

Team coordination through externalised mental imagery

Marian Petre
Faculty of Mathematics and Computing

The Open University
United Kingdom

m.petre@open.ac.uk

Abstract
Fundamental to the effective operation of a design team

is the communication and coordination of design models:
that the members of the team are all contributing to the
same solution. Other work has shown that breakdowns in
the accurate sharing of goals are a significant contributor
to bugs, delays and design flaws. This paper discusses one
mechanism by which teams unify their vision of a solution.
It describes how the mental imagery used by a key team
member in constructing an abstract solution to a design
problem can be externalised and adopted by the rest of the
team as a focal image. Examples drawn from in situ
observations of actual design practice of a number of
computer system design teams are offered. The examples
illustrate how the images were introduced, how they were
used to coordinate subsequent design discussions, hence
how they evolved, and how short-hand references to them
were incoporated into the team’s ‘jargon’.

1. INTRODUCTION: TEAM
COORDINATION

It has long been recognised that coordination is
fundamental to the effective operation of a design team,
e.g.: “Clark and Brennan (1991) argue that common
ground is necessary for effective coordination of all joint
activities (in groups).” (Flor, 1998) Breakdowns in
coordination are a contributor to bugs, delays and design
flaws (e.g., Krasner, Curtis & Iscoe, 1987; Guindon,
Krasner & Curtis, 1987).

This paper discusses one mechanism of coordination

which has been observed to occur naturally in high-
performance development teams: the externalisation of one
member’s mental imagery for adoption by the whole team
as a focal image.

Coordination requires that team members have

compatible models of the solution – that the
communication from one person’s internal model through
some medium of representation to another person’s internal
model is effective, conveying meaning accurately. What is
known about the relationship between external

representations and internal mental models, or intermal
mental imagery? A key question is whether personal
mental imagery ever becomes public. A follow-on
question is whether personal mental imagery would be of
any use if it does become public. Some images and
imagery, for instance, may be extremely useful to the
individual, but by their nature may be very difficult to
describe verbally and to use as a shared metaphor, because
they are not well suited to reification and shared physical
representations (such as diagrams, gestures, physical
analogies, etc).

This paper presents examples of how the articulation of

the mental imagery used by an individual in solving a
problem can introduce the rest of the team to key insights
or perspectives, provide a focus for team discussions,
aiding communication and collaborative reasoning, and
provide a mechanism for calibrating individual
understanding against a shared model.

1.1. Co-ordination in software development
methodologies

A number of recent software development
methodologies aim to address the team coordination issue,
often by creating immersive environments of discourse and
artefacts which promote regular re-calibration with the
other team members and with artefacts of the project. For
example, contextual design (Beyer and Holtzblatt, 1998)
describes ‘living inside’ displays of the external
representations in order to internalise the model, referring
to the displayed artefacts as “public memory and
conscience”. Contextual design, furthermore, incorporates
explicit model coordination among team members as part
of the prescribed process.

In another example, extreme programming (Beck, 1999)

emphasises the importance of metaphor: the whole team
is required to adopt a metaphor embodying the solution
model. Again, the metaphor is relied on as a coordination
mechanism, so that the team members know they are all
working on the same thing. The metaphor is carried into
the code, e.g., through naming, and is included in the
documentation.

In M. Petre & D. Budgen (Eds) Proc. Joint Conf. EASE & PPIG 2003 Pages 473-479

15th Workshop of the Psychology of Programming Interest Group, Keele UK, April 2003 www.ppig.org

Radical co-location (Teasley, et al., 2000) shares some

of the same features. Team members – working on
problems requiring novel solutions or involving many
highly interactive parts –work together in a shared space
(or ‘war room’) for the duration of a project, giving them
ready access to each other and to work objects. Crucially,
they tend to use the walls to display design documents and
artefacts, which are then visible to the whole team as a
developing record of design ideas and history, and hence
can easily be viewed, modified, or referred to in design
discussion.

