
In M. Petre & D. Budgen (Eds) Proc. Joint Conf. EASE & PPIG 2003 Pages 436-452

Does the Empirical Evidence Support

Software Visualisation ?

Pamela O'Shea

Chris Exton

Software Visualisation and Cognition Research Group

Department of Computer Science and Information Systems,

University of Limerick,

Ireland

pamela.oshea@ul.ie

chris.exton@ul.ie

15th Workshop of the Psychology of Programming Interest Group, Keele UK, April 2003 www.pp1g.org

Abstract

Previous experiments and empirical studies in the software com
prehension field have been criticised by skeptics, for example [Sheil
1981]. Although it has been twenty-two years since his publication,
many issues still need to be addressed to this day. We are left with
no definitive catalogue of proof that either confirms or denies the use
fulness of Software Visualisation in the field of software engineering.
This paper will discuss some empirical studies and experiments from
the past, in order to present future researchers and evaluators of Soft
ware Visualisation tools with a guideline as to how we can learn from
both the good and bad traits of past experiences.

1 Introduction

In the foreword of [Stasko, Domingue, Brown, Price 1998], a common goal
for all types of visualisations is identified as "trans! arming information into
a meaningful, useful visual representation from which a human observer can
gain understanding. 1

' It is this understanding that must be proven through
empirical studies. Many means for testing understanding and comprehension
have been developed in the software comprehension field and examples of
these can be seen in the surveyed experiments.

Understanding st.ems from one's own personal mental model. The pro
grammers' mental model is defined by [Von Mayrhauscr 1995] as a current
internal (working) representation of the software under consideration. Von
Mayrhauscr discusses both the static and dynamic clements of a mental
model. A mental model can even be generated from text based debugging
tools, for example, as a programmer becomes more familiar with the code
and begins to chunk groups of code together [Boehm-Davis ct al 1987] etc.
SV tools should provide many views to support its wide audience of users,
these views can be defined through the observations of software engineering
practices in empirical studies.

According to [Stasko, Domingue, Brown, Price 1998], this understanding
can be aided by SV, where Software Visualisation is defined as "the use
of the crafts of typography, graphic design, animation, and cinematography
with modem human-computer interaction and computer graphics technology
to facilitate both the human understanding and effective use of computer soft
ware".

It is then reasonable to state that any research (in this case SV), which
aims to reduce this cognitive load and reduce time spent understanding code
during software maintenance, is a worthwhile endeavour. Many studies al
ready suggest and some even conclude that SV is helping in such a way.
However, there is still a greater need for more studies to be carried out on
larger groups of programmers in industry. This and many other issues will
be discussed throughout the paper.

Programmers in industry need to be given serious input into the require
ments phase of these SV tools, aftcrall they arc going to be the people using
these tools in an effort to reduce their cognitive load. It will be their mental
models that must be taken into account as well as their behaviours, such
data cannot realistically be gathered in the lab, it must be observed "in the
wild" as it were. It should be noted that no matter how unobtrusive an ex
perimenter tries to make the experiment, it will always be a deviation from
their normal working environment and this must be taken into consideration.
vVhilc it might be an excellent idea to have the participant ask questions of
the experimenter in order to gain an understanding of the system, as they
would with work colleagues, it is not usual for ones' colleague to be a stranger
or even take notes!

Having said this, the ideal is not always readily realised in the real-world.
For example, it is quite obvious that there is a greater need for experiments

to incorporate greater sample sizes, but this is a difficult recommendation to
realise. Firstly there is the problem of recruiting busy professional program
mers, and secondly, there is so much data to analyse, especially using Talk
Aloud protocols as was done in [Pennington 1987] and [Storey et al 1998].

Software Visualisation in terms of this paper is discussed in Section 2

since it tends to be a broad category and requires further refinement for the
remaining discussion.

