
Using cognitive dimensions to compare prototyping
techniques

Andy Dearden Jawed Siddiqi Amir Naghsh

School of Computing & Management Science
Sheffield Hallam University

Sheffield, S1 1WB
a.m.dearden@shu.ac.uk

Tel: 0114 225 2916

Abstract
In this paper, we explore the characteristics of different prototyping techniques applied in
interactive systems design. Our analysis applies the ‘cognitive dimensions’ framework, and is
informed by an appreciation of four key activities within the design and development of software,
namely: the authoring of design proposals; the validation of those proposals with users;
implementations mediated by prototypes and specifications; and confirmation of developed
systems. In previous discussions of prototyping, attention has focussed upon a concept of
‘fidelity’ of the prototype, discussing the relative merits of lo-fidelity and hi-fidelity prototypes.
Our assessment offers a more fine-grained analysis of methods, helps to clarify important
distinctions between prototyping methods, and may be used to inform the selection or
development of prototyping tools and techniques.

In M. Petre & D. Budgen (Eds) Proc. Joint Conf. EASE & PPIG 2003 Pages 379-390

15th Workshop of the Psychology of Programming Interest Group, Keele UK, April 2003 www.ppig.org

1 Introduction
In this paper, we show how cognitive dimensions (Green & Blackwell, 1998) can be used to
analyse different types of prototyping environment that can be used in the design of interactive
systems. We shall argue that recent innovations in prototyping tools and techniques mean that the
traditional concept of the ‘fidelity’ of a prototype, is not sufficiently fine-grained to highlight
important similarities and differences between the available set of prototyping approaches. Our
alternative formulation in terms of cognitive dimensions focuses on four important activities
within the practice of software development that may be mediated by prototypes, namely:
authoring of design proposals, validation of those proposals, implementation of those proposals in
more developed systems and the confirmation of such implementations.
We hope that this more fine-grained analysis might be useful for developers when selecting or
designing prototyping tools.

1.1 Background
It is generally accepted that user participation can contribute significantly to successful design for
interactive systems. Many authors have argued in favour of using simple tools such as paper and
pencils to create very early impressions of possible designs (Preece et al., 2002, Ehn & Kyng,
1991; Muller, 1993) and to encourage user participation in highly iterative design processes.
Techniques that focus on creating and modifying executable software prototypes in order to
obtain early feedback from users and clients, e.g. Rapid Application Development and eXtreme
Programming, are widely used in commercial software development. Others have suggested that
executable formal models, derived from specifications in languages such as Z, could be used to as
part of a prototyping process for complex or safety-critical systems (Johnson, 1995; Ozcan et al.
1998; Fuchs, 1992). Typically, these different prototyping techniques have been distinguished by
discussing the concept of ‘fidelity’, characterising prototypes as either ‘lo-fidelity’ or ‘hi-fidelity’.
Recent work (Landay, 1996; Damn et al., 2000; Lin et al., 2000; Wilson et al., 1997) has explored
ways in which some of the benefits of paper prototypes might be realised in software based
prototyping systems. In these systems designers can sketch user-interface elements or rough
designs for web-pages and identify navigational links between states or pages by drawing arrows.
These sketches can then be executed on the basis of the state transitions, allowing a user to
experience the proposed navigational behaviour of the design, without the need for a designer to
‘play the computer’ as happens in traditional paper-prototyping methods (Preece et al., 2002).
The paperCHASTE project (Dearden et al., 2002) aims to combine some of these methods to
create innovative prototyping tools for interaction designers. In particular, paperCHASTE hopes
to enable highly iterative design processes without loosing the potential benefits that formal
notations could provide.
When considering such hybrid methods that combine computer animation with hand drawn
sketching, or with formal specification, the question of how to characterise them arises. Are they,
perhaps, ‘medium-fidelity’ techniques? Such a linear characterisation is unsatisfactory. They may
offer different degrees of fidelity to different aspects of an envisaged system. It is also not clear
whether ‘medium fidelity’ should be encouraged or discouraged in early prototype development.
In what follows, we shall outline the possibility of using cognitive dimensions to develop a more
discriminatory framework within which these techniques might discussed. Our initial
investigation demonstrates that cognitive dimensions offer a useful tool for the analysis of
prototyping techniques and we plan to conduct further analysis and investigations of this
approach.
In the next section, we outline the main components of the framework. We then present our initial
review of different approaches to prototyping and discuss the relationships uncovered. Finally, we
offer some preliminary conclusions and our current intentions for further work.

