
Applying Cognitive Load Theory to Computer Science Education

Dale Shaffer
Lander University
Greenwood, SC
USA

Wendy Doube
Monash University
Churchill, Victoria
Australia

Juhani Tuovinen
Charles Sturt University
Wagga Wagga, New South Wales
Australia

Abstract

Cognitive Load Theory provides a theoretical basis for understanding the learning process. It uses an

information processing model to describe how the mind acquires and stores knowledge, and to provide an

explanation for the limitations imposed by working memory.

This paper describes Cognitive Load Theory, discusses its application in a number of areas, and explores its

potential uses in understanding and improving novice programming and computer science education. A

number of research directions are suggested.

Introduction

Cognitive science deals with the mental processes behind learning, memory, and problem-solving. It

identifies, among several methods, an information-processing approach to explain how the mind works. In

the simplest form of this model, the mind is assumed to be divided into three portions, sensory, working, and

long term memory (Cooper, 1998). An adaptation of the model is shown in Figure 1, but is incomplete as it

omits all but the two most important senses for learning, sight and sound.

In M. Petre & D. Budgen (Eds) Proc. Joint Conf. EASE & PPIG 2003 Pages 333-346

15th Workshop of the Psychology of Programming Interest Group, Keele UK, April 2003 www.ppig.org

PPIG Proposal Page

2

Memory

Sensory memory receives stimuli from the senses, including sight, sounds, smell, taste, and touch. It is

short- lived, and if the mind is not able to identify and assign meaning to the input, the information is lost.

For example, the sense of smell can detect a particularly inviting and unidentifiable fragrance, and a few

moments later the fragrance is gone and is no longer able to be recalled in detail.

Long-term memory holds a permanent and massive body of knowledge and skills. Examples include how to

ride a bicycle, multiplication facts, how to walk, and where we live.

Working memory is the portion of our mind that allows us to think both creatively and logically, and to solve

problems. It provides our consciousness (Baddeley, 1993). Working memory is the interface between long-

term memory and sensory memory. After being filtered through sensory memory and before being stored in

long-term memory, knowledge must pass through working memory.

Figure 1 A Simple Model of Memory

auditory
information

visual
information

Working memory

visual processor

auditory processor

Long-term memory

Sensory Memory

auditory section

visual section

sound
stimuli

sight
stimuli

PPIG Proposal Page

3

Working memory, however, has two limitations. Firstly, it is short-lived. Secondly, it is only capable of

processing up to approximately seven things at a time (Miller, 1956). If this capacity is exceeded, then some

or possibly all of the information is lost. Cooper (1998) gives the following example of this phenomenon.

Attempt to add the following in your head without the assistance of a calculator, pencil, or paper.

 1) 46 2) 83,468,446

 + 37 93,849,937

 + 58,493,900

Most individuals are capable of performing the first addition without difficulty. However, the second

problem is almost impossible to solve mentally, even though the same process, addition, is involved. The

capacity of working memory was exceeded. If one were to employ paper and pencil for the second problem,

success would be likely since the paper formed an extension of working memory, allowing one to record

intermediate values and to not overload working memory.

Learning

Learning can be defined as the “encoding (storing) of knowledge and/or skills into long-term memory in su

ch a way that the knowledge and skills may be recalled and applied at a later time on demand” (Cooper,

1998). Introductory computer programming, like mathematics, requires declarative learning of abstract

concepts and procedural learning acquired by practice. Procedural learning retrieves declarative knowledge

into working memory, refines it, and strengthens cognitive structures. Declarative learning, in the field of

computer science, can be thought of as skills acquisition, and procedural learning can be thought of as

learning to execute those skills.

Visual knowledge appears to be encoded and processed differently from verbal knowledge (Pavio, 1990).

Learning can be increased when the same content is presented simultaneously in verbal and visual

representations in a way that facilitates associations between the two, especially if the verbal presentation is

in an aural medium and the visual medium is graphical. This suggests that memory is partitioned into an

auditory and a visual system and that working memory capacity can be expanded when both systems are

employed (Cooper, 1998). Other partitions are possible, too.

