become accustomed to the use of cubes for
concrete manipulation of system state, we believe that the transition to abstract programming using
the cubes as representatives of state will be relatively straightforward. This is similar to the

Blackwell & Hague 7

PPIG 2001, Bournemouth UK www.ppig.org

psychological claims made for other “tangible” programming systems (e.g. Repenning & Ambach
1996), but in our case the “tangible” language components are in fact tangible physical objects.

The design of the Iota.HAN language

Language style and origins

The design of Iota is being led by Gavin Bierman (GB) and Peter Sewell (PS), with assistance from
an undergraduate student who is implementing the first compiler. It is based on earlier work by GB,
investigating possible programming tools for WAP phones, and by PS, on languages for concurrent
programming. Although their earlier projects were independent, both had been investigating
mechanisms for processing XML (Extensible Markup Language) data – for WAP page markup (GB),
and as a representation for home automation (PS) after a direct suggestion by the AutoHAN project
leader. They therefore started from a shared interest in XML as a first-class data type, with further
interests in small-footprint languages and concurrency. Both had worked extensively with functional
languages such as ML and other impure, statically typed, call by value, languages in the past. They
considered this paradigm a natural choice for a new language design. ML is actually a family of
languages (the best known being Standard ML). As a shorthand term for all impure, statically typed,
call by value languages, we will use the term “ML-like functional languages” (MLLFL) in this paper

Overview of current design

The current design of the language is well defined, in that its syntax, type system and operational
semantics are formally specified in the manner of Milner et al (1997). However, at this stage all is
subject to change. In particular, the language designers stress that the choice of primitives, and also
concrete syntax, can and should be refined according to observations of the language in use.

fun GetAge <person age=x>
 *:content list
 </person> => x
 | *:MU => “-1”;

Figure 4 – An example function definition in Iota.HAN

As mentioned above, Iota is a functional language in the style of MLLFL, and the syntax reflects this.
XML is handled by adding a builtin markup type (MU) and extending the MLLFL pattern matching
language accordingly. For example, the function GetAge defined in the example of Figure 4.
matches a “person” tag and binds the name “x” to the value of its “age” attribute, then returns the
value bound to “x”. Note the pattern “*: type” matches any value of the correct type, but makes
no bindings. This arrangement is used in the first pattern to ignore the contents of the tag, and in the
second case to match any markup that does not match the first pattern and return a default result. In
general, binders in Iota must be explicitly typed, although in the case of some patterns and literal
values, the type is implicit.

Concurrency in Iota is expressed using Pi-calculus style channels (Milner, Parrow and Walker 1992).
This notation was chosen to give a simple yet flexible way of expressing concurrency. It also has the
advantage of being based on a well understood formalism, and is flexible enough to be used as a basis
for higher-level concurrency constructs. The terse concrete syntax is similar to that of Pict, a
“language based directly on the Pi-Calculus” (Pierce and Turner 1997), which among other features
indicates input and output channel identifiers using the concurrent language convention of “!”
(output) and “?” (input).

At present, Iota includes polymorphism through subtyping, but lacks parametric polymorphism as
found in many functional languages. This is due to a desire to keep the language simple and compact,
while accommodating a more flexible typing system used for markup. A more complex type system,

Blackwell & Hague 8

PPIG 2001, Bournemouth UK www.ppig.org

which would provide features such as modules and data hiding, may be added at a later date, but such
decisions will have to be weighed against the requirement for a small, simple language.

Language design activities

This section summarises results from research interviews conducted with the designers, in which they
were asked to provide a “snapshot” of the design rationale for Iota. The interviews were conducted
before the first internal document on Iota had been completed, and after they had been working on the
project for about six months. GB provided most of the material reported – PS was sceptical that such
information would be valuable without detailed discussion of the design space. In the following
presentation of material from the interviews, key terms are italicised – these key terms were
repeatedly discussed in the interviews and subsequent meetings.

The starting point for the design was a collection of current material from the AutoHAN project.
These included partial specifications from the UPnP (Universal Plug & Play) home networking
standard, and scenarios of AutoHAN execution. These documents included samples of XML that
should be transformed or generated in a home network. The designers observed conflict between the
concrete syntax of the two languages. XML is “only a transfer language, designed by non-
academics”, while ML is a “most beautiful language”. In combining the two languages, they were
faced with the choice of either extending XML with escaped chunks of Iota, of handling quoted XML
data values within Iota code, or integrating the two without escaping. They decided on the latter.