1.2. The importance of external representations

All of the examples given above emphasise shared
artefacts and shared representations. A number of
researchers have portrayed the importance of external
representations in design, both to support design reasoning
(model building) and as a medium of communication
among designers (model sharing and calibration). Schon
(1988) describes: “a design is a ‘holding environment’ for
a set of ideas...designers convey meaning via drawings
sometimes without articulation: ‘you know what this
means’”. Similarly, Flor and Hutchins (1991) write about
the importance of good external representations for
effective design and design reasoning. Scaife and Rogers
(1996), examining the potential of graphical
representations as ‘external cognition’, highlight the
importance of coordination between external representation
and internal model, finding that mis-matches between the
two account for many problems with visualisations.

1.3. Externalising mental imagery

So what is known about the relationship between
external representations and internal mental models, or
internal mental imagery? There is widespread anecdotal
evidence (e.g., Lammers’s interviews of well-known
programmers, 1986) that programmers make use of visual
mental images and mental simulations when they are
designing programs. Experts form detailed conceptual
models incorporating abstract entities rather than concrete
objects specific to the problem statement (Larkin, 1983).
Their models accommodate multiple levels and are rich
enough to support mental simulations (Jeffries et al., 1981,
Adelson and Soloway, 1985). A previous study (Petre and
Blackwell, 1997) elicited mental imagery of ten individual
expert programmers during a design task. It identified a
number of diverse forms of imagery (including verbal,
spatial, visual, auditory elements) and some common
characteristics among them.

It seems intuitively obvious that there are times when

imagery does become externalised and when the
externalisation is useful. Yet we have found little
published evidence of effective, direct externalisation of

personal mental imagery in software development, apart
from introspective justifications for software tool design.
This paper reports a form of externalisation which has been
observed to occur naturally in high-performance
development teams: when an individual’s mental image is
adopted for team use.

1.4. Example 1: a typical example

One typical example arose in the context of the mental
imagery study mentioned above. The expert was thinking
about a problem from his own work and articulated an
image: “...the way I’ve organised the fields, the data forms
a barrier between two sets of functions...It’s kind of like the
data forming a wall between them. The concept that I’m
visualising is you buy special things that go through a wall,
little ways of conducting electrical signals from one side of
a wall to another, and you put all your dirty equipment on
one side of a wall full of these connectors, and on the other
side you have your potentially explosive atmosphere. You
can sort of colour these areas...there’s a natural progression
of the colours. This reinforces the position
queues...There’s all sorts of other really complex data inter-
linkings that stop awful things happening, but they’re just
infinitely complex knitting in the data. (Of course it’s not
pure data...most of the stuff called data is functions that
access that data.) The other key thing...is this temporal
business we’re relying on...the program is a single-threaded
program that we restrict to only operate on the left or on
the right...a hah!...the point is that the connections to the
data are only on one side or the other. The way I organise
the data is...a vertical structure, and the inter-linkings
between data are vertical things...vertical inter-linkings
between the data tell me the consistency between the data,
so I might end up, say, drawing between the vertically
stacked data little operator diagrams...”

After he described the image fully, the expert excused

himself and went down the corridor to another team
member, to whom he repeated the description, finishing
“And that’s how we solve it.” “The Wall” as it became
known, became a focal image for the group.

2. OBSERVATIONAL EVIDENCE

The evidence discussed here is a ‘by-product’ of other
studies: initially, of a study of programmers’ mental
imagery (Petre and Blackwell, 1997) from which the above
example arises; subsequently of a number of other in situ
observational studies of early design activity. Those
studies had other issues as their focus, for example design
representations and processes used by multi-disciplinary
concurrent engineering teams, representations (including
ephemeral ones) used in early ideas capture, group
discussions and processes in very early conceptual design,
the generation and use of software visualisations. Thus, the
core evidence was accumulated opportunistically from five

different software development teams and ten different
projects in three different companies over a period of some
five years.