Section 3, presents a short selection of some empirical studies. Each
study is discussed in comparison to the others, both good and bad traits are
highlighted. The main theme is what we can learn from previous research
in order to empirically evaluate future Software Visualisation tools. Some
very noteworthy points have been recorded in previous studies and should
be kept in mind for the future. The studies were chosen to cover a range of
participant experience. For example in [Pennington 1987], forthy professional
programmers were used, this differs from the mixed study carried out by
[Boehm-Davis et al 1987], where the participants were eighteen professional
and eighteen novice programmers.

Section 4, deals with future issues and discusses the factors that have
been learnt through the survey of experiments. Issues such as sample sizes,
training time, measurement of spatial aptitude are discussed as well as other
features.

2 Software Visualisation Overview

SV depends upon the research carried out in the Software Comprehension
field. Both these categories are quite wide, so further refinement and defini
tion is required to clarify the meaning in the context of this paper.

According to [Boehm-Davis et al 1996] Software Comprehension consists
of reconstructing the logic, structure, and goals that were used to write a
computer program. Each experiment measures software comprehension in
some form to varying degrees, if that is its goal. vVhat is meant by this is
that each empirical study will have different requirements and as a result
will have different interpretations of when a participant has achieved enough
comprehension to satisfy the task at hand. For example, there may not be a
need to understand every single line of code in the system, instead, it might
be desirable to narrow the focus to a certain number of classes/methods or
functions. Littman speaks about the programmer being able "to localize
parts of the program to which changes can be made", this is referred to as

the As-Needed Strategy [Littman et al 1986].
Software Visualisation also needs to be defined in terms of this paper.

SV tends to become a parent category for all types of visualisations and
encompasses such categories as Algorithm Animation, Program Visualisation,
Visual Programming etc.

Algorithm Animation is "the process of abstracting a program's data, op
erations, and semantics, and creating dynamic graphical views of those ab-

stractions " [Stasko 1990].
Visual programming refers to any system that allows the user to specify

a program in a two {or more) dimensional fashion, [Myers 1986].
Program visualization, is vvhere the program is specified in the conven

tional, textual manner, and the graphics is used to illustrate some aspects of
the program or its run-time execution.", [Myers 1986].

In relation to the software engineering field, Software Visualization (SV)
should have the goal of making the professional software engineers' cognitive
tasks easier (usually using Program Visualisation). However, it was found
that there is more need for studies focusing on Program Visualisation tools
using professional programmers. For example, in the past, the majority
of empirical studies were performed on academic participants rather than
professional programmers in industry. Thus limiting the type of conclusions
that could be drawn as well as running the risk of missing behaviour's that
are particular only to professional programmers. As a result, the examination
of empirical studies in this paper incorporates many of these studies run on
student programmers due to lack of industrial run studies. It is hoped that
such studies may help to provide a reference point, that can be used by other
researchers to devise their own empirical study.

3 A Short Selection of Empirical Studies

3.1 Pennington's Study Comprehension Strategies

in Programming

Of all the studies surveyed, [Pennington 1987] had the largest number of
participants with a total of forty professional programmers. An allocation of
two and a half hours to the experiment also makes it the longest. Although
[Cunniffe and Taylor 1987] only used program segments, Pennington's two
hundred line program can be considered to be quite small in comparison to
the seventeen-hundred line program used in [Storey et al 1998].

The strength of this study can be seen through the quality of participants,
forthy professional programmers from industry were observed in order to find
any differences in comprehension strategies between programmers with high
and low levels of comprehension. Half of these programmers were asked to
Think-Aloud.

Experimental data was gathered using a controlling program which recorded
all of the programmers' responses, explanations and response times, as well
as recording which line of the program was in the center of the screen. Com
plimenting this, programmers were allowed to take notes or draw diagrams
while studying the program.

Program comprehension was studied using the following categories: Op
erations, Control Flow, Data Flow, State, and Function.