PPIG Proposal Page

4

During recall, knowledge is retrieved into working memory. Retrieval plays a major role in increasing the

efficiency of the encoding and storage processes. With “rehearsal”, or repeated and regular retrieval, recall

processes gradually become “automated” and novices can progress towards expert status. Experts employ

automated retrieval processes to recall information from highly organized structures in long term memory.

Cognitive load theory

Cognitive load theory is an instructional theory developed by psychologist John Sweller to describe “the

learning process in terms of an information processing system involving long-term memory, which

effectively stores all of our knowledge and skills on a more-or-less permanent basis, and working memory,

which performs the intellectual tasks associated with consciousness” (Cooper, 1998). This theory, based on

the above view of the mind (Sweller, Van Merriënboer, & Paas, 1998), provides a model of how the mind

processes information based on two tenets:

• “Human working memory is limited; we can only keep in mind a few things at a time. This poses a

fundamental constraint on human performance and learning capacity.

• Two mechanisms to circumvent the limits of working memory are:

1) schema acquisition, which allows us to chunk information into meaningful units, and

2) automation of procedural knowledge.” (Wilson & Cole, 1996)

The first mechanism provides information about how the mind understands and processes information. For

example, one typically chunks portions of a phone number to help remember it. The phone number 235

4827 is much easier to remember than 2 3 5 4 8 2 7.

The telephone example suggests that chunking does not need an underlying meaning associated with the

elements that were chunked. One does not have a special meaning for 235, yet chunking can occur.

However, if meaning can be identified and used to define the chunks, remembering is significantly enhanced.

Consider memorizing the following chunks of information.

 Vers esth atdo notte achme nnew andtou ching trut hsdon otdes erveto bere ad.

If Voltaire’s quotation is chunked differently, we would have

 Verses that do not teach men new and touching truths do not deserve to be read.

PPIG Proposal Page

5

The process of chunking information into meaningful units is quite similar to the way a computer

programmer would combine steps in a program into an abstraction (Shaffer, 2003). For example, the

individual programming steps of finding the sum of a series of numbers, then dividing the sum by the

number of numbers would be combined together (i.e. chunked). The abstraction has a convenient name,

average and, for those individuals able to form the abstraction, only one of the approximately seven things

that can be retained in working memory is accounted for.

Schema acquisition involves more than chunking. The information that is chunked is further processed and

placed into a schema. These hierarchical networks of information in long-term memory are used to associate

and store things in memory. For example, the schema in Figure 2 is hierarchical in that “Cars” is a higher-

order concept when compared to “Traffic lights.” However, some links between nodes are not hierarchical;

“Speed kills” and “Speed limits”, for example.

Schema formation is a very dynamic operation. Through building ever more complex schema by

assimilating portions of lower-level schemas into higher level schemas, skills are developed (Sweller, Van

Merriënboer, & Paas, 1998). Children learning to read, for example, have to build schemas for letters that

allow them to classify an infinite variety of shapes into the limited number of characters in the alphabet

(Sweller, Van Merriënboer, & Paas, 1998). This process continues throughout life as words are formed from

this collection of squiggles and meaning is interpreted from words.

The second mechanism that circumvents working memory, automation of procedural knowledge, deals with

skills acquisition. Once a particular skill is acquired, automatic processing can bypass working memory

(Sweller, Van Merriënboer, & Paas, 1998). In other words, with enough practice, an activity can be carried

out without conscious processing. For example, many individuals reach a stage in driving where their

conscious, or working, memory is free for other activities.

This automation of procedural knowledge only occurs when one has acquired a skill. Sweller, Van

Merriënboer, and Paas (1998) gives the example of solving the following algebraic equation for a.

 d
c

ba
=

+

PPIG Proposal Page

6

Individuals who have acquired the needed algebraic skill will automatically know that one needs to multiply

both sides of the equation by c, then subtract b. Some individuals, students studying elementary algebra for

example, would need to use working memory in an effort to recall the appropriate rules.

