
In J. Kuljis, L. Baldwin & R. Scoble (Eds). Proc. PPIG 14 Pages 100-110

14th Workshop of the Psychology of Programming Interest Group, Brunel University, June 2002 www.ppig.org

Evaluating Languages and Environments for Novice Programmers

Linda McIver
School of Computer Science and Software Engineering

Monash University, Australia
linda.mciver@csse.monash.edu.au

Keywords: POP-I.B. choice of language, POP-II.A. novice programmers, POP-III.D. editors and debuggers

Abstract

Although debate rages strongly over which programming language is the best for any particular
application (especially for teaching introductory programming), there is a lack of objective data
informing the discussions. There is a similar lack of data on appropriate development environments
for introductory programming courses. This paper discusses an existing method of comparing and
evaluating programming languages, and how that method can be adapted to compare and evaluate
integrated development environments, with a particular focus on environments for novice
programmers.
Introduction

While there are many strong feelings on the subject of first programming languages, there have been
few evaluative studies of languages, or development environments, for novice programmers.
Anecdotal evidence from introductory programming courses abounds (Reed, 2001; Allen, Grant, &
Smith, 1996; Popyack & Herrmann, 1993), and individual language features have been studied from a
cognitive point of view (Soloway, Bonar, & Ehrlich, 1989; Sime, Green, & Guest, 1973), but the
question of which programming language should be used for teaching introductory programming
remains contentious. Suggestions range from Mail Merge as a first programming language (Popyack
& Herrmann, 1993), through to traditional choices such as Pascal, scripting languages such as
Javascript (Reed, 2001), and extremely complex, "industrial" programming languages such as Ada
(Allen, Grant, & Smith, 1996) or C++.

The evaluation process for a programming language typically involves years of experience with the
language in its intended environment, be it industrial software engineering, computer science
education, research computing, or recreational programming (Allen, Grant, & Smith, 1996;
Brusilovsky et al, 1994; Collins & Fung, 1999). Formal evaluation programmes are few and far
between, and most evidence gathered is anecdotal in nature. In an educational setting, the demands of
courses and curricula make it difficult, if not impossible, to compare different languages in the same
course. Different courses generally have sufficiently different curricula to make language
comparisons meaningless. Financial constraints limit opportunities for formal comparisons in
industry. Where comparisons can be made between courses or projects, the number and scale of
differences between the different settings frequently obscure the results.

It is has been more common to compare single attributes, for example language constructs, rather than
whole languages (Soloway, Bonar, & Ehrlich, 1989; Sime, Green, & Guest, 1973). This approach is
useful to the field of language design, as it gives firm indication of the value and impact of individual
features, where comparison of entire languages does not easily lend itself to analysis of particular
features within the languages. However, this technique leaves unanswered the question of which
language is best for a particular task, and the interaction between language features is often neglected.

A stand-alone language evaluation has been done by Eisenstadt & Lewis (1992), who analysed a
large number of errors made by students using the SOLO language. This analysis has informed the
development of the evaluation techniques described here. The analysis of errors in SOLO was made
with the aim of eradicating as many syntax errors as possible, by using the analysis to inform the
modification of the interactive environment. A similar style of observation is also reported in Thomas
& Paine (2000), where the focus is on developing an electronic coaching system for distance
education, rather than on evaluation of the language or environment.

McIver ii

PPIG 2002, Brunel University www.ppig.org

Usability evaluation of a complete programming language has been done by Clarke (2001), using the
Cognitive Dimensions questionnaire (Blackwell & Green, 2001), but it is doubtful whether novice
programmers would have the necessary skills and background knowledge to answer the questionnaire
effectively.

There is some evidence that a well-designed programming environment can assist students learning to
program (Eisenstadt & Lewis, 1996) but once again there have been few, if any, direct evaluations of
whether the choice, or design, of programming development environment has a real impact on
learning.

Development environments vary dramatically, from simple text editors and command-line compilers
to fully interactive and integrated development environments. For the purposes of this paper,
"environment" will be used to refer to integrated development environments, where the programmer
interacts with one piece of software that provides editing, debugging, compilation/interpretation, and
sometimes visualisation tools.

This paper describes a method being developed at Monash University for the empirical study of
development environments, both comparatively and in isolation, in order to further our knowledge of
both design and selection principles for integrated development environments for novice
programmers. A case is made for the need to conduct both comparative and stand-alone evaluations
to find the best development environment for any task, and to find out how much impact the
development environment has on learning, productivity, and student satisfaction and frustration.