2.1. The experts

The experts, from both industry and academia, and from
several countries in Europe and North America, share the
same general background: all have ten or more years of
programming experience; all have experience with large-
scale, real-world, real-time, data- and computation-
intensive problems; and all are acknowledged by their
peers as expert. All are proficient with programming
languages in more than one paradigm. The coding language
used was not of particular interest in these investigations,
but, for the record, a variety of styles was exercised in the
examples, using languages including APL, C, C++,
HyperCard, Java, common LISP, macro-assembler,
Miranda, Prolog, and SQL. Their preferred language was
typically C or C++, because of the control it afforded, but
the preference did not exclude routine verbal abuse of the
language.

2.2. The companies and teams

All were small teams of 3 to 12 members, all included at
least one expert programmer of the calibre of ‘super
designer’ (Curtis et al., 1988), and all were in companies
where the generation of intellectual property and the
anticipation of new markets characterised the company’s
commercial success. All were high-performance teams:
effective intellectual-property-producing teams that tend to
produce appropriate products on time, on budget, and
running first time. The companies were small, not more
than 200-300 employees, although some were autonomous
subsidiaries of much larger companies.

2.3. The domains

Most were in large, long-term (1- to 2-year) projects.
Often the software was one component of a multi-
disciplinary project including computer hardware and other
technology. Industries included computer systems,
engineering consultancy, professional audio and video,
graphics, embedded systems, satellite and aerospace – as
well as insurance and telecommunications. Programmers
generate between 5 and 10,000 lines of code per compile
unit, typically around 200 lines per compile unit, with on
the order of 3,000 files per major project.

It is important to note that these experts work in

relatively small companies or groups that typically produce
their own software rather than working with legacy
systems. The software they produce is ‘engineering
software’ rather than, for example, information systems,
although products may include massive data handling and
database elements. Goel (1995) argues, in the context of

external representation, that there is a principled distinction
to be made between design and non-design problems. That
distinction is pertinent here, and the results presented may
not generalise beyond this variety of design and this style
of working.

2.4. Limitations

Experts are well-known for rationalising their practice
‘on-the-fly’. As reported by Schooler, Ohlsson & Brooks
(1993), there is evidence that solving insight problems
relies on essentially non-reportable processes, even that
verbalisation interferes with some important thought
processes. On the other hand, although subjective tests
may be suspect, they have in some cases been shown to be
reliably consistent, and to produce results just as good as
those from more objective tests (Katz, 1983) There is
some evidence that self-ratings do correlate with
demonstrated ability (Ernest, 1977) and are stable in cases
where they do. These studies relied on subjects whose
reports of activity in earlier studies corresponded well to
other evidence of their activity, such as notes and observed
actions, i.e., it relied on subjects who appeared to be ‘good
self-reporters’.

3. HOW THE EXAMPLES OCCURRED

In the observed examples, the mental imagery used by a
key team member in constructing an abstract solution to a
design problem was externalised and adopted by the rest of
the team as a focal image. The images were used both to
convey the proposed solution and to co-ordinate
subsequent design discussions. The examples all occurred
in the context of design, and the images concerned all or a
substantial part of the proposed abstract solution.

3.1. The nature of the images

The images tend to be some form of analogy or
metaphor, depicting key structural abstractions. But they
can also be ‘perspective’ images: ‘if we look at it like this,
from this angle, it fits together like this’ — a visualisation
of priorities, of key information flows or of key entities in
relationship. The image is a conceptual configuration
which may or may not have any direct correlation to
eventual system configuration.

Typically, the image embodies a major insight in the

solution of the problem: it identifies which model
underpins the solution. In doing so, it often also embodies
a major insight into which problem – or which
interpretation of the problem – is being solved. The images
themselves sometimes appear ‘obvious’, known solutions
to familiar problems – but their effect on the project is
profound, because of the insight step that made the solution
evident.