2 A frame of reference
In this section, we identify four key activities that take place within the context of software
development and are mediated by prototypes. Following this, we select a small subset of concepts
from an established approach to the analysis of representational media in computing, namely the
‘cognitive dimensions’ described by Green & Blackwell (1998).

2.1 Activities mediated by prototypes
Prototyping approaches to software development pre-suppose cyclic and iterative development
process models, e.g. the Spiral model (Boehm, 1988) or the Star model (Hartson & Hix, 1989) in
which requirements and possible designs are repeatedly created, explored and validated prior to
being further developed into deliverable software components. We can thus distinguish at least
three very distinct actions within the activity of software design that are mediated by a prototype.
We can label these as Authoring, Validation and Implementation.

• In Authoring a prototype may be produced and undergo various modifications. Authoring
may involve users to different degrees. For example, in authoring a paper prototype, users
may be invited to express their ideas directly onto paper, or using toolkits; alternatively,
designers might discuss expectations, desires and requirements with users and clients
before authoring a paper-prototype separately from the users.

• In Validation, the prototype is examined by stakeholders (designers, developers, users,
customers etc.), to identify fit and misfit between the prototype and their needs. The
degree of influence that different stakeholders have within the validation activity, in
particular the relative importance of users’ views, varies between projects.

• In Implementation, the prototype is used to guide the creation of a new artefact, or may
itself be enhanced to ‘evolve’ into a new deliverable.

Of course these actions are not mutually exclusive, for example, when initially creating a
prototype, the stakeholders are likely to make initial validation judgements and modify the
prototype accordingly. During a validation session, additional elements of a design may be
authored. During implementation, developers (or users) may identify validation issues that were
not previously recognised, and further adjustments to a prototype representation may be authored.
These three activities may be related to the activity types of exploration, modification,
incrementation and transcription described by Green & Blackwell (1998). For example, our
activity of authoring may involve exploration and modification, validation may involve
modifications and incrementation, implementation may be viewed as being largely an exercise in
transcription. However, we prefer the classification above because of its specific relationship to
the particular context of software development.
An additional, though perhaps orthogonal, activity mediated (in part) by a prototype is the
management of a relationship between two organisations (the commissioning organisation and
the development organisation). We label this activity as: Confirmation

• In Confirmation, the implemented artefact may be related to earlier prototypes, and
stakeholders may argue about similarities and differences between these different
artefacts.

Of course, one way of resolving disputes within confirmation may involve authoring, validating
and implementing alterations to either the prototype or the implemented artefact. Similarly, the
way in which the activities of authoring, validation and implementation are conducted will
influence the organisational relationships and could therefore impact on the confirmation activity.

2.2 Cognitive dimensions and prototyping notations
Green & Blackwell (1998) present the framework of ‘cognitive dimensions’ as a tool for
analysing representational notations. Since prototypes used in software development can be
considered as notational devices, we shall be using parts of this framework for the analysis.

2.2.1 Viscosity
Green & Blackwell (1998) define the cognitive dimension of viscosity as

"Resistance to change: the cost of making small changes."

They further identify two types of viscosity:

"Repetition viscosity: a single goal-related operation on the information structure (one
change 'in the head') requires an undue number of individual actions.

"Knock-on viscosity: one change 'in the head' entails further actions to restore consistency."
(ibid. p12)

Green & Blackwell consider the desirability viscosity for different actions on a representation and
suggest that high levels of viscosity are generally undesirable in exploration, modification or
incrementation of a representation, but may be acceptable in transcription, where one does not
want to make changes.
Clearly viscosity is an important issue in prototyping.