Evaluation of Languages

Comparative evaluation of programming languages can provide a great deal of information about the
relative usability of each language. It can inform the debate about which programming language to
use in introductory programming courses, or which language is best for doing particular types of
tasks. It allows direct comparison of languages, and hence a form of benchmarking - programmers
using language A, for example, might make 10% more errors on a specific type of task than
programmers using language B. This sort of benchmarking would allow more objective and informed
decisions to be made wherever choice of language is an issue. In addition to informing choice of
language, comparative evaluations can inform the future design of programming languages, as they
make more information available about the use of the complete language, not just individual
constructs.

A method for comparative evaluation of programming languages, based on standard usability
principles, is described in McIver (2000). In this method, programmer1 interaction with the language
is recorded, and the number and type of errors made is analysed. The environment is standardised,
and simplified, so that both languages are accessed using a simple text editor with a large "RUN"
button which compiles and either returns error messages or runs the code. In this way differences in
environment are eliminated, and any differences in interaction are solely due to the different
languages used in the trial.

Errors are divided into syntax and logic errors. Analysis can be taken further by breaking errors down
into sub-categories by language construct involved. More time-consuming, and arguably most
interesting, is to analyse the path taken when students are trying to correct errors and solve problems.
How do they respond to the different types of errors? How long does it take them to correct their
syntax errors? Their logic errors? etc.

This method is useful for comparing languages for a specific task, but it does have some drawbacks.
The selection of programming problems is difficult to make language independent - some problems
will naturally be more suited to one language than the other. Comparison of very different languages
is thus difficult to make truly objective and fair. For very specific circumstances, however, such as
introductory programming courses, or projects where specific types of problems will need to be
solved, this method of comparison is quite appropriate, since the comparison is not absolute, but

1 in this case, students learning programming for the first time

McIver iii

PPIG 2002, Brunel University www.ppig.org

rather relative to the intended use of the language, and the intended users. Despite the strong views of
some language evangelists, task- and user-specificity are the most meaningful contexts for language
comparison - "is language A better than language B for my specific purposes".

The evaluation of programming languages leads naturally to the evaluation of different development
environments for a single programming language, since the development environment can have a
significant impact on the overall usability of a programming language (Kölling & Rosenberg, 1996).
Feedback from the compiler, the presence or absence of syntax-directed editing, help systems, and
visualisation tools all affect a programmer's interaction with a programming language.

The method of evaluation of programming languages described above is easily modified to evaluate
environments as well - and it can also be modified to allow stand-alone evaluation of a single
language or environment, rather than comparative evaluation. These modifications are described in
the following sections.

Evaluation of Environments (Comparative)

The comparative evaluation of programming environments for novice programmers is similar to that
for programming languages, with the advantage that learning of the language can be measured
(through the use of pre- and post-tests). This is much harder with comparative evaluation of
programming languages, because programming knowledge is notoriously difficult to measure in a
language-independent fashion, especially at an introductory level.

As with language comparison, the evaluation involves taking two different development environments
(for the same programming language) and comparing programmer interaction with them. Errors made
while using the environment are recorded (and language errors can also be recorded, to see if the
environment has a direct impact on language use), as well as which parts of the environment actually
get used by programmers. Do they use the debugging facilities? Do they access online help, and if
so, does it help them? Which menu options do they use? Do they use features the way developers
envisioned?

Quantitative data can be collected for, among other things, numbers of errors, types of errors, time-to-
completion for various tasks, and time spent using different parts of the environment (for example, do
programmers spend most of their time editing the code? How long do they spend using visualisation
tools, or debugging tools?).

As well as measuring interaction, performance metrics can also be applied - in the case of students
learning programming, pre- and post-tests can be used to measure learning and understanding, while
in the case of professional programmers, standard performance metrics for productivity, efficiency,
and accuracy can be used.

Qualitative data can be obtained by tracing the paths taken by students attempting to solve problems -
for example, if a student receives an error message from the system, what does she do next? If a
student receives an unexpected result from a program, which part of the system does he turn to in his
attempt to trace the problem? This sort of data is expensive to analyse, since it is mostly not amenable
to automatic processing. Hence it is not done for every student, or even a large number of students.
In most cases a sample of interesting errors is selected, and the data traced through by hand for each
one. However, interesting results can be obtained using this technique.