3.2. The process of assimilation

In all of the examples observed, the image was initially
described to other members of the team by the originator.
Members of the team discussed the image, with rounds of
‘is it like this’ in order to establish and check their
understanding. Although initial questions about the image
were inevitably answered by the originator, the locus did
shift, with later questions being answered by various
members of the team as they assimilated the image. The
image was ‘interrogated’, for example establishing its
boundaries with questions about ‘how is it different from
this’; considering consequences with questions like ‘if it’s
like this, does it mean it also does that?’; assessing its
adequacy with questions about how it solved key problems;
and seeking its power with questions about what insights it
could offer about particular issues. In the course of the
discussion and interrogation, the image might be
embellished – or abandoned.

3.3. They are sketched

Sketching is a typical part of the process of assimilation,
embodying the transition from ‘mental image’ to ‘external
representation’. The sketches may be various, with more
than one sketch per image, but a characteristic of a
successful focal image is that the ‘mature’ sketches of it are
useful and meaningful to all members of the group. This
fits well with the literature about the importance of good
external representations in design reasoning (e.g., Flor and
Hutchins, 1991; Schon, 1988; and others).

3.4. Continuing role reflected in team language

If the image is adopted by the team, it becomes a focal
point of design discussions, and key terms or phrases
relating to it become common. Short-hand references to
the image are incorporated into the team’s jargon to stand
for the whole concept. But (unlike the metaphors used in
extreme programming) the image is ‘team-private’; it
typically does not get passed outside the team and typically
does not reach the documentation.

4. EXAMPLE 2: COORDINATING RE-
THINKING

In a project involving scrolling through a file, the
engineers had previous experience of systems in which a
file could be played through at any speed (including zero),
but only forward. Such a system involved a pipeline of
processes linked by queues. Each process acted as
consumer for the preceding process and producer for the
following process with the intervening queues (FIFOs)
matching the data rates.

When asked to produce a system which could be
scrolled through either forward or backward, their first
solution built on the existing model: flushing all the
queues and all the processes and then re-initialising
everything in the opposite direction. Although this
worked, there was a considerable delay at changes of
direction.

One engineer suggested viewing the problem “as an

unrolled movie film laying across the table, not as I watch
it on the screen”. He explained that he saw the process as a
positional device (trying to go to a position along a
permanently available array of data) instead of as a
temporal device (going slower or faster through a timed
stream of inputs, each of which is processed as it is
presented). As soon as the team had grasped this image, all
the appropriate data structures were agreed in minutes, and
questions about how to link processes were resolved by
reference to the “movie on the table” model.

As reflected on by another team member: “All those

FIFOs had us in a right mess when we did reverse. Seeing
it (the stream of data) as flat meant you could walk along it
in either direction. When we only saw it against time, then
going backwards was like time travel, you just can’t do
that, but going left and right? Hey that’s easy.”

This example reflects the role of externalised mental

imagery in helping designers ‘out of the box’ of familiar
thinking and into a reassessment of the fundamental
problem, rather than of the problem as interpreted by
previous solutions. In this case, the team started from the
previous solution; the insight step embodied in the
externalised image resulted from a re-reflection on the
problem, and the sharing of the image drew the rest of the
team into the revisiting the problem interpretation.

5. EXAMPLE 3: THE INDIVIDUAL’S
MENTAL IMAGE OF THE PROBLEM
PROVIDES LEVERAGE FOR OTHERS’
INSIGHT INTO THE SOLUTION

In a ‘lossy’ data compression problem (similar to a jpeg
encoder) the traditional method had been to design a filter
to model the psycho-perceptual error detection ability of
the human evaluator, and then to use this filter to shape the
error inevitably produced by the data compression, so as to
make it less perceptible. The effect of this method was to
produce compression software which tried to “guess” the
correct decision to make at a particular stage and, having
made it, then looked at further input and generated further
output.