A second major concern was with type processing in the language. MLLFL are strongly typed
languages – they were designed by researchers with a central concern for programming language
semantics. GB and PS themselves are active researchers in this area. Unfortunately type information
in XML is not well defined. It is presently loosely specified via Document Type Declarations
(DTDs), and the W3C consortium is considering proposals for “XML Schema”, a more expressive
definition language. However, this is just one of many competing proposals for an XML type system,
and no decision is likely before the first implementation of Iota is complete. The decision was made
to use a crude type system for XML to avoid the subtleties of systems like Xduce (Hosoya & Pierce
2000) and XMLamda in Iota – all XML data will belong to a single type. This is likely to cause
severe difficulties in automated reasoning about program correctness. The only way to avoid this is
for Iota programmers to adopt a style with assertions and “catch-all” expressions.

Apart from discussions between the designers, the first group discussion of the Iota syntax was in an
AutoHAN weekly progress meeting – about six weeks before these interviews. This meeting revealed
that project members had different preconceptions about the nature of XML. The person who had
done most work on registry design seemed to expect database-like functionality when processing
XML. As a result of this meeting, a comprehension construct was added to the language. The
designers later expressed doubt of the value of the original meeting, as the public situation meant
only unrepresentative samples of functionality could be discussed.

Shortly after these interviews, the designers prepared a preliminary written presentation of the design,
including comments on design rationale that may have been prompted by the interviews. This was
distributed to the project team. The most recent design activities have been a meeting of the
AutoHAN project team at which this document was discussed, and a further discussion with the
designers.

Observed design criteria

The preliminary specification document with the Iota.HAN design rationale describes a number of
desirable language properties, and also some tensions between conflicting properties that may be
desirable, but are incompatible. In an analysis using Cognitive Dimensions of Notations (CDs)
(Green & Petre 1996, Green & Blackwell 1998), these conflicting properties would be described as
trade-offs. In fact it is interesting to compare the various properties described as desirable in this
document to the language properties described by CDs. CDs were originally proposed as a
vocabulary that can be used by language designers to discuss the usability decisions they make. The

Blackwell & Hague 9

PPIG 2001, Bournemouth UK www.ppig.org

Iota.HAN document is a valuable sample of the actual informal vocabulary that is used by language
designers in early design phases. It is presented here for later comparison with the CDs vocabulary.
The key elements of this vocabulary are italicised below.

An overall objective for Iota has been to achieve well-defined and clean semantics. The resulting
execution behaviour should be predictable, and precise. This can best be achieved by making the
language small and simple, but there is a tension between simplicity and expressiveness. The
concurrency features should be both expressive and lightweight. The type system for XML data is not
very expressive, as this would be too complex. Instead a loose and primitive type system has been
chosen (though a more expressive one may be retrofitted).

The language is intended to provide a clean abstraction layer. This includes a lightweight base
language at the right level of expressiveness, as well as library channels that are tuned to HAN
communication requirements. The implementation must also have a small footprint.

Some of the desirable attributes of the design are that it provides first-class integration of XML data,
higher-order functions, rich pattern matching, exception handling, asynchronous communication
primitives that are lightweight but expressive and a simple, straightforward type system. The type
system will enable a simple programming style, which doesn’t require complicated type annotations,
so code can be developed quickly. The Iota type system is flexible, but weaker than MLLFL. The
language also achieves reduced verbosity compared to XML processing in other languages by
providing lighter syntax. Heavy syntax has been avoided by removing unnecessary escaping.

Premature concern with concrete syntax is generally viewed as a distraction in the design process.
Some of the first discussions between the designers did relate to concrete syntax (embedding XML in
Iota, as opposed to vice versa), but they were keen to defer final decisions. The syntax definition does
refer to some surface syntax “magic”, but this is not widespread.

