
In J. Kuljis, L. Baldwin & R. Scoble (Eds). Proc. PPIG 14 Pages 186-195

14th Workshop of the Psychology of Programming Interest Group, Brunel University, June 2002 www.ppig.org

Class Libraries: A Challenge for Programming Usability Research

Kerry Rodden and Alan Blackwell
University of Cambridge Computer Laboratory

15 JJ Thomson Avenue, Cambridge CB3 0FD, UK
{Kerry.Rodden, Alan.Blackwell}@cl.cam.ac.uk

Keywords: POP-III.D. class libraries, POP-II.B. coding

Abstract

In previous collaboration with the Visual Studio usability team at Microsoft, we have learned that the
Microsoft Foundation Classes are considered central to the usability of their products. There is little
research in psychology of programming that is directly relevant to the design and evaluation of class
libraries, despite the fact that they clearly occupy a central place among the cognitive challenges faced
by professional programmers. Research into software reuse has considered some of the human factors
in deploying class libraries. But the MFC library, despite being (probably) the most widely reused
code in the world at present, has rather different problems from those addressed in reuse research. In
this paper we analyse the nature of those problems, identify promising research avenues, and propose
a challenge for future research in evaluating and improving the usability of class libraries.

Introduction

A central tenet of psychology of programming is that programmers are users too. Not in the sense that
there are (end) users who happen to do programming, but that professional programmers are the users
of programming environments and thus, like all users, deserve tools designed with attention to
usability. It has long been observed that only a tiny fraction of the effort devoted to programming
language research studies the behaviour of the programmer – more than 99% (judging by publication
rates) studies the behaviour of the machine. This is despite the fact that programming languages are
often described as communication channels between person and machine (in which case we have been
foolish in studying only one end of the channel), or that the software crisis is caused by a shortage of
programmers (in which case we have been foolish in not studying why so many people can’t write
programs).

Of course, none of this is news in the field of psychology of programming, founded for these very
reasons. But it has been disappointing, considering that psychology of programming research has
been conducted for some years, that commercial developers of programming languages have not made
more use of our findings to date. There is some good news, however. Microsoft is the largest supplier
of programming tools today, and there is a team within the company devoted to evaluating and
improving the usability of the Visual Studio programming products. Members of the team have
attended Empirical Studies of Programmers and Psychology of Programming meetings, and have
applied research results, as well as contributing to the research literature.

This paper arises from a visit to the Microsoft campus in September 2000, hosted by Steven Clarke
and involving psychology of programming researchers Alan Blackwell, Chris Roast and Thomas
Green. The main purpose of the visit was to discuss the use of Cognitive Dimensions (Green and
Petre, 1996) as an evaluation tool – Steven had just completed a study (Clarke, 2001) of the new C#
language using the CDs questionnaire (Blackwell and Green, 2000). CDs was not originally designed
as an evaluation tool, but a new kind of design tool that would guide designers’ decisions rather than
reacting to them. Of course this implies an organisation where design is led by usability analysts,
rather than a “throw it over the wall” model of usability evaluation where new products are specified
solely from market research data, implemented, then subjected to usability labs in order to find and fix
usability bugs.

The Visual Studio usability team, in response to our perspective on using CDs earlier in the design
cycle, offered a challenge relating to their next project. Much of the day to day effort for Visual
Studio users arises not from the usability problems of the user interface, or even the cognitive

Rodden & Blackwell ii

PPIG 2002, Brunel University www.ppig.org

challenges of complex language syntax and execution models, but in understanding and applying the
Microsoft Foundation Class (MFC) libraries – the huge set of interfaces to Windows operating system
functions. The team were about to start an evaluation project for the next release of MFC. Our group
of visitors recognised the importance of the problem, spent a while thinking about previous research,
and ultimately were unable to offer much help, either from CDs or from other research results. Hence
this paper, passing on the challenge to the wider research community.

Class library usability versus software reuse

One area of research that is clearly relevant to the question is that of software reuse (Mili, Mili, and
Mili, 1995). It is very well recognised, in the software reuse research community, that the main
impediments to reuse are human factors. However the most important human factors in that context
are a) that writing reusable code takes far more effort than writing it for a single project (and
programmers are seldom motivated to invest a lot of effort that will benefit someone else’s project)
and b) that it is often easier to write a function again than to develop understanding and trust of code
written by a colleague.