One engineer suggested that he saw the problem as “like

a chess game, but like playing chess without evaluating my
own move in the light of what the opponent would do

next”. When questioned by other members of the team, he
suggested that the viewer’s eye was an opponent in a
guessing game. “Once you see this thing as a game
between us (the encoder software) and the viewer (the error
evaluation function), it’s obvious that we can’t possibly
win unless we search a tree of possible answers, not just
accept our best guess right now and charge blindly on.” As
soon as this “game playing” view was adopted by the team,
after a period of interrogation and discussion, they
incorporated “look-ahead” into their solution, importing
tree-pruning and scoring functions.

Reflected another member of the team: “I really can’t

see why we were so dumb not to see this as a game-type
thing months ago, I guess we were all tied up in the real-
time-ness of the thing we never thought about look-ahead
or multiple candidate paths.”

An interesting characteristic of this example is that the

focal mental image provided a model of the problem – not
of the existent solution. The image evolved through
discussion and interrogation, clarifying roles and goals, and
exposing implications to all the team members. The re-
design of the solution arose from the insights provided by
the new view on the problem.

6. EXAMPLE 4: DIFFERENT MODELS
OBSTRUCT COLLABORATION

Two sub-teams on a project involving replaying sound
files from a computer disk held two essentially different
images of how this process should be approached, and in
particular how to deal with the simultaneous replaying of
multiple files. Each sub-project leader developed – and
shared – an image based on an existing piece of mechanical
sound equipment they thought they were modelling. One
sub-team adopted the model of a disk-based sound editor,
which supposed paired files and allowed only cross-fades
between two files, and then summed multiple pairs. The
other sub-team adopted the model of a multi-track tape
recorder and mixer, which supposed that any number of
files could be replayed with potentially multiple overlaps.
Each sub-team coordinated effectively around its own
shared image.

As the project progressed, each sub-team developed

private names for the applicable objects, based on their
focal image. Unfortunately there were only a limited
number of names in common use to describe pieces of a
sound file, and several words, ‘channel’ and ‘track’ in
particular, were used by both groups – but to mean
different, and conflicting, things. In meetings between the
two sub-projects, each with its own fiercely-held private
image/model, the arguments about whose model was
‘right’ prevented any cooperation.

Unfortunately the incompatibility between the two
models reached through every level of their hardware,
firmware and software. In the end the only place where the
two sub-projects could be connected was at their top-level
interfaces; any attempt to link them at a lower level
foundered on the incompatibility of their models. Of
course both models were correct and worked fine – just not
together.

Team members reflected on the effect of the disparity:

“In the end I guess both groups realised that either model
would act as a hook to hang all our architectural decisions
on, but using both really screwed things up good.” And:
“The tracks per channel thing came straight out of what
you erected as your model for the world. An editor gave
you two, a multi-track gave you many. Life was easy as
long as you stayed in your own area, looking at what the
other guys were doing made your head hurt.”

Each sub-team followed a typical pattern in their

adoption of a focal image from an individual’s mental
imagery, in each case a fairly obvious mechanical analogy.
But the example also provides a counter-example, showing
how the adherence to the sub-team model and language
prevented integration between the two parts of the project.

7. DISCUSSION

The features observed in expert practitioner behaviour
in this domain are consistent with findings in a range of
related literatures (such as mental imagery, problem
solving, memory and schema theory).

The images discussed and interrogated by the team

provide a co-ordination mechanism. Effective co-
ordination will by definition require the use of images
which are meaningful to the members of the group. The
literature on schemata provides explanation here (e.g.,
Bartlett, 1932). Co-ordination – meaningful discourse –
requires shared referents. If there is a shared, socially-
agreed schema or entity, this can be named and called into
play. But what happens when the discourse concerns an
invention, an innovation, something for which there is no
existing terminology, no pre-existing schema? A preverbal
image in the head of one participant, if it cannot be
articulated or named, is not available to the group for
inspection and discussion. The use of extended metaphor,
with properties in several different facets, provides a way
of establishing a new schema. The borrower chooses what
is salient in the properties of interest. In describing the
image, the borrower is establishing common reference
points, co-ordinating with the rest of the team a shared
semantics (cf. Shadbolt’s research (1984) on people’s use
of maps and the establishment of a common semantics).
The discussion of the metaphor allows the team to establish
whether they understand the same thing as each other. The
establishment of a richly visualised, shared image (and the

adoption of economical short-hand references) facilitate
keeping the solution in working memory (e.g. Logie,
1989).