Many of the above aspects of the language are related to its eventual usability, but the designers did
not specifically mention the intended class of users either in the specification document or in
interviews eliciting their design criteria. When reviewing the draft specification, the AutoHAN
project leader presented two specific classes of user that were expected to use Iota.HAN: design
engineers working for appliance manufacturers and tradesmen customising home network
installations. This is clearly a challenging requirement – in the preparation of this paper, it emerged
that the Iota designers thought it had been a joke.

It seems that many of the issues investigated in psychology of programming research have not been
of great value in making the design decisions for Iota.HAN. For example, the desire for simple
informal and formal reasoning about the behaviour of Iota.HAN programs, and consquent early
choice of MLLFL as the most appropriate basis for the language has forced a bias towards recursive
(as opposed to iterative) control paradigms. Good MLLFL style relies on the programmer having
some facility with recursive programming, and any attempt to change this would discard many
benefits of functional programming. ML has been described by Ousterhout as “a language for people
with excess IQ points” (Haemer 1995) perhaps explaining its popularity in Cambridge as a
“levelling” device for undergraduates (Stajano 2000). We do not expect this to observe this in the
case of domestic tradesmen.

Future objectives

The development of Iota has reached a stage such that members of the AutoHAN project can write
reasonably-sized programs in the language. This is expected to lead to refinement of the language
design.

As mentioned above, one area that may see significant changes is the type system. The present
implementation supports limited type inference, and has parametric polymorphism internally.
Depending on the observations of initial users of the language, these features may be removed, or
expanded upon.

Blackwell & Hague 10

PPIG 2001, Bournemouth UK www.ppig.org

The possibility of adding an XML representation of Iota is being considered. This would allow
alternative, interchangeable concrete syntaxes to be produced without altering the underlying
language or its implementation, hence providing a tool with which to experiment with a wide variety
of end-user languages. As well as simply providing alternative textual forms, diagrammatic forms,
perhaps similar to that described by Erwig (2000), could be tested. Also, as all of these higher-level
languages share a basis in the XML representation, programs could be viewed in any of these
languages without modification.

Summary

The AutoHAN project is proceeding in a context that is quite typical of the research origins of many
widely used technologies. Commercial issues, technical constraints, and standardisation efforts are
continually influencing the design decisions being taken. Yet the project team are also pursuing
research objectives that are independent of these considerations. The Media Cubes language is a
research platform for novel approaches to language usability, while the Iota.HAN language represents
a new approach to the deployment of functional programming languages in an embedded real-time
control environment.

These differing research objectives have provided us with an opportunity to present the contrast
between the design criteria that are applied to programming languages at different levels of system
architecture. Neither language design is complete, but the design criteria are quite clearly elaborated
at this stage of the project.

As one of the long-term goals of psychology of programming research is to influence the criteria
applied to language design, this observational study provides a broad base, from two very different
perspectives, of the domain of application for that research.

It remains to be seen whether either of these languages will have any significant influence on future
developments in home area networking, but we contend that the organisational factors that led to
their design are quite typical of other research groups. Whatever languages do become applied in
domestic situations, they are likely to have arisen from similar research or development
environments. If psychology of programming research is to have an influence on the next generation
of ubiquitous programming languages, it should address itself in a recognisable manner to the factors
that have been of concern here.

Acknowledgements

We would like to thank Gavin Bierman and Peter Sewell for their patience in being treated as
subjects of study, and for their assistance in reviewing the way we have presented (and occasionally
misunderstood) their work on Iota. Daniel Gordon designed the Media Cube prototypes, and they
were constructed by Dick Kimpton. The AutoHAN project is led by David Greaves. Alan
Blackwell’s research is funded by the Engineering and Physical Sciences Research Council under
EPSRC grant GR/M16924 “New paradigms for visual interaction”. Rob Hague’s research is funded
by the EPSRC.

References

Blackwell, A.F. (2001) Remote control system for defining interaction between electronic devices.
New British patent application No. 0001921.6

Blackwell, A.F., Green, T.R.G. & Hewson, R.L. (submitted) Product Design to Support User
Abstractions. Submitted in June 2000 to special issue of ACM ToCHI on “The New Usability”.

Brumitt, B. (1999). Easy Living. Seminar presentation at Microsoft Research, Cambridge. 10
December 1999.