Building problem-solving skills, be it in the domain of algebraic equations or computer programming, have

at its roots automation of procedural knowledge. Once a particular problem-solving skill has been chunked

and stored in long-term memory in a way that enables prompt retrieval, the skill can be considered as being

learned.

Cognitive load is the load placed on the cognitive system by performing a specific task. It can be measured

in several indirect ways, including

• self-reporting (assigning load values on a scale),

• measurement of physiological activities (heart rate, for example),

• learner performance following treatment, and

• learner performance when a second task is performed concurrently with the primary task (Sweller,

Van Merriënboer, & Paas, 1998).

Figure 2 Portion of a schema in long-term memory (adapted from Cooper, 1998)

PPIG Proposal Page

7

Cognitive load theory and learning

The extent to which curriculum materials impose a load on working memory varies widely. It “depends on

the number of elements that must be processed simultaneously in working memory, and the number of

elements that must be processed simultaneously, in turn, depends on the extent of element interactivity”

(Sweller, Van Merriënboer, & Paas, 1998).

For example, compare a student who is learning multiplication facts to one learning how to solve equations

in algebra. The student learning multiplication facts has quite a large number of facts to place into long term

memory, but most of the facts are independent of each other. However, students solving equations in algebra

have a larger load placed on working memory since they have to recognize (1) that they can divide both sides

of the equation by the same value, (2) that this process does not change the equality, and (3) that it is more

sensible to do this operation in some situations before adding a quantity to or subtracting a quantity from

both sides. The student solving algebraic equations is dealing with facts with higher element interactivity

which imposes a greater load on working memory.

Cognitive load and skills acquisition

Skills in computer programming can be classified as recurrent and non-recurrent (van Merrienboer, 1992).

Recurrent skills exhibit minimal variation in differing problem situations, for example, selection of a basic

language command. Non-recurrent skills vary from problem to problem, for example, structured

decomposition. According to van Merrienboer, instructional approaches should take these differences into

account.

Teaching in technical areas is often based on the formula of presenting a new topic, showing a few examples,

and assigning practice exercises. Some simple adjustments to the presentation-examples-practice formula

can accommodate cognitive load theory.

To learn recurrent skills, declarative knowledge of the abstract concepts on which the skills are based, as

well as procedural knowledge of the procedures or rules necessary to perform the skills, should be

simultaneously in working memory. Both the concepts and the procedures that use those concepts to solve

problems should be presented together. One approach to this is to partition the information into small

PPIG Proposal Page

8

segments to prevent overload, then demonstrate application of the concepts within each segment (van

Merrienboer, 1992).

In contrast, non-recurrent skills can be taught by presenting heuristic approaches and strategies, independent

of domain reference (Robertson, 2000). For example, consider the following repetition rule.

In indeterminate looping,

 use a WHILE loop when 0 iterations are possible, and

 use a REPEAT UNTIL loop when at least 1 iteration is necessary.

In this situation of high element interactivity, presentation in the form of knowledge structures can aid

elaboration of existing schemas. For example, decomposition into a hierarchy of component goals or plans

is a form of knowledge structure (Figure 3).

Examples provide explicit information to facilitate initial and correct schema formation (Cooper, 1998) and

can initiate association of declarative and procedural knowledge. Following presentation, students can work

through several examples with the teacher or examine multiple problems with integrated solutions, then

immediately practise problems of the same type. By repeating this process with each type of problem,

students can build schemas, and reinforce learning by retrieving and refining those schemas. Eventually

Figure 3 Hierarchy as a form of knowledge structure

control structures

repetition

for

while repeat
until

executed more
than once

predetermined
number of
times

otherwise

minimum 0 minimum 1

PPIG Proposal Page

9

practice with a mixed set of problems “elaborates” the schema even further by strengthening associations. A

variation on this approach is to provide partially-completed examples for students to finish. Another is to

gradually reduce the amount of information and support for each task , so that as learning increases with

practice, less information is required.