Van Dijk and Kintsch's textbase and situation model are referred to as the
program model and domain model in this paper. Program Model is defined as,

"a representation that highlights procedural program relations in the language
of programs". Domain Model is defined as, "a representation that highlights
functional relations between program parts that is expressed in the language
of the domain world objects". Pennington suggests from her previous results,
that the program model is constructed before the domain model.

In contrast to the other experiments, the two hundred line program was
a real-world COBOL program used in production, which was also ported to
FORTAN for the experiment. Adopting a Bottum-Up approach, the partic
ipants were asked to summarise the program in text form after a forty-five
minute study of the program. Four levels of detail were recorded: 1. Detailed
statements, 2. Program level statements, 3. Domain level statements and
4. Vague statements. Twenty questions were presented in a quiz format on
screen to examine comprehension (cloze-test). Thirty minutes was allocated
to the modification tasks, in which all participants were unfamiliar with the
modification task.

Being the only experiment surveyed that examined comprehension strate
gies, the results were categorised into comprehension groups. It was observed
that the programmers who achieved best comprehension levels had used a
cross-reference summary strategy (i.e. participants who summarised using
program, domain and operation statements evenly). vVhile programmers
with low comprehension levels, had used either a program level summary or
a domain level summary.

Pennington states that "In our research, comprehension was strongly re
lated to participants' strategies in constructing a model of the domain". In
terestingly, Pennington goes on to say that "we must be prepared for a mul
tiplicity of mental representations, even within one head".

In conclusion, the program used was not extremely complex when com
pared to the seventeen-hundred line program used in [Storey et al 1998],
which was designed to have complex control flow. However, there are quite a
number of strong points when compared to the other surveyed experiments.
Most importantly, all the programmers were professional software engineers
and the code used was a real-world program. This is quite significant, when
compared to [Cunniffe and Taylor 1987] for example, where only program
segments were used. In general, programmers do not try and recall parts of
a program without reference to the source code. This is the one issue that
stands out from this experiment, as it is not an everyday programmers task.
From an SV tool point of view, support is given for tools that use hypelink
styled layouts e.g. PUI [Chan and Munro 1997], as the best comprehenders
used a cross-reference summary strategy and this would allow them to navi
gate more freely. SV tool designers can look to this experiment as evidence
for supporting multiple views but it must also be kept in mind that recalling
is not an everyday programmer task.

3.2 Cunniffe and Taylor's Study : Graphical vs. Tex

tual Representation: An Empirical Study of Novices'

Program Comprehension

As with a large number of experiments to date, [Cunniffe and Taylor 1987]
was performed using twenty-three student novice programmers. The group
was divided in two, where group one had learned to program textually using
Pascal. In contrast, group two had learned to program graphically using FPL
(First Programming Language which was developed at Columbia University).
The authors set out to discover, 1. Is one representation better only for
certain stages of learning ? , 2. Only for certain aspects of programming ? ,
or 3. only for certain learners ?

Differing from Pennington's five comprehension categories, participants'
comprehension was judged by how quickly and accurately the questions were
answered. Of all the surveyed studies that used source code, Cunniffe and
Taylor had the shortest, using only program segments and not full programs.
Each segment had three questions, based on each of the following types
[Atwood and Ramsey 1978] Type I: recognition of specific simple structures.
Type II: recognition of flow of control and input/output. Type III: evaluation
of flow of control, output, or variable values.

An important issue to note here, and one that is not often seen in experi
ments is that training was provided to the students well in advance since they
learned FPL in class. This difference can be seen when compared to studies
such as [Boehm-Davis et al 1987], where the participants only received a half
hour training.

Both the visual and verbal aptitudes were measured for all participants
[Ekstrom ct al 1976]. The Paper Folding Test (VZ-2) measured visual apti
tude, while The Advanced Vocabulary Test II (V5) measured verbal aptitude.
Amongst not only the surveyed experiments but others, it is quite rare to see
the spatial aptitude measured.