Similarly, the data can be analysed for trends in terms of the way students set out to tackle a problem.
For example, if the environment offers a visualisation tool, at which point in the development cycling
(if any) do students typically access this tool? Do they use it for designing the program, or for
debugging, or for checking and validating their solutions?

Depending on when the evaluation is performed (eg. at the beginning of the first semester of an
introductory course, or in the middle, or towards the end), different results will be obtained.
Environments which provide a wide range of tools are usually introduced gradually to students, so
that the whole environment may not be used, regardless of how well-designed it is. For this reason,
the evaluation must take the course syllabus and timing into account. Different evaluation objectives

McIver iv

PPIG 2002, Brunel University www.ppig.org

will be better suited to different parts of the course - for example, evaluating the learning curve at the
start of semester, or evaluating the use of the tool in a reasonably large and complex assignment.

Having detailed information about the comparative merits of different environments will allow
informed, objective choices to be made. Environments which show clear evidence of good
programmer support − in that errors are more quickly resolved, or perhaps even less common to start
with − are clearly a better choice for introductory programming courses than environments with
higher error rates, consistently misleading online help or compiler error messages, or debugging
facilities with steep learning curves.

In addition to specific information about particular development environments, this style of evaluation
has the potential to give valuable insights into programming in general, and supportive environments
in particular. Such information could be used to inform the future design of development
environments, as well as the design of programming languages themselves. It has the potential to
generate large amounts of data, some of which can be automatically processed, and it allows objective
comparison of programming environments, together with details on the advantages and disadvantages
of individual systems.

This style of comparative evaluation is difficult to apply in a course environment, due to the ethical
and practical problems which arise from providing students in the same course with different
facilities. Evaluating environments used in different courses is difficult, due to the large number of
variables between different courses - different teaching styles, different syllabi, and different
background among the students (for example, percentage of students who have programmed before,
and what degree students are enrolled in, and what major they intend to pursue). Running small trials
purely for comparative purposes (as opposed to gathering data in situations where programming is
already taking place, such as introductory programming courses or programming projects in industry)
is expensive and time-consuming, and does not produce the comprehensive amounts of data for
automatic processing that can be gleaned from a larger, in-situ, comparative study.

In addition, much of the data gathered in this type of comparison is just as useful in a stand-alone
evaluation of a single environment. Converting the comparative evaluation process into a stand-
alone evaluation is simple, and can be extremely informative. The necessary changes to the
evaluation process are described in the next section, which is followed by a description of a planned
application of a stand-alone evaluation.

Evaluation of Environments (in isolation)

Stand-alone evaluation of a single development environment is often more practical to apply than full
comparative evaluation. Some of the same types of data can be collected, and, even without
comparison, can yield important information about an environment's strengths and weaknesses.

The data gathered in a stand-alone evaluation can also be used to make inferences about student
learning, and about problems with the programming language, as well as with the environment. An
important aspect of this style of evaluation is the use of a speak-aloud protocol with a small number of
participants, so that inferences about the data can be tested against what the students were trying to
do, and how they were reasoning about the system. In this protocol, students execute a controlled task
while describing what they are doing. Their comments and descriptions are recorded, and evaluators
can also question students about why they make particular decisions, or use particular methods. As
Eisenstadt and Lewis (1996) point out, "Symptom and cause are not the same thing." Knowing what
the students did does not mean knowing why they did it. By using the speak-aloud protocol with some
students, the validity of inferences about the causes of errors can be tested, and other information can
be gathered about the use of the system - for example, if students did not use the debugger in the
environment, it may be because the debugger was confusing, or had not yet been introduced.

Stand-alone evaluations have a number of advantages over comparative evaluations. They can be
done with existing groups of students, and data can be automatically collected, without any extra
effort from the students beyond the programming they were already doing as part of their course.
Only a small group of students (those participating in the speak-aloud protocol) would need to commit

McIver v

PPIG 2002, Brunel University www.ppig.org

extra time to the study. This obviates the need for setting up expensive, special-purpose trials purely
for data collection, and avoids the ethical problems inherent in trying to provide students within the
same course with different materials and facilities.

Stand-alone evaluation, using a large group of students, can generate a very large amount of data,
much of which can be automatically processed, and used to provide a detailed picture of students'
interaction with the system. While some of the data cannot be as readily processed automatically,
qualitative evaluation can be done using a reduced sample of work, and where interesting results arise,
that sample can easily be extended.