2.2.2 Provisionality
Green & Blackwell define Provisionality as:

"the degree of commitment to actions or marks"

citing the example of an architect making "faint blurry marks", meaning that "something more or
less like this goes more or less here" (ibid, p41).
Clearly, provisionality has a role in the analysis of prototyping representations. However, it
appears that two different types of provisionality might be identifiable.
In any design process using prototypes, the current prototype may have different levels of status
within the design process. This status might be evidenced by the way that the prototype is used
within the confirmation activity. A prototype may be afforded a low degree of commitment, in
the sense that the final design may be very different to this version, or a high degree of
commitment in the sense that stakeholders expect the finished system to look and behave in a
manner very similar to this version. In this paper, we shall refer to this as ‘Process
Provisionality’. Even a detailed specification in a formal mathematical language might have a
degree of process provisionality, in that the specification is understood to be open to further
modification. Process provisionality is dependent upon the status of the representation within the
confirmation activity, but the degree of process provisionality may influence the way that
authoring and validation of the prototype proceed.
Alternatively, some representations invite multiple, alternate interpretations , and may be
explicitly intended to stimulate design discussion. The architects blurry pencil marks have this
property, but a formal specification in Z has specific semantics1. We shall refer to this as
‘Interpretive Provisionality’. Interpretive provisionality arises within the authoring of

1 Note that the process of refinement might offer a degree of interpretive provisionality in a Z specification.
For instance an initial specification might suggest a general relation, which could eventually be interpreted
as a partial function to sequences in some later refinement of the specification.

representations, and may be significant for the activities of validation, implementation and
confirmation.

2.2.3 Closeness of mapping
Closeness of mapping refers to the:

Closeness of representation to domain

Green & Blackwell (1998) provide two ‘thumbnail illustrations’ to expla in this dimension:
A close mapping: the visual programming language LabVIEW, designed for use by electronics
engineers, is closely modelled on an actual circuit diagram, minimising the number of new
concepts that need be learnt. A distant mapping: in the first version of Microsoft Word, the only
way to count the characters in a file was to save the file to disc – whereupon it told you how long
the file was.
In this paper, we interpret these illustrations as emphasing the visual and behavioural similarities
between the symbols in a notation and their referents. Note that we are interpreting the 'domain'
of prototyping tools to be software systems, rather than the domain in which the software might
be deployed (e.g. banking, communications, air transport etc.). Hence the 'closeness of mapping'
issue concerns the mapping between the prototype and the finally delivered software.

2.2.4 Using these dimensions
Prototyping brings out an important clarification of the concept of provisionality and its
relationship to closeness of mapping. To clarify the distinction we are making, consider the
following example. During the iterative authoring and validation of a prototype graphical user-
interface, a button on a particular screen or panel can be represented by either:

1. a roughly rectangular mark on a piece of paper, or
2. a particular software object rendered with a defined border style positioned on an

executable software prototype.
The eventually delivered artefact may or may not include that screen, that panel or that button. In
either case, both the pencil mark and the software object appear to have the same level of ‘process
provisionality’ and we might argue that the ‘interpretive provisionality’ is the same (both
representations are understood to refer to a button). However, the software object has a greater
‘closeness of mapping’ because of the degree of similarity between the representational artefact
(the rectangular pencil mark or the software object) and any software system that might be
produced.

2.3 Summary
Our analysis now proceeds examining different tools and notations that can be used for
prototyping, and exploring the four activities: authoring, validation, implementation and
confirmation; and the three dimensions of viscosity (including knock-on and repetition viscosity),
provisionality (distinguishing process and interpretive provisionality) and closeness of mapping.

3 A review of tools
Given the framework outlined above, it is now possible to examine a range of established
prototyping techniques, and evaluate more recent developments that seek to combine benefits
from different approaches.

3.1 Paper prototyping
Paper prototypes are closely associated with participatory approaches to software design. Rettig
(1994) suggests that paper-prototypes provide a valuable and cost-effective means to evaluate and

iterate design options before a team gets committed to one implementation. Paper prototypes are
usually described as an example of ‘lo-fidelity’ prototypes (Rettig, 1994; Preece et al., 2002).
To develop a paper-prototype, interface elements such as menus, windows, dialogues and icons
can be sketched onto paper. Blocks of textual output may be represented by squiggles. When the
paper prototype has been prepared, a member of the design team sits before a user and allows the
user to make selections and activate interface elements by using their finger as a mouse or
perhaps by writing ‘typed’ input. The designer responds to the user’s actions by moving interface
elements around in accordance with the proposed behaviour of the computer system. A further
person assists the session by providing task instructions and encouraging the user to express their
thoughts and impressions. Notes may be made by other observers or a video record may be
created. In participatory approaches to paper-prototyping, the users themselves may be
encouraged to create or to make modifications to the prototype (Muller, 1993).