Neither of these factors apply in the case of MFC (or similar libraries such as the Java API). System
libraries are coded by professional specialists, rather than as a by-product of other projects, and they
are used by programmers who have no choice in using them – the MFC libraries are the only practical
way to access operating system functions under Windows, for example. This means that the usability
issues related to these libraries are focused on more specific cognitive questions rather than
managerial and economic ones. As a result they are more tractable to traditional HCI research
methods, and should be a promising opportunity for research; in the following sections we offer some
initial points of reference for that research.

Evaluation methods

The usability of a class library will depend on three things, all of which should be subject to
evaluation: its structure and representation (such as class and method names), the quality of its
documentation, and the development environment in which it is used. Some class libraries are tied to
a particular development environment (such as MFC, tied to Visual Studio), but others are not (such
as the Java API).

Rasmussen, Pejtersen, and Goodstein (1994, Chapter 8) distinguish between analytical and empirical
evaluation, and recommend using a combination of methods, at different stages in the design process.
McGrath (1995) also advocates the use of multiple research strategies, noting that “credible empirical
knowledge requires consistency or convergence of evidence across studies based on different
methods”, and discussing the trade-offs that must be made between generalisability, control, and
realism when selecting a strategy. In this section we consider how different evaluation methods might
be applied to class libraries. .

Analytical:

Creators of class libraries have already developed a number of guidelines and rules of thumb for their
design (and redesign, or refactoring), via cumulative experience and feedback from programmers, and
these should provide a good starting point for heuristic evaluation. Korson and McGregor (1992), for
example, list ten desirable attributes of a class library (complete, consistent, easy-to-learn, easy-to-
use, efficient, extendable, integrable, intuitive, robust, supported), and 23 criteria on which these
attributes can be tested.

We have already noted how the Cognitive Dimensions framework has been used to evaluate a new
programming language (Clarke, 2001), and it could also be applied to class libraries in particular. For
example, the naming of classes and methods in a library and could be tested for closeness of mapping,
consistency, diffuseness, error-proneness, and role-expressiveness. Level of abstraction is another CD
of obvious relevance to class libraries in general.

Rodden & Blackwell iii

PPIG 2002, Brunel University www.ppig.org

In addition, there are many metrics of software quality, e.g. (Chidamber and Kemerer, 1994), which
are easy to calculate and do seem to have some relationship to the number of faults present (Basili,
Briand, and Melo, 1996) but it is not yet clear how they might relate to the usability of the
components from a programmer’s viewpoint.

Empirical:

Laboratory-based user experiments are perhaps the most popular type of empirical study, and could be
carried out at any stage in the development of a class library. The efficiency of participants’
interactions can be measured by considering the time taken to perform a set task, and the
effectiveness of their solutions to the task may also be assessed, in terms of quality or accuracy.
Experiment participants are also usually asked to fill in questionnaires to indicate their satisfaction
with various aspects of the system, or their preference for different versions. In this way, different
systems (or different versions of the same system) can be rigorously compared.

Frøkjær, Hertzum, and Hornbæk (2000) found that effectiveness, efficiency, and satisfaction are not
necessarily related to each other, meaning that all three should be considered in any experiment. They
also noted that efficiency is a far better indicator of usability for routine tasks than complex tasks,
where a fast completion time may simply mean that the solution is ineffective. When evaluating a
class library, the task set in an experiment is likely to involve programming, which is complex, and
therefore it is crucial that the findings are not based on solution time alone.

In contrast to experiments, field studies are carried out in a natural setting, such as within an
organisation; this may take the form of simple observation, as in ethnography, or something more
obtrusive like manipulating an element of the system in use and recording what effect it has. The
conventional alpha and beta testing process would probably be classified as a field study, but it occurs
at a stage when the software is almost ready for release, and the developers are usually more
concerned with finding bugs than with overall design issues. In the case of a development
environment, it would be interesting to be able to deploy slightly different versions at this stage,
instrumented to create log files, which would allow the versions to be compared. Such logging would
also facilitate the compilation of statistics about the library, such as which components are used most
often (Prieto-Díaz, 1991).