Eight Different program segments were designed and unlike Pennington's
experiment, the participants were familiar with the task. Each segment was
coded twice, once in Pascal and once in FPL. Both versions were similar
except for variable names in order to reduce training cff ects and repetition.
All of the questions could be answered from the current display and did not
require a larger context.

An onlinc system recorded the reaction times and gave detailed instruc
tions. Similar to Pennington, participants were instructed to answer quickly
and accurately. The mean reaction time for FPL was approximately five
seconds faster than the Pascal reaction time. The largest diff crcncc between
FPL and Pascal was seen in answers to the TYPE III questions. Cunniffe and
Taylor did not find this surprising since these questions required evaluation
of input and determination of output.

A positive correlation between accuracy and spatial aptitude was found,
no matter which representation was used! Regardless of the participants' vi
sual aptitude, the graphical representation of the program was comprehended

more quickly. On the downside, it should be noted that the authors men
tioned the fact that they placed emphasis on the reaction times as a measure
of comprehension and therefore devised questions that they knew could be
answered. As a result, constrained the conclusions that could be made about
the effect of the graphical representation on comprehension accuracy.

In conclusion, the strongest point about this experiment was the fact that
the participants' spatial aptitude was measured. Interesting findings were
made where accuracy was linked to spatial aptitude. Of all the surveyed
experiments, Cunniffe and Taylor emphasised training the most. Training
is an important issue, especially when it comes to evaluating complex SV
tools. The lesson here is that training should be emphasised more in or
der to increase confidence in the results. Two options arc available to the
SV evaluator here, either training can be provided prior to the experiment
(e.g. a couple of weeks) to allow the participant to become familiar with
the tool over a longer period, or the SV tool can be integrated into a well
known environment that is already familiar to the developer. The program
segments used are not real programs and no coding was asked of the par
ticipants. This is somewhat disappointing when compared to studies like
[Boehm-Davis ct al 1987] where three different design types were employed
or in [Storey ct al 1998] where a seventeen-hundred line program was used.

3.3 Boehm-Davis et al Study : Mental Representa

tions of Programs for Student and Professional

Programmers

The value of this study comes from its not often found mix of participants'
qualifications. Thirty-six programmers (eighteen professional and eighteen
students) were asked to make either simple (make a change in 1 location) or
complex (many locations) modifications to three different programs. Each
program used a different design i.e. in-line code, functional decomposition
or object-orientated.

[Boehm-Davis ct al 1987] set out to examine programmers' cognitive rep
resentations of software. The only surveyed experiment to supply each partic
ipant with supplementary materials: a program overview, a data dictionary,
a program listing and listings of both current and expected output from the
program. Modifications to be performed were supplied at the start of the
experiment and not as required, which is something to always consider when
giving maintenance tasks during an experiment.

Little training time was given, a half an hour training was allocated where
each participant was given a sample problem to solve. The three programs
were then presented to the programmer in a random order (using a different
problem for each program type).

Similar to Pennington and Cunniff c & Taylor, a computer was used to
record responses (i.e. each call for an editor command etc.). In contrast
to the other means of judging programmers' comprehension, the experiment

assistant helped to gather the contents and structure of the programmers'
mental model for all three programs (related to Buschke's 2D grid procedure
[Buschke 1977]). The programmer had to recall as many components of the
program as possible, each component ,vas then vvritton on a separate largo in
dex card. The relationships between these components were then specified by
wiring the relationships on small index cards, which could then be arranged to
show the programmers' mental model. Five variables were used to reflect the
programmers mental model: Number of program segments/chunks, Number
of relationships, Depth of structure, vVidth of structure, and Connectedness
of structure.

The differences between student and professional programmer were fewer
than one would have thought, but as suggested in the paper, these students
tended to be very good. The main difference was seen in debugging time,
where students took 6.9 minutes longer on average. It was observed that
there are two criteria for ease of maintainability: 1. Ease of finding specified
information and 2. Ease of recognising relevant program structures. Both
the mental model and the information gathering process are critical aspects
of the maintenance performace task.