3.1.1 Examining paper prototyping
In terms of the cognitive dimensions discussed above, paper-prototyping relies on providing a
low-viscosity representation to aid in the authoring of a design, and its incrementation and
modification during validation activities. The use of paper & pencil representations is
recommended by advocates of participatory design in particular because of the ease with which
users can modify the design representation to express their desires. However, as Lin et al. (2000)
points out, a paper prototype may suffer from repetition viscosity because changes to a design
may need to be reflected across multiple sketches.
It is also important that a relatively close mapping is available between the domain (the
appearance of a graphical user-interface) and the notation (paper sketches) so that the users can
easily learn to interpret the notation. On the other hand, one stated benefit of paper prototypes is
that because the detail of colours, precise positioning, fonts etc. is not available from a sketch,
this avoids users focussing attention on such low level details of design. This might be interpreted
as an argument against too close a mapping. Some authors have highlighted limitations in paper-
prototyping in terms of its ability to faithfully present certain aspects of interaction. Rettig (1994)
highlights the problem of representing aspects such as system response times. O’Neill et al.
(1999) discuss the lack of an explicit representation of the navigational structure, which may
result in users suggesting modifications to the layout of individual screens, but being unable to
modify or critique overall dialogue structure. Hence, paper prototyping offers a closeness of
mapping only in respect to certain aspects of the system being developed.
The use of squiggles or other vague lines in paper prototyping can give a paper prototype a high
degree of interpretive provisionality. Many paper prototypes may be explored during early design
with the intention of stimulating new ideas. In this case, there is often a clear view that the
prototype is not intended as a representation of any finished system, i.e. a high degree of process
provisionality is being supported.

3.2 Rapid software prototyping
As an alternative to the rapid iterative development of paper-prototypes, software prototypes may
be developed and validated.

3.2.1 Examining software prototyping
Using such software tools is likely to produce a design that has a closer mapping to the finished
software system than does a paper-prototype, especially in relation to the appearance and
navigation of the software. However, it is often the case that the timing behaviours of large and
distributed software are difficult to predict, and are not reflected by early software prototypes.

By applying tools such as GUI builders and visual programming languages, designers may seek
to maintain a lower level of viscosity that would be the case in textual programming
environments.
If a low level of viscosity is maintained, then designs might be treated as having a high degree of
process provisionality, undergoing multiple iterations during authoring and validation. However,
the interpretive provisionality of the design may be lower, since the prototype is rendered using
the same medium as that intended for the finished system.
Because the toolkits used mirror the toolkits in which the finished system might be delivered,
there is a close mapping between the appearance and local behaviour of the prototype and the
finished system. Of course, other aspects of behaviour such as timing, or the precise detail of
large data tables etc. may be still involve distant mappings.

3.3 Executable formal specifications
Using formal mathematically based notations is another way for examining aspects of the design
of an interactive system. Such mathematical models of a proposed design can be used to verify
detailed aspects of the semantic behaviour of a software system. The use of such formal methods
has been particularly recommended in the context of designing safety or mission critical systems,
but may also be appropriate where the precise behaviour of a system is hard to describe except
mathematically, e.g. in validating the recommendations that an automated meeting scheduler
might make where the constraints of the meeting (rooms, people, timing etc.) cannot all be
satisfied.
Fuchs (1992) explains that executable specifications represents conceptual and behavioural model
of the system that is going to be implemented and it could considered as a prototype which allows
users and developers to interact with executable specifications. Siddiqi et al. (1998) propose a
design process where executable formal specifications are used for the constructions of
prototypes, which can then be used to validate software requirements with users. This process
aims to combine the benefits of iterative prototyping with the advantage of using a formal
specification that can be subjected to rigourous analysis of its behavioural properties. The process
is demonstrated using TranZit, a tool that supports manipulation the Z specifications, and ZAL,
an environment that supports the execution of a subset of Z. Özcan et al. (1998) show how ZAL
models can be enhanced by animation facilities.