Finally, empirical methods also include surveys and questionnaires; ideally these would be carried out
on a large scale, with a sample of people carefully selected to be representative of the target group of
programmers.

Class libraries and information retrieval

In a usable library, it should be easy for the programmer to locate a class or method to suit a particular
need. The software reuse community, assuming that programmers would soon have huge repositories
of reusable components at their disposal, have explored this issue by adapting techniques from
information retrieval research, an area which we examine in some depth in this section.

A usable class library should also be easy to understand, so that the programmer can grasp what a
component actually does, decide whether it meets her needs, and incorporate it into her applications.
In terms of information foraging theory (Pirolli and Card, 1999), this is known as sensemaking.
Existing research into program comprehension tends to concentrate on source code, but with class
libraries it is usually only the method signatures and documentation that are available to be read.
Gibbs and his colleagues (1990) have noted the importance of the representation, or “packaging” of
classes; typically it is necessary to rely on appropriate naming and good documentation. Fischer,
Henninger, and Redmiles (1991) describe a system with complementary facilities for locating
components and explaining them to the user (by way of example code fragments).

Rodden & Blackwell iv

PPIG 2002, Brunel University www.ppig.org

Querying and browsing

Information retrieval systems are used to automatically index collections of text documents: the
individual words are extracted from each document, and a list of every unique term in the collection is
created, where each term has pointers to all of the documents that contain it. The user issues a query
by entering a few terms that characterise her requirement, and the system matches these against its
list, returning a set of documents containing the user’s terms. The system may weight the terms
according to their frequency (within the individual documents or the collection as a whole), and this
allows the results of the query to be ranked in order of their estimated relevance. The most widely
visible application of these systems is in World Wide Web search engines, which index the full text of
billions of documents.

With software components, however, the terms present in source code are not as content-descriptive
as those in a typical text document, and it is difficult to automatically extract anything meaningful
from them. This makes it necessary for the information retrieval system to rely on associated text,
such as the library’s documentation, enabling the user to search for components by issuing queries
(Maarek, Berry, and Kaiser, 1991).

Another form of searching is directed browsing (Marchionini, 1995), where the user attempts to
satisfy her requirement by simply looking through the library in whichever form it is presented to her.
To support directed browsing, a class library should be well structured and named. With this strategy
the user can recognise a relevant component when she sees it, rather than having to explicitly describe
its characteristics. It may be difficult to create a good enough representation of a component (or a
related group of components) in a small amount of screen space.

Mili and his colleagues (1999) make the distinction between querying and browsing in collections of
software components, stating that “there is ample evidence to the effect that browsing is the most
predominant pattern of library usage, if only because software reuse is consistent with bottom-up
software design”. The user may prefer directed browsing to querying if her requirement is vague, or
difficult to express in words, especially if she is already somewhat familiar with the classes. In the
latter case, the development environment can prompt interactively to help her remember method
names, parameters, and so on, meaning that she does not have to rely on her own memory, or break
her current train of thought to look up the class in a manual.

Annotation and organisation of components

The author of a class library’s documentation will concentrate on clarity of exposition, not on whether
she is using the right terms to facilitate automatic indexing and retrieval. Both querying and browsing
can be assisted by the provision of more specialised cataloguing or indexing, via manual annotation of
the components. Classes in Eiffel (Meyer, 1990), for example, may contain a special “indexing”
clause, which allows the programmer to write annotations directly in the code. Manual annotations
may take many forms, such as facet analysis (Prieto-Díaz, 1991), keywords from a controlled
vocabulary, or attribute-value pairs. Creating high quality annotations is likely to be time-consuming
and difficult, however, and programmers may need to be offered suitable incentives to invest
sufficient effort in it.

In addition, the annotations will always reflect the subjective judgement of the annotator, who cannot
anticipate all of the potential requirements for which a component may be useful. Furnas and his
colleagues (1987) identified what they called “the vocabulary problem” in the context of command
naming: they found that, in five different application domains, it was unlikely that two people would
spontaneously use the same term to describe a given concept. For example, a programmer may not be
aware of specialised terminology used to describe a particular type of data structure or algorithm.