In conclusion, the three design types used in the programs as well as
the mix of both professional and novice programs makes a solid founda
tion for these experimental results. This type of study would be interesting
to replicate in order to explore the differences between novice and profes
sional programmers more clearly. From an SV tool point of view, the lessons
learned is that navigation must be fluid, (e.g. the SHriMP tool) allowing
the developer to find that information required, this is the first criteria for
ease of maintenance "ease of finding specified information". The chunks of
code that the developer builds in their mental model should be allowed to
be reflected on screen as well, this is second criteria for ease of maintenance
"ease of recognising relevant program structures".

3.4 Petre and Blackwell : A Glimpse of Expert Pro-

grammers' Mental Imagery

The most unusual of the surveyed studies [Petre and Blackwell 1997], with
an aim to find out how closely the mental images of experts correspond to ex
ternal representations. Interestingly, there is a reference to [Hitch et al 1995],
where it was concluded that "verbalization overshadows insight". Petre and
Blackwell explain that requiring people to talk can inhibit insights through
imagery. Perhaps this can be seen as a disadvantage with talk aloud pro
tocols in certain test conditions. Although it should be kept in mind that
[Chi et al 1989] showed that self-explainers perform better in problem solv
ing.

In contrast to all the other studies, this was not a controlled laboratory
experiment but consisted of observational studies and interviews. Although
using ten participants makes this the smallest sample sized experiment sur
veyed, the participants are the most experienced all being experts from both

industry and academia with ten or more years programming experience.
Unlike the participants of Boehm-Davis et al, participants here could de

sign a solution to one of four problems or to take a problem of their choice.
Programmers ,vere told to imagine themselves free of coding restrictions and
it should be noted that they did not have to implement any solutions whatso
ever. The four types of programs were: 1. Noughts and crosses, 2. Academic
timetabler, 3. Lexicon for sub-anagram solver, 4. Pinball path predictor.

Differing from the other means of gathering comprehension information,
participants here were prompted with questions during the programming
tasks whenever the participant showed signs of deep thought. These ques
tions focused on what the participant was using as their mental image, and
what it looked like, in order to solve the problem. For example, " What colour
is it'?" and "What's there that you can't see'?". Further examples of ques
tions can be seen on page 114. Similar to Pennington's experiment, notes
were allowed to be made and later examined.

vVith no other surveyed experiment having such data, the imagery de
scribed by the expert programmers was detailed, for example, "text with
animation". Significantly, all experts described sound as part of their im
agery. Other images were greater than four dimensions, and all described
interaction. One said "It's like describing all the dimensions of a problem in
2D, and the third dimension you 're putting closeness to a solution". There
was also very strong spatial imagery (e.g. landscapes). " .. it's on the hori
zon, so I can keep an eye on it, but I don't really need to know . . . ". All of
the described images were dynamic, but participant to control so that the
rate could be varied, or the image could be frozen and some even permitted
the events to be reversed. The authors detail that the "experts chose where
to put their attention at any given moment, and different regions of the im
agery were described as comming in and out of focus". All of the imagery
could accommodate incompleteness. It is interesting that all of the experts
reported using more than 4 dimensions, the extra dimensions were additional
information such as overlaid data flows, or links to external representations.
Also the experts talked about labelling entities in the imagery.

It is improtant to note that the imagery described here is for construction
and not debugging. Two descriptive comments were : " .. the possibilities of
debugging at bottom level from here are zero" and "In debugging, you only
do it mentally for the difficult ones: intermittent, incomplete capture of the
stimulus . . . ". Petre and Blackwell note that programmers, like designers,
believe that much of design in non-verbal.

In summary, the common elements were: 1. multiplicity of modalities,
2. stoppable dynamism, 3. variable selection, 4. provisionality and incom
pleteness, 5. adjustable granularity, 6. extra dimensions, 7. simultaneous
multiple images. Petre and Blackwell go on to say that " experts have a ten
dency to create a visualisation for a particular problem (e.g. a specific data
structure) even if it will never be useful for another problem" i.e. a custom
visualisation.