Given these large amounts of data, some comparison (albeit limited and general comparison) can be
done with other evaluations, even across courses. While the same detailed comparisons cannot be
done as in a true, comparative evaluation, some inferences could still be drawn from different data
sets. Figures which could still be compared include error rates, and student response to the various
error messages, online help systems, etc. These comparisons are not strictly valid, since other factors
in the courses could impact on the figures, but they may provide pointers to important differences
between the environments.

Eventually, given a sufficiently large range of evaluations conducted in different courses, it would be
extremely interesting to compare the results, especially if the same environment is evaluated in
multiple settings. This is discussed further in the next section, which describes a forthcoming
application of the stand-alone evaluation technique.

In addition to providing information about the programming language and development environment,
an evaluation of this kind would directly inform the teaching of the course involved, by providing
large amounts of data on which parts of the language and environment students understand and use
effectively, and which they don't. It would also provide a detailed picture of overall student
interaction with the language, and show patterns of use for the entire student cohort that are rarely
available.

Results showing detailed information about the usability of the environment, and students' responses
to things like the debugging environment, the error messages, the online help, etc, can also be used to
inform and improve the ongoing development of the environment. Error messages and online help
can be improved, problem areas of the interface can be redesigned, and usability issues can be
resolved - all in an educated fashion, rather than based on purely anecdotal evidence.

One of the disadvantages of stand-alone evaluation is that no specific comparison with other studies is
possible for impact on learning, since course, teaching, and student differences are likely to have a
large impact on learning, thus obscuring the impact of the development environment.

This means that stand-alone evaluation does not readily inform the "which environment" debate,
because it does not allow for objective "benchmarking" of different environments. Nonetheless, as
shown above, it does provide considerable information to teachers, students, and the designers of
development environments.

Both stand-alone and comparative evaluation will be more difficult when the environment to be
evaluated is a commercial tool, or a tool for which the source code is not available, since the simplest
way to collect the data is to modify the environment to collect most of the data automatically. Other
techniques can be used, including video tapes of programmer interaction, or programs that record
everything that takes place on a machine, but they all require substantially more work to process and
analyse the data, making the evaluation of commercial environments, in general, prohibitively
expensive and resource-intensive.

Applied Evaluation

While the evaluation of programming languages has been applied with considerable success (McIver,
2001), the evaluation of development environments has yet to be applied. The first trial of this
evaluation method will be an evaluation of BlueJ (Kölling & Rosenberg, 1996). BlueJ is a Java

McIver vi

PPIG 2002, Brunel University www.ppig.org

environment that combines syntax-directed code editing with visualisation capabilities, compilation,
debugging, and the ability to execute the code.

An important part of the development of this evaluation process will be the pilot study run with BlueJ,
before the full evaluation takes place. The pilot study has two primary objectives. Firstly it will be
used to determine what sort of data can readily be collected, and how it can be analysed. Secondly,
the speak-aloud protocol will be used to test inferences about the meaning of the behaviour observed
during the pilot.

A researcher, who was not present during the session where the speak-aloud protocol was used, will
analyse the data and make inferences about what students were trying to do during the session. This
will include inferences about errors students made, and why they tried particular ways of solving
them, as well as inferences about the way students use the system. These inferences will then be
compared against what students actually said while they were working, so that some measure can be
obtained of how valid such inferences are. A range of students will be selected for this part of the
evaluation based on achievement. As the pilot study will be run in the second semester of the
introductory programming course, students will be chosen from several bands of achievement in the
first semester subject: 50-60%, 60-70%, 70-80%, and 80-100%.

BlueJ is currently used in over 150 institutions around the world for teaching Java programming
(www.bluej.org). Because of BlueJ's popularity, this evaluation can eventually be extended to
numerous institutions in many different countries. This will provide more data on BlueJ, and it will
also allow data from different courses to be compared in order to test the validity of comparisons
across courses. If the BlueJ data is largely the same across different institutions running different
courses, this may indicate that different environments can be meaningfully evaluated using different
courses. This would eliminate one of the problems with obtaining comparative data on development
environments used for teaching. On the other hand, if the BlueJ data is significantly different across
different courses, that provides strong evidence for the questionable validity of the comparative
evaluation of programming environments in different courses.

It would be particularly interesting to examine the results from significantly different teaching
methods, such as face-to-face and distance education, to see if students in these different courses have
substantially different interaction with the programming environment.

The evaluation of BlueJ will not initially be comparative, although the data can readily be extended to
a comparative study given time, funds, and appropriate sources of data.