3.3.1 Examining executable specification
Khazaei & Triffitt (2002) provide an analysis of the Z notation, and its use within the TranZit tool
in relation to cognitive dimensions. The analysis suggests that even within the TranZit
environment, Z suffers from high levels of both knock-on viscosity and repetition viscosity.
Khazaei & Triffit report that most of their subjects preferred for working with paper and pencil
before attempting to input Z specifications into tools such as TranZit. Paper and pencil versions
of Z specifications allow for representations that use the notational elements of Z, but do not
adhere to the strict syntactic rules of the notation. This approach may help to reduce viscosity.
Khazaei & Triffit also suggests that Z provides a distant mapping between notational elements
and the domain described. Animation using the ViZ environment (Özcan et al., 1998) offers one
way in which a closer mapping might be enabled during validation.
Using a process in which a Z specification is repeatedly subjected to user validation and may be
revised or discarded, can, in terms of the validation and confirmation activity be interpreted as
providing for a level of process provisionality. On the other hand, the formal mathematical
definition of Z (and the community of practitioners that utilize Z in practice) restricts the degree
to which the representation is open to competing interpretations, i.e. the representation has low
interpretive provisionality.

3.4 Hybrid methods
In recent years, Landay, Lin, Hong & colleagues have demonstrated a number of different tools
that aim to provide interaction designers with prototyping tools that blur the boundaries between
paper and software prototypes.
Landay (1996) suggests that paper-based methods have a number of inherent distadvantages:

• Paper sketches are hard to modify. When large numbers of sketches are used, a designer
must frequently redraw common features of a design for all sketches when modifications
are required.

• Paper sketches provide limited support for design memory. It is hard to search through
sketches in the future to find out why a particular design decision was made.

• Paper sketches limit the quality of the interaction that can be simulated during validation
activities. In paper prototyping, a designer (developer) needs to play the computer by
moving sketches around in response to a user's actions.

From our own experience, another disadvantage can be identified, which is that paper sketches
are difficult to transport between sites in a distributed development setting where not all
stakeholders can be brought together at a single location to inspect the design.
In response, Landay proposes interactive user-interface design tools that support electronic
sketching. These tools aim to provide designers with the freedom to sketch rough design ideas
quickly, as well as the ability to test designs by letting user interacting with sketches, and to fill in
the design details as users and designers make choices. Wilson et al (1997), proposed a similar
tool that sought to emphasise the ‘rough’ ‘sketchy’ aspects of a paper-based prototyping. We
examine three of these tools below.

• SILK (Landay, 1996) stands for Sketching Interfaces Like Crazy. It allows designers to
sketch an interface using electronic stylus, and enables the designer to specify interactive
behaviours by marking transitions on a storyboard. SILK then retain the sketchy look of
the components.

• DENIM (Lin et al. 2000) extends the ideas in SILK to support the early stages of website
design. It supports sketching inputs and allows designers to examine the design at
different levels of detail varying from individual page layout to overall site navigation
structures. Links between pages can be created by drawing an arrow from the starting
point of the link within one page to the destination page. Like SILK, DENIM allows
designers and users to execute the model to explore the navigational behaviour. Figure 1
shows a screenshot of the DENIM system.

• QUILL (Hong et al, 2002) further extends the functionality of SILK and DENIM by
providing a gesture recognition system, so that particular marks on a sketch can be
interpreted as in terms of common user-interface components such as buttons, drop-down
list boxes, scrollbars or text input boxes. Thus the designer sketches the design, which is
(semi) automatically translated into a software prototype that includes the selected
components.

 Figure 1: A design sketch produced using DENIM (Lin et al., 2000).

3.4.1 Examining the hybrids
These hybrid systems all aim to provide a low viscosity representation for design. Indeed
Landay’s initial observations suggest the aim of reducing the repetition viscosity that may be
encountered with paper-prototyping. On the other hand, there may be a risk in combining the
state transition diagrams and paper representations of adding to the knock-on viscosity. Roast
(2002) presents strong arguments to suggest that the knock-on viscosity of a combined notation
may be higher than that for either of the original notations.
All the tools assume a degree of process provisionality. Because any of the prototypes can include
rough pencil marks & squiggles, they are also open to elements of interpretive provisionality. On
the other hand, as with paper prototypes, some symbols may have specific interpretations, such as
tables, buttons or scroll-bars.
The paper sketching enables a close mapping to the screen layout and navigational behaviour of
the completed software system, although the detailed appearance of user-interface components is
not closely matched. QUILL’s automatic translation to user-interface components leads to a
closer mapping in this respect.

3.5 Discussion
The examination above suggests that cognitive dimensions offer a more discriminating account of
prototypes and prototyping practices in user-interface design, than is afforded by the lo-fidelity,
hi-fidelity distinction. Our analysis to date has applied the cognitive dimensions of:

• viscosity (both knock-on viscosity and repetition viscosity)
• closeness of mapping and
• provisionality (both process & interpretive).