To conclude, this paper is a goldmine for designers of SV tools. It is

striking to note that all of the experts described sound as part of their vi
sualisation, which were often dynamic and greater than four dimensions.
Also, evidence is provided for the ability to label elements of a visualisa
tion. Support is found horo for tho ropotition of tho spatial tests usod in
[Cunniffe and Taylor 1987] for future experiments, as many experts described
spatial imagery. Hov;;over much of the data helps in the designing of SV tools,
it is important to keep in mind that no code was written and that these de
scriptions were only designs of how the developer would go about solving the
problem and not how the developer would go about debugging. There is a
lot of room here for future study.

3.5 Storey et al : How Do Program Understanding

Tools Affect How Programmers Understand Pro

grams ?

Thirty university student programmers (five graduate students and twenty-
five senior undergraduate students) woro the participants used horo [Storey et al 1998].
The aims were to study, 1. the factors affecting the students choice of compre-
hension strategy, 2. to observe if the three tested tools aid in the comprehen-
sion (Rigi, SHriMP, SNiFF +), 3. to devise a means to characterise the more
effective tools, 4. and to provide feedback for developers of comprehension
tools.

Taking the same length of time as [Boehm-Davis et al 1987], the two hour
experiment consisted of the following time limited phases: 1. Orientation 5
mins, 2. Training Tasks 20 mins, 3. Practice Tasks 20 mins, 4. Formal Tasks
50 mins, 5. Post-Study Questionnaire 15 min and 6. Post-Study Interview
and Debriefing 10 min.

Emphasis was placed on training in three of the stages. Firstly, during the
Orientation, where basic features of the tool were taught. Secondly during
the Training, where a limited set of tool features were demonstrated. Finally,
during the Practice Sessions, where the participant completed some tasks in
order to become familiar with the tool. This training Hangman program
written in C was larger than Penningtons' program, consisting of twelve files
and three hundred lines.

As part of the Formal tasks, the participant was videotaped, and asked
to Think-Aloud, as was done in Pennington's experiment. vVorth noting, was
the fact that two programs were employed, one for the training and the other
for testing which was a Monopoly program (1700 loc, 17 files, with complex
control flow).

The task questions arc listed in the paper and can be referred to as needed.
As with so many of the reviewed experiments, the tasks did not have to be
implemented.

The Questionnaire had fifteen randomly ordered questions (five sets of
three). A popular questionnaire design was adopted where the questions in
a set were subtle rewordings of each other to prevent the chance of misinter-

pretation or an erroneous answer. The Interview and Debriefing, asked the
opinions of the participant in order to gather information that the question
naire could not.

Tho Quostionnairo ansv,rors ,voro rated on a scale of 1 to 5, from strongly
disagree, agree, disagree, neutral, agree, to strongly agree. It was found
that for "pleasantness of use and confidence in results" the results were not
statistically significant. For the " ability to generate results", Rigi was rated
worse that SHriMP and SNiF F+. For the " ability to find dependencies", Rigi
was rated better than SHriMP and SNiFF+. Also, no significant differences
were found between the SHriMP and SNiFF + tools.

Storey et al noto two main biases in the oxporiment, firstly, it was found
that the experimenter forgot to show an essential feature of a tool and this
significantly affected the comprehension strategies used. Secondly, the ex
perimenters were also designers of Rigi and SHriMP.

In conclusion, tho biases are strong enough to affect the results. However
three tools are compared and some useful information can be learned for
future comparative studies. For example, the issue of training that was
mentioned in the conclusion of Section 3.2 has re-emerged here. Evidence
such as this supports the argument for a greater emphasis to be placed on
training during the evaluation of SV tools. Again, while the programs used
were appropriate, a study which requires the participants to write or modify
code would also be valuable, especially when it comes to evaluating future
tools.