Class libraries are often given some form of hierarchical structure (like the packages in the Java API),
grouping related items together as in the classification of non-fiction books according to subject
matter. Again, this is usually highly subjective (Atkinson, 1997). Information foraging theory
suggests that such structuring can support directed browsing, as long as the chosen representatives at
each level of the hierarchy offer a good information scent; this is defined as “the (imperfect)

Rodden & Blackwell v

PPIG 2002, Brunel University www.ppig.org

perception of the value, cost, or access path of information sources obtained from proximal cues, such
as bibliographic citations, WWW links, or icons representing the sources” (Pirolli and Card, 1999).

Frakes and Pole (1994) carried out an experiment that compared automatic full-text indexing of Unix
command documentation to three manual forms of cataloguing (hierarchical structuring, facet
analysis, and attribute-value). Participants were asked to locate a Unix command, given a description
of its function. There were no significant differences between the four indexing methods in terms of
effectiveness or satisfaction, but the participants were significantly more efficient with the system
based on hierarchical structuring than any of the other three. The library was very small, however,
with only 120 items.

Inferring user needs

A query is an explicit description of the user’s current requirement, but when she is browsing through
a class library, it may be possible to regard her selections as implicit indications of the sort of
component she is looking for. This is the approach taken by Drummond, Ionescu, and Holte (2000),
who describe a system that makes inferences based on this information, suggesting components to the
user based on the similarity of their structure and naming to those that she has already shown some
interest in.

So far we have assumed that the programmer will realise that she needs to go and look through the
library in order to find a component to perform a particular function. It may not occur to her,
however, that an appropriate component already exists, and she may write new code without knowing
that she could saved herself some effort by reusing code from the library. The system described by
Ye and Fischer (2002) processes whatever the user is currently writing in the program editor, and
again compares structure and naming (using method signatures) to suggest suitable methods from the
library. It also processes any text that the programmer places inside Java’s special documentation
comments, and uses that to make suggestions based on conventional text retrieval.

Collaborative filtering techniques can also be employed in this area (Chalmers, 2000): if a library is
used by many programmers, it is likely that at some point in the past, someone else will have followed
a similar browsing path to the current user, when searching for code to carry out the same function.
Again, this can be used to make suggestions, based on the previous paths. One advantage of this
method is that it can be used regardless of whether the components have been annotated.

Evaluation

Information retrieval researchers have also recognised the need to evaluate different aspects of a
system, using different methods (Dunlop, 2000). Evaluations tend to centre around the concept of
relevance (Schamber, 1994), which is usually taken to mean relatedness to a particular topic, although
a document’s real utility will also depend on many other factors, including its quality and its novelty.
For software components we could add many more, such as performance and adaptability. Evaluation
measures like recall and precision are based on counting how many of the items retrieved in response
to a query are actually relevant to it, because the user may gather useful information from a number of
documents. When searching in a class library, however, the user is normally only looking for a single
component, making these evaluation measures fairly meaningless for a single search.

Conclusions

The design of class libraries brings serious challenges for research into human issues in programming.
Much of the relevant research has been conducted under the sponsorship of major research initiatives
into software reuse (the largest of which was funded by the US Department of Defense). This paper,
in contrast, has taken its lead from a direct challenge made by the usability group at Microsoft, where
the Microsoft Foundation Classes are central to the usability demands of the Visual Studio products.
We believe that such initiatives, although rare, should be strongly welcomed as bringing priorities and
guidance to academic research. In this paper we have set out some of the ground established in

Rodden & Blackwell vi

PPIG 2002, Brunel University www.ppig.org

previous research, especially in information retrieval, but leave far more potential for future research,
in a broad challenge to this community.

Acknowledgements

This research has been funded by the Engineering and Physical Sciences Research Council under
EPSRC grant GR/M16924 “New paradigms for visual interaction”.

References

Atkinson, S. (1997) Cognitive Deficiencies in Software Library Design. In Proceedings of the 4th
Asia-Pacific Software Engineering and International Computer Science Conference (APSEC ‘97 /
ICSC ‘97).

Basili, V.R., Briand, L.C., and Melo, W.L. (1996) A Validation of Object-Oriented Design Metrics as
Quality Indicators. IEEE Transactions on Software Engineering, 22(10): 751-761.

Blackwell, A.F., and Green, T.R.G. (2000) A Cognitive Dimensions Questionnaire Optimised for
Users. In Proceedings of the 12th Workshop of the Psychology of Programming Interest Group.