Schemata may be of varying levels of complexity and

abstraction; their importance is in providing structure and
economy. Chi et al. (1988) suggest that the nature of
expertise is due largely to the possession of schemata that
guide perception and problem solving – i.e., experts have
more and better schemata than novices. Simon (1973)
observes that, when a task is ill-defined, users resort to pre-
existing concepts: stereotypes, schemata, or other
knowledge. Cole and Kuhlthau (2000) see the use of
schemata as fundamental to sense-making at the outset of
problem solving: the problem-solver invokes a schema or
model of the problem in order to create a frame of
reference and hence to identify the initial problem state.

On one hand, the use of existing schemata enables the

user to take some action in unfamiliar or ill-defined tasks.
On the other hand, the use of existing schemata can lead to
misconception, mis-action, or fixedness. (Tourangeau and
Sternberg, 1982) This is illustrated in examples 3 and 4.

The examples have indicated both the power of an

effective externalised image -- particularly imagery that
embodies an insight or a distinctive perspective – and the
danger of discrepant or limited images. In high-
performance teams, the interrogation of shared images
tends to expose inadequacies. Shared images are often
discarded, although they nevertheless assist the design
process by supporting discussion and cooperative
reflection.

The implication may be that providing access to a wider

range of source imagery, having different properties, might
support this process. This is consistent with the
observation from the expertise literature that experts
remember large numbers of examples – indeed, the
literature suggests that experiencing large numbers of
examples is a prerequisite to expertise (e.g., Chi et al.,
1988). The typical expert ability to detect resonances
across domains can be applied to detect links between
abstracted examples, i.e., to identify useful metaphors.

8. CONCLUSION

It appears that, in the context of the design and
generation of ‘engineering software’, the externalisation of
expert mental imagery can play an important role in the
design reasoning. Individual imagery does sometimes
enter external interaction in a way that is useful. The
mental imagery used by a key team member in constructing
an abstract solution to a design problem can in some cases
be externalised and adopted by the rest of the team as a
focal image. A key to this is that the individual (typically,
but not always an expert) is able to articulate his own

mental imagery in a way that frames the problem and/or
solution for others in the team. Discussing, sketching and
‘interrogating’ the image helps the team to share the insight
and to co-ordinate their design models so that they are all
working on the same problem – which is fundamental to
the effective operation of the team.

ACKNOWLEDGEMENTS

The author is profoundly grateful to the expert
programmers, without whom the paper would not be
possible, and to their companies which permitted access.
Thanks are due to colleagues who provided essential
commentary, including Alan Blackwell, Peter Eastty, Marc
Eisenstadt, Henrik Gedenryd, Simon Holland, William
Kentish, Jennifer Rode, and Helen Sharp. Special thanks
are due to Gordon Rugg, who was instrumental in writing
the paper. Some of the observations were conducted under
EPSRC grant GR/J48689 (Facilitating Communication
across Domains of Engineering). Others were conducted
under an EPSRC Advanced Research Fellowship
AF/98/0597.