4 Conclusion and Future Issues to Address

In conclusion, there is mixed evidence for the effectiveness of Software Visu
alisation and not all of this evidence is in directly related fields of study i.e.
much evidence can be gathered from the software comprehension field. This
points to the fact that many more experiments focused on Program Visual
isation need to be run. Many issues need to be addressed in future studies
and these will be discussed in turn.

The training issue was highlighted in Cunniffe and Taylor's study and
again in the study by Storey et al. SV tools can be quite complex to master,
the decision to spend time learning a new tool can pay off in the future when
the user becomes proficient with all the features. This must be kept in mind
during the evaluation of such tools. As stated in Section 3.2 there are two
choices. The training can be provided prior to the experiment (e.g. a couple
of weeks) to allow the participant to become familiar with the tool over a
longer period, or the tool can be integrated into a well known environment
that is already familiar to the developer.

Sample size is quite a controversal issue, while it is obvious that larger
sizes are needed, it is not so straightforward in practice. Busy software
professionals are both difficult to find and recruit in large numbers. As
well as this, the data from Talk-Aloud protocols is extremely voluminous

to manage, generating huge amounts of post experimental work for each
participant. One possible avenue of light here, is to research the possibilities
of experimental replication. Since replication is a large area in its own right,
reference may be ma.do to Daly's thesis [Daly 1996] for further examination.

Of all the surveyed experiments, [Cunniffe and Taylor 1987] was the only
study to measure spatial aptitude. This could prove to be a factor in Program
Visualisation experiments. Especially considering the results from Cunniffe
and Taylor's study where accuracy was linked to spatial aptitude, making
this is an area for future research.

A need for future experiments to include all their details is also evi
dent, for example, the amount of time spent on the experiment is unknown
in [Cunniffe and Taylor 1987]. This helps future researchers to design their
own empirical study based on current and previous research, but this is made
somewhat harder when details arc missing, especially if a replication experi
ment needs to be run.

Learning affects were addressed by [Cunniffe and Taylor 1987] where both
versions of the source code were similar except for variable names in order
to reduce training effects and repetition. These affects are also addressed by
[Storey et al 1998] where the questionnaire was constructed of groupings with
questions of diff crcnt rewordings. These learning affects arc an important
point to take into consideration during the design of future experiments and
should be minimised as well as possible.

The design of the test programs are also important to examine, for ex
ample, the Boehm-Davis ct al study used three design types i.e. in-line code,
functional decomposition and object orientation. The difference is clear when
compared to Cunniffe and Taylor's program segments. Future experiments
to evaluate Program Visualisation tools need to consider using programs
that are representational of current practices, for example, a test program
containing design patterns may be considered during the evaluation of such
tools.

Basili speaks about the tell-talc signs that show a field is maturing [Basili 2002].
Maturity of a field is seen when the "level of sophistication of the goals of an
experiment increase", when "understanding interesting things about the dis
cipline becomes apparent", and when a "pattern of knowledge" can be built
from a series of experiments. Since this paper cannot be an exhaustive ref
erence of the experiments performed to date, a number of varying examples
were selected. Future experiments can build upon past experiences and use
the current empirical body of knowledge to evaluate t.ools with the aid of
professional software engineers.

References

[Atwood and Ramsey 1978] Atwood, M. E., Ramsey, H. R., Cognitive Struc
tures on the Comprehension and Memory of Computer Programs: An
Investigation of Computer Program Debugging. Tech. Rep. TR-78-A21.
Alexandria, VA: U.S. Army Research Institute, 1978.

[Basili 2002] Basili, V., Experimentation in software engineering. talk given
at 5th 'Workshop on NSF-CNPq Readers Project, Salvador, Brazil,
January 2002.

[Boehm-Davis ct al 1996] Boehm-Davis, D. A., Fox, J., and Philips, B.,
Techniques for exploring software comprehension, Empirical studies of
programmers: Sixth vVorkshop, pages 3-37, 1996.