The example of using executable Z specifications in an iterative design process, suggests that
provisionality can be further subdivided to distinguish process provisionality and interpretive
provisionality. The use of Z in an iterative design process (Siddiqi et al., 1998) demonstrates that
process provisionality is independent of the notation used, and may be better considered as a
characteristic of the design and development process. However, it should be recognised that using
representations that include high interpretive provisionality will imply a degree of process
provisionality.

In general, prototyping strategies are assisted by the use of low viscosity representations.
Maintaining low viscosity lowers the costs associated with frequent iterations in authoring and
validating designs. Hence, the development of toolkits and environments for rapid development
of software prototypes, or the development of hybrid tools such as DENIM and SILK can be seen
as attempts to reduce the viscosity of executable software prototypes.
For validation, being able to execute the prototype enhances the closeness of mapping between
the prototype and behavioural characteristics of a system. This closeness of mapping may be
further enhanced when actual components from user interface software toolkits replace paper
based or sketch based techniques as in QUILL. This closeness of mapping, however, implies
some sacrifice of interpretive provisionality which may adversely effect the initial design
authoring activity. On the other hand, low interpretive provisionality may be desirable to simplify
the implementation and confirmation activities.
The discussion of these different tools also indicates that often these cognitive dimensions are
mixed in relation to different aspects of any given prototype. For example, a paper prototype may
have a close mapping to the layout of a screen in the delivered system, whilst having a distant
mapping to the timing behaviour of a system. It may be subject to high levels of repetition
viscosity for some types of change, but have low levels of knock-on viscosity when one part of a
screen is altered. Some areas of a paper-prototype may include squiggles to provide high levels of
interpretive provisionality, whilst others might include detailed buttons and menus.
Similar contrasts can be found when investigating aspects of executable formal specifications,
using software prototypes, or using hybrid prototyping tools.
With this more discriminatory view of prototyping tools, it may be possible to conduct a closer
investigation of the advantages and disadvantages of different prototyping approaches. For
example, lo-fidelity prototyping is sometimes advocated because of the ease of modification (low
viscosity), and the argument is combined with a discussion of the value of extensive design
exploration (high process provisionality). However, advances in the design of software and
hybrid prototyping environments may be able to achieve similar levels of viscosity and process
provisionality. A different set of arguments surround the desire to avoid discussion of low-level
design details too early in the design process. These goals suggest prototypes where the closeness
of mapping to some aspects of a software system should be kept low. Further, representations
with high levels of interpretative provisionality might be useful in stimulating the discussion of
new design ideas within design authoring activities.

4 Conclusion and further work
Previous discussions of the use of prototypes in user-interface design have contrasted lo and hi-
fidelity prototyping. In this paper, we have developed an alternative characterisation of
prototyping, based around an analysis of the activities that may be mediated by prototypes, and
the framework of cognitive dimensions. Authors in HCI have previously argued for the
importance of lo-fidelity prototyping, whereas our analysis suggests that a single dimension is
insufficiently expressive to distinguish the many different prototyping approaches that have now
been developed.
Our initia l analysis has applied only a small number of the dimensions outlined in Green &
Blackwell (1998). Other dimensions are clearly relevant. For example, all prototyping is clearly
concerned with issues of Premature Commitment within the design process. Many prototypes are
accompanied by secondary notation explaining aspects of their behaviour. Many issues in
prototyping are concerned with the creation and re-use of abstractions. In future work we hope to
conduct a detailed analysis of a range of hybrid prototyping tools, including an investigation of
some of these other dimensions. We expect that such an investigation may reveal useful insights
for the design of future prototyping tools, and may offer useful case-studies to clarify concepts
within the cognitive dimensions framework.

4.1 Acknowledgements
This work was supported by EPSRC grant number GR/R87918, paperCHASTE. We should
like to thank Mehmet Özcan, Babak Khazaei & Chris Roast for their helpful comments on earlier
drafts of this paper.