Conclusions

Evaluation of programming languages and development environ-ments can provide important
information for the design of new systems, and the selection of existing ones. The development of a
consistent evaluation technique may allow comparative evaluation across different courses,
businesses, and even countries, so that more information can be collected to inform the contentious
debate on which programming language and environment is best suited to a particular task, and a
particular type of user. The models presented here for comparative and stand-alone evaluations are a
first step towards the collection of data on many different programming languages and environments.

References

Allen, R.K., Grant, Douglas D., & Smith, R. (1996) Using Ada as the first Programming language: A
Retrospective. In Proceedings of Software Engineering: Education & Practice, 1996
(SE:E&P’96), IEEE Computer Society Press.

Blackwell, A.F. & Green, T.R.G. (2000) A Cognitive Dimensions questionnaire optimised for users.
In A. F. Blackwell & E. Bilotta (Eds.) Proceedings Twelfth Annual Meeting of the Psychology of
Programming Interest Group, Corigliano Calabro, Italy, April, Edizioni Memoria.

Brusilovsky, P., Calabrese, E., Hvorecky, E., Kouchnirenko, A., & Miller, P. (1997) Mini-languages:
A Way to Learn Programming Principles. In Education and Information Technologies, 2(1): 65-
83.

McIver vii

PPIG 2002, Brunel University www.ppig.org

Clarke, Steven (2001) Evaluating a new programming language. In G Kokoda (Ed.) Proceedings of
the 13th Annual Workshop of the Psychology of Programming Interest Group.

 Collins, Trevor D., & Fung, Pat (1999) Cognitive Modelling for Psychology Students: The
Evaluation of a Pragmatic Approach to Computer Programming for Non-Programmers. In G
Cummings, T Okamoto and Louis Gomez (eds), Proceedings of the 7th International Conference
on Computers in Education (ICCE'99), Chiba, Japan, November, IOS Press, Volume 1, pp 216-
223.

Eisenstadt, Marc and Lewis, Matthew W. (1992) Errors in an Interactive Programming Environment:
Causes and Cures. In Novice Programming Environments: Explorations in Human-Computer
Interaction and Artificial Intelligence, Marc Eisenstadt, Mark T. Keane, and Tim Rajan, (eds),
Lawrence Erlbaum Associates, Hillsdale USA.

Kölling, M. and Rosenberg, J. (1996) An Object-Oriented Program Development Environment for
the First Programming Course. Proceedings of the 27th SIGCSE Technical Symposium on
Computer Science Education, ACM, Philadelphia, Pennsylvania, March, pp.83-87.

McIver, L. (2001) Syntactic and Semantic Issues in Introductory Programming Education. PhD
Thesis. Monash University, Melbourne, Australia. (available on the web :
http://www.csse.monash.edu.au/~lindap/papers/LindaMcIverThesis.pdf)

 McIver, L. (2000) The Effect of Programming Language on Error Rates of Novice Programmers. In
A. F. Blackwell & E. Bilotta (Eds.) Proceedings Twelfth Annual Meeting of the Psychology of
Programming Interest Group, Corigliano Calabro, Italy, April, Edizioni Memoria.

Popyack, J.L. & Herrmann, N. (1993) Mail merge as a first programming language. In Klein BJ (ed)
Twenty-Fourth SIGCSE Technical Symposium on Computer Science Education, Association for
Computing Machinery Special Interest Group on Computer Science Education, Grand Valley
State University, MI, pp. 136-140.

 Reed, David (2001) Rethinking CS0 with JavaScript. Proceedings of the 32nd SIGCSE Technical
Symposium on Computer Science Education, SIGCSE Bulletin 33(1), 2001

Sime, M. E., Green, T.R.G., & Guest, D.J. (1973) Psychological Evaluation of Two Conditional
Constructions Used in Computer Languages. International Journal of Man-Machine Studies, 5,
pp 105-113.

Soloway, Elliot, Bonar, Jeffrey & Ehrlich, Kate (1989) Cognitive Strategies and Looping Constructs:
An Empirical Study. In E. Soloway and J.C. Spohrer, editors, Studying the Novice Programmer,
Lawrence Erlbaum Associates, Hillsdale.

Thomas, P.G., and Paine, C. B., (2000) Tools for Observing Study Behaviour. In A. F. Blackwell &
E. Bilotta (Eds.) Proceedings Twelfth Annual Meeting of the Psychology of Programming Interest
Group, Corigliano Calabro, Italy, April, Edizioni Memoria.