[Boehm-Davis ct al 1987] Holt, R. vV., Boehm-Davis, D.A., Schultz, A.C.,
Mental Representations of Programs for Student and Professional Pro
grammers, Empirical Studies of Programmers: Second vVorkshop,
pages 33-46, 1987.

[Buschkc 1977] Buschkc, H., Two-dimensional recall: Immediate identifica
tion of clusters in episodic and semantic memory . . Journal of Verbal
Learning and Verbal Behaviour, 12, 201-206, 1977.

[Chan and Munro 1997] Chan, P., Munro, M., PUI: A Tool to Support Pro
gram Understanding Proceedings of the fifth International vVorkshop
on Program Comprehension (IvVPC '97), pages 192-198, IEEE Com
puter Society, 1997.

[Chi ct al 1989] Chi, M.T.H., Bassok, M., Lewis, M.vV., Reimann, P.,
Glaser, R., Self explanations: how students study and use examples
in learning to solve problems. Cognitive Science, 13, 145-182, 1989.

[Cunniffe and Taylor 1987] Cunniffe, N., Taylor, R., P., Graphical vs. Tex
tual Representation: An Empirical Study of Novices' Program Compre
hension. Empirical Studies of Programmers: Second vVorkshop, pages
114-131, 1987.

[Daly 1996] Daly, J. vV., Replication and a Multi-Method Ap-
proach to Empirical Software Engineering, PhD Thesis,
www .cis.strath.ac. uk/ research/ cfocs/ abstracts.htmljdthes·is, 1996.

[Ekstrom ct al 1976] Ekstrom, R. B., French, J. vV., Harman, H. H., Manual
for Kit of Factor-Referenced Cognitive Tests. Princeton, NJ: Educa
tional Testing Services, 1976.

[Hitch ct al 1995] Hitch, G.J., Brandimontc, M.A., vValkcr, P., Two types of
representation in visual memory: evidence from the effects of stimulus
contrast on image combination. Memory and Cognition, 23, 147-154,
1995.

[Littman et al 1986] Littman, D.C., Pinto, J., Letovsky, S., Soloway, E.,
Mental Models and Software Maintenance, Empirical Studies Of Pro
grammers: First vVorkshop, pages 80-98, 1986.

[Myers 1986] Myers, B. A., Visual programming, programming by example
and program visualization: a taxonomy. Proceedings of the 1988 IEEE
vVorkshop on Visual Languages, pages 192-198, 1986.

[Pennington 1987] Pennington, N., Comprehension Strategies in Program
ming. Empirical Studies of Programmers: Second vVorkshop, pages
100-113, 1987.

[Petre and Blackwell 1997] Petre, M., Blackwell, A. F., A Glimpse of Ex
pert Programmers' Mental Imagery. Empirical Studies of Programmers:
Seventh vVorkshop, pages 109-123, 1997.

[Sheil 1981] Sheil, B.A., The Psychological Study of Programming, ACM
Computing Surveys, Vol 13, Number 1, pages 101-120, 1981.

[Stasko, Domingue, Brown, Price 1998] Stasko, J., Domingue, J., Brown,
M.H., and Price, B.A., Software Visualization: Programming as a Mul
timedia Experience, ISBN 0-262-19395-7, MIT Press, 1998.

[Stasko 1990] Stasko, J.T., Tango: A Framework and System for Algorithm
Animation IEEE Computer 23, pages 27-39, 1990.

[Storey et al 1998] Storey, M. AD., vVong K., Muller H. A., How Do Program
Understanding Tools Affect How Programmers Understand Programs ?.
Science of Computer Programming Journal, Vol 36, Issues 2-3, pages
183-207, 2000 (paper from 1998)

[Von Mayrhauser 1995] Von Mayrhauserm, A., and Vans, A.M., Program
Understanding: Models and Experiments, Advances in Computers, Vol
40, Academic Press, 1995.