Cox, A.L. & Young, R.M. (2000). Device-Oriented and Task-Oriented Exploratory Learning of
Interactive Devices. In N. Taatgen & J. Aasman (eds.), Proceedings of the Third International
Conference on Cognitive Modeling. Veenendaal, The Netherlands: Universal Press, pp. 70-77.

Erwig, M. (2000). A Visual Language for XML. IEEE Symposium on Visual Languages 2000.

Blackwell & Hague 11

PPIG 2001, Bournemouth UK www.ppig.org

Lamming, M., Eldridge, M., Flynn, M., Jones, C. & Pendlebury, D. (2000). Satchel: providing access
to any document, any time, anywhere. ACM Transactions on Computer-Human Interaction, 7(3),
322-352.

Greaves, D. (1997). ATM in the Home and the Home Area Network. Presentation at IEE Colloquium
on ATM in Professional and Consumer Applications.
http://www.cl.cam.ac.uk/Research/SRG/netos/han/docs/

Green, T. R. G. & Petre, M. (1996). Usability analysis of visual programming environments: a
’cognitive dimensions’ framework. Journal of Visual Languages and Computing, 7, 131-174.

Green, T.R.G. & Blackwell, A.F. (1998). Design for usability using Cognitive Dimensions. Tutorial
session at British Computer Society conference on Human Computer Interaction HCI’98. Also
online, available from:
http://www.cl.cam.ac.uk/~afb21/CognitiveDimensions/CDtutorial.pdf

Haemer, J. (1995) Very High Level Languages Symposium Report. login 20(1), 5-10. (Report from
Usenix symposium Santa Fe, Oct. 1994)

Hansmann, U., Merk, L., Nicklous, M.S. & Stober, T. (2001). Pervasive Computing Handbook.
Berlin: Springer-Verlag.

Hosoya, H. & Pierce, B.C. (2000). XDuce: A typed XML processing language. In Proceedings 3rd

International Workshop on the Web and Databases (WebDB2000).

Microsoft Corporation (2000). Universal Plug and Play Device Architecture. Available from
http://www.upnp.org/download/UPnPDA10_20000613.htm

Milner, R., Parrow, J. & Walker, D. (1992) A Calculus of mobile processes, parts I and II.
Information and Communication, 100(1), 1-77

Milner, R., Tofte, M. & Harper, R. (1997). The Definition of Standard ML. Cambridge, Mass: MIT
Press.

Nardi, B.A. (1993). A small matter of programming: Perspectives on end user computing.
Cambridge, MA: MIT Press.

Pierce, B. & Turner, D. (1997) A programming language based on the pi-calculus. Technical report,
Computer Science Department, Indiana University.

Repenning, A. & Ambach, J. (1996). Tactile programming: A unified manipulation paradigm
supporting program comprehension, composition and sharing. In Proceedings of the 1996 IEEE
Symposium on Visual Languages. Boulder, CO. pp. 102-109.

Resnick, M., Martin, F., Sargent, R. & Silverman, B. (1996). Programmable bricks: Toys to think
with. IBM Systems Journal, 35(3&4), 443-452.

Saif, U., Gordon, D. & Greaves, D. (2001). Internet access to a home area network. IEEE Internet
Computing Jan/Feb, 54-63.

Stajano, F. (2000). Python in Education: Raising a Generation of Native Speakers. In Proceedings of
the 8th International Python Conference, Washington DC, 24-27 January 2000.

Stroustrup, B. (1994). The Design and Evolution of C++. Murray Hill, NJ: Addison-Wesley

Suzuki, H. & Kato, H. (1995). Interaction-level support for collaborative learning: Algoblock – an
open programming language. In Proceedings of Computer Supported Collaborative Learning ‘95.
Lawrence Erlbaum.

Thimbleby, H. (1991). Can Anyone Work the Video? New Scientist, 129(1757), 48-51.

Thimbleby, H. (1993). Frustrations of a Pushbutton World. In Yearbook of Science and the Future.
Chicago, Il.: Encyclopaedia Britannica.

Waldo, J. / Sun Microsystems (1999). JiniTM Technology Architectural Overview. Online publication,
available from: http://www.sun.com/jini/whitepapers/architecture.html