REFERENCES

Adelson, B., and Soloway, E. (1985) The role of domain
experience in software design. IEEE Transactions on Software
Engineering, SE-11 (11), 1351-1360.
Bartlett, F.C. (1927) The relevance of visual imagery to thinking.
British Journal of Psychology, 18 (1), 23-29.
Bartlett, F.C. (1932) Remembering: An Experimental and Social
Study. Cambridge University Press.
Beck, K. (1999) Extreme Programming Explained: Embrace
Change. Addison-Wesley.
Beyer, H., and Holtzblatt, K. (1998) Contextual Design: Defining
Customer-Centered Systems. Morgan Kaufmann.
Chi, M.T.H., Glaser, R., and Farr, M.J. (Eds) (1988) The Nature
of Expertise. Lawrence Erlbaum.
Cole, C., and Kuhlthau, C.C. (2000) Information and information
seeking of novice versus expert lawyers: how experts add value.
The New Review of Information Behaviour Research 2000. 103 –
115.
Curtis, B., Krasner, H., and Iscoe, N. (1988) A field study of the
design process for large systems. Communications of the ACM,
31 (11), 1268-1287.
Ernest, C.H. (1977) Imagery ability and cognition: a critical
review. Journal of Mental Imagery, 1 (2), 181-216.
Flor, N.V. (1998) Side-by-side collaboration: a case study.
International Journal of Human-Computer Studies, 49, 201-222.
Flor, N.V., and Hutchins, E.L. (1991) Analysing distributed
cognition in software teams: a case study of team programming
during perfective software maintenance. In: J. Koenemann-
Belliveau, T.G. Moher and S.P. Roberston (Eds), Empirical
Studies of Programmers: Fourth Workshop. Ablex.
Goel, V. (1995) Sketches of Thought. MIT Press.

Guindon, R., Krasner, H., Curtis, B. (1987) Breakdowns and
processes during the early activities of software design by
professionals. Empirical Studies of Programmers: Second
Workshop. Ablex., 65-82
Jeffries, R., Turner, A.A., Polson, P.G., and Atwood, M.E. (1981)
The processes involved in designing software. In: J.R. Anderson
(Ed) Cognitive Skills and Their Acquisition. Lawrence Erlbaum.
255-283.
Krasner, H., Curtis, B., and Iscoe, N. (1987) Communication
breakdowns and boundary spanning activities on large
programming projects. Empirical Studies of Programmers:
Second Workshop. Ablex. 47-82
Lammers, S. (1986) Programmers at Work. Microsoft Press.
Larkin, J.H. (1983) The role of problem representation in physics.
In: D. Gentner and A.L. Stevens (Eds), Mental Models.
Lawrence Erlbaum.
Katz, A.N. (1983) What does it mean to be a high imager? In:
J.C. Yuille (ed), Imagery, Memory and Cognition: Essays in
Honor of Allan Paivio. Erlbaum.
Logie, R.H. (1989) characteristics of visual short-term memory.
European Journal of Cognitive Psychology, 1, 275-284.
Petre, M., and Blackwell, A. (1997) A glimpse of programmers’
mental imagery. In: S. Wiedenbeck and J. Scholtz (Eds.),
Empirical Studies of Programmers: Seventh Workshop. ACM
Press. 109-123.
Scaife, M., and Rogers, Y. (1996) External cognition: how do
graphical representations work? International Journal of Human-
Computer Studies, 45, 185-213.
Schon, D. (1988) Design rules, types and worlds. Design Studies,
9 (3), 181-190.
Schooler, J.W., Ohlsson, S., and Brooks, K. (1993) Thoughts
beyond words: when language overshadows insight. Journal of
Experimental Psychology: General, 122 (2), 166-183.
Shadbolt, N.R. (1984) Constituting Reference in Natural
Language: The Problem of Referential Opacity. PhD Thesis,
University of Edinburgh.
Simon, H.A. (1973) The structure of ill-structured problems.
Artificial Intelligence, 4, 181-202.
Teasley, S., Covi, L., Krishnan, M., and Olson, J. (2000) How
does radical collocation help a team succeed? CSCW 2000
(Philadelphia, Dec. 2-6). ACM Press. 339-346.
Tourangeau, R., and Sternberg, R. (1982) Understanding and
appreciating metaphors. Cognition, 11, 203-244.