Chalmers, M. (2000) When Cookies Aren’t Enough: Tracking and Enriching Web Activity with
Recer. In R. Rogers, editor, Preferred Placement: Knowledge Politics on the Web. Maastricht: Jan
van Eyck Akademie Editions, pages 99-102.

Chidamber, S.R., and Kemerer, C.F. (1994) A Metrics Suite for Object Oriented Design. IEEE
Transactions on Software Engineering, 20(6): 476-493.

Clarke, S. (2001) Evaluating a new programming language. In Proceedings of the 13th Workshop of
the Psychology of Programming Interest Group.

Drummond, C.G., Ionescu, D., and Holte, R.C. (2000) A Learning Agent that Assists the Browsing
of Software Libraries. IEEE Transactions on Software Engineering, 26(12): 1179-1196.

Dunlop, M (2000) Reflections on Mira: interactive evaluation in information retrieval. Journal of the
American Society for Information Science, 51(14):1269-1274.

Fischer, G., Henninger, S., and Redmiles, D. (1991) Intertwining Query Construction and Relevance
Evaluation. In Proceedings of ACM CHI’91.

Frakes, W.B., and Pole, T.P. (1994) An Empirical Study of Representation Methods for Reusable
Software Components. IEEE Transactions on Software Engineering, 20(8): 617-630.

Frøkjær, E., Hertzum, M., and Hornbæk, K. (2000) Measuring usability: Are effectiveness,
efficiency, and satisfaction really correlated? In Proceedings of ACM CHI 2000.

Furnas, G. W., Landauer, T. K., Gomez, L. M., and Dumais, S. T. (1987) The vocabulary problem in
human–system communication. Communications of the ACM, 30(11):964-971.

Gibbs, S., Tsichritzis, D., Casais, E., Nierstrasz, O., and Pintado, X. (1990) Class Management for
Software Communities. Communications of the ACM, 33(9): 90-103.

Green, T. R. G., and Petre, M. (1996) Usability analysis of visual programming environments: a
‘cognitive dimensions’ framework. Journal of Visual Languages and Computing, 7(2):131-174.

Korson, T., and McGregor, J.D. (1992) Technical criteria for the specification and evaluation of
object-oriented libraries. Software Engineering Journal, 7(2): 85-94.

Maarek, Y., and Berry, D., and Kaiser, G. (1991) An Information Retrieval Approach For
Automatically Constructing Software Libraries. IEEE Transactions on Software Engineering,
17(8): 800-813.

Marchionini, G. (1995) Information Seeking in Electronic Environments. Cambridge: Cambridge
University Press.

Rodden & Blackwell vii

PPIG 2002, Brunel University www.ppig.org

McGrath, J. E. (1995) Methodology matters: Doing research in the behavioural and social sciences.
In R. M. Baecker, J. Grudin, W. A. S. Buxton, and S. Greenberg, editors, Readings in Human–
Computer Interaction: Toward the Year 2000, pages 152-169. San Francisco: Morgan Kaufmann.

Meyer, B. (1990) Lessons from the design of the Eiffel libraries. Communications of the ACM,
33(9):68-88.

Mili, A., Yacoub, S., Addy, E., and Mili, H. (1999) Toward an Engineering Discipline of Software
Reuse. IEEE Software, 16(5): 22-31.

Mili, H., and Mili, F., and Mili, A. (1995) Reusing Software: Issues and Research Directions. IEEE
Transactions on Software Engineering, 21(6): 528-561.

Pirolli, P., and Card, S. K. (1999) Information Foraging. Psychological Review 106(4): 643-675.

Prieto-Díaz, R. (1991) Implementing Faceted Classification for Software Reuse. Communications of
the ACM, 34(5): 89-97.

Rasmussen, J., and Pejtersen, A.M., and Goodstein, L.P. (1994) Cognitive Systems Engineering. New
York: Wiley.

Schamber. L. (1994) Relevance and information behavior. Annual Review of Information Science and
Technology, 29:3-48.

Ye, Y., and Fischer, G. (2002) Information Delivery in Support of Learning Reusable Software
Components on Demand. In Proceedings of ACM Intelligent User Interfaces 2002.