4.2 References
Boehm, B. W., 1988. A Spiral Model of Software Development and Enhancement . IEEE Computer , 21(5), 61 – 72.
Damn C.H., Hansen, K.M, Thomsen, M. 2000. Tool support for co-operative object-oriented design: Gesture based
modelling on an electronic whiteboard. In, Proceedings of CHI 2000. ACM Press.
Dearden, A. M., Özcan, M. B., & Siddiqi, J., 2002. paperCHASTE: Supporting design conversations by integrating
formal and informal representations. http://www.shu.ac.uk/schools/cms/teaching/amd/paperchaste.html
Ehn, P. & Kyng, M., 1991. Cardboard Computers: Mocking-it-up or Hands-on the Future. In, Greenbaum, J. & Kyng,
M. (Eds.) Design at Work, pp. 169 – 196. Hillsdale, New Jersey: Laurence Erlbaum Associates.
Green, T. & Blackwell, A. 1998. Cognitive Dimensions, A Tutorial. Available from:
http://www.cl.cam.ac.uk/~afb21/CognitiveDimensions/
Fuchs, N.E., 1992. Specifications are (preferably) executable. Software Engineering Journal, 7(5), pp.323 - 334.
Hartson, H. R. & Hix, D., 1989. Toward Empirically Derived Methodologies and Tools for Human-Computer Interface
Development. International Journal of Man-Machine Studies , 31, 477 – 494.
Hong, J., Landay, J, Long, C & Mankoff, J., 2002. Sketch Recognizers from the End-User's, the Designer's, and the
Programmer's Perspective. In Proceedings of AAAI 2002 Spring Symposium (Sketch Understanding Workshop).
Stanford, CA 2002.
Johnson, C.W., 1995. The Economics Of Interface Development. In Human Computer Interaction - Interact '95. K.
Nordby and P. H. Helmersen and D. Gilmore & S. A. Arnese (Eds.). London, UK: Chapman and Hall, pp. 19 - 25.
Khazaei, B & Triffit, 2002. Applying Cognitive Dimensions to Evaluate and Improve the Usability of Z formalism. In,
Proceedings of SEKE, 2002, 571 – 577. ACM Press.
Khazaei, B & Roast, C., In Press. The Influence of Formal Representation on Solution Specification. To appear in
Requirements Engineering Journal.
Landay, J., 1996. Interactive Sketching for the Early Stages of User Interface Design. Technical Report CMU-CS-96-
201, Carnegie Mellon University, Pittsburgh, PA. 1996.
Lin, J., Newman, M.W., Hong, J.I. & Landay J.A., 2000. DENIM: Finding a tighter fit between tools and practice for
web site design. In proceedings of CHI 2000, pp. 510 - 517. The Hague, Netherlands: ACM Press.
Lin, J., Thomsen, M & Landay, J., 2002. "A Visual Language for Sketching Large and Complex Interactive Designs."
Proceedings of CHI 2002. CHI Letters 4(1): pp. 307-314.
Muller, M., 1993. PICTIVE: Democratizing the dynamics of the design session. In Schuler, D. & Namioka, A. (Eds.).
Participatory Design: Principles and Practices pp. 211-238. Hillsdale, NJ. USA: Lawrence Erlbaum Associates.
O'Neill, E., Johnson, P. & Johnson, H., 1999. Representations and user-developer interaction in cooperative analysis
and design, Human-Computer Interaction, 14 (1 & 2), pp. 43 - 91.
Özcan, M. B., Parry, P.W., Morrey, I. and Siddiqi, J., 1998. “Visualisation of Executable Formal Specifications for
User Validation”, Lecture Notes in Computer Science, Vol 1385, 142-157, Springer-Verlag.
Preece, J., Sharp, H. & Rogers, Y., 2002. Interaction Design. John Wiley & Sons.
Rettig, 1994. Prototyping for Tiny Fingers, Communications of the ACM, 37(4).
Roast, C., 2002. Dimension driven re-design - applying systematic dimensional analysis.
In J. Kuljis, L. Baldwin, and R. Scoble, editors, Proceedings of the 14th Psychology of Programming Interest Group
workshop (PPIG 14), pages 173-185. Brunel University.
Siddiqi, J.I.A. Morrey, I. Ozcan, M. Roast, C. "Towards Quality Requirements via Animated Formal Specifications"
Annals of Software Engineering Vol 3 Sept 1997, 131 - 155
Wilson, S., Bekker, M., Johnson, P. & Johnson, H., 1997. Helping and Hindering User Involvement - A Tale of
Everyday Design, Human Factors in Computing Systems, Proceedings of CHI97 pp. 178 – 185. Atlanta, GA. USA:
ACM Press.