One approach to practic ing recurrent skills is to decompose them into successively smaller components in the

form of domain-specific, algorithmic steps. Low element interactivity simplifies initial schema construction.

Each component is practiced individually, and then parts of the whole are practiced until the entire skill can

be integrated. For example arithmetic expressions are learned with presentation of entire expressions, then

separate presentation and examples of firstly constants, then variables followed by operations. Next

arithmetic expressions with constants and operations are practised. Finally, the three components of

constants, variables and operations in complete arithmetic expressions are practised together.

It is generally agreed by computer science educators that introductory computer science courses tend to have

high attrition rates, and that the lack of problem-solving skills is a contributing factor. This phenomena is

discussed from various viewpoints in Beaubouef , Lucas, and Howatt (2001), Shultz (2000), Roberts,

Kassianidou, and Irani (2002), Thweatt (1994), and in Wilson and Shrock (2001).

Problem-solving is usually approached using means-ends analysis. With experts who can rely on extensive

schema acquisition and formation in long-term memory, this heuristic is applied by reducing differences

between the current problem state and the goal state. This strategy seems especially effective in computer

programming.

However, novices often apply it by working backwards from the goal to the initial state, then forward to the

goal, resulting in a high cognitive load (Sweller, 1988). Cognitive load could be reduced if novices learning

to apply means-ends analysis are given problems that have no goal (Owen & Sweller, 1985). Rather than

focusing on the desired result, one is forced to focus on the initial state. Since much of computer

programming is goal-oriented, this learning approach would appear to be difficult to implement, but might

have significant value in an intermediate learning stage.

Another approach to reducing cognitive load is to increase working memory capacity by utilizing verbal and

visual channels. However, redundant information can increase cognitive load by increasing the number of

associations that have to be made between the different sources of information. (Chandler & Sweller, 1991).

PPIG Proposal Page

10

One effective approach is to integrate text into an associated graphic. By placing the text directly within a

diagram, the student is not forced to split attention between multiple sources. Modern software, in the form

of algorithm animation and multimedia presentation packages where text and graphics can be added a piece

at a time, gives much promise for this approach. In addition, algorithm animation and multimedia give

students’ power over the speed in which the material is presented, and therefore redundant learning elements

can be reduced.

Bearing in mind that verbal material can be in the form of text and can place demands on visual resources if

combined with graphics, the final approach to improve learning is by providing multiple sensory input.

Partitioning information to come from visual and aural sources can further extend working memory (Pavio,

1990). Again multimedia and algorithm animation show promise in developing this approach but also show

that working memory can be overloaded by multiple media, especially if it is superfluous to the learning

content or asynchronous.

In summary, some of the possible strategies that could reduce cognitive load in introductory computer

programming courses are:

• partitioning of information into small segments, them simultaneous presentation of concepts and

procedures in demonstrations

• presentation of heuristic approaches and strategies, independent of domain reference

• organization of presentation of non-recurrent skills into knowledge structures

• presentation – repeated example and practice – broad practice

• broad practice using partially-completed examples

• gradual withdrawal of supporting information from practice tasks

• decomposition of practice tasks into small steps then gradual integration into a complete skill

• goal- free problem solving

• careful integration of text and graphics

• visual and aural sources for learning

PPIG Proposal Page

11

Research applying the cognitive load theory to computer science education

There seems to be scant research in how the cognitive load theory and these suggested changes apply to

computer science. Tuovinen and Sweller (1999) found that novices learning to apply a database to specified

problem domains substantially benefited from the inclusion of worked examples when compared to students

using discovery learning techniques if students had poor content schema. However, discovery learning was

found to be at least as useful, and possibly even superior, for students who have well-developed content

schema knowledge. Another study (Harvey & Anderson 1996), by measuring the transfer of knowledge

learned in a Prolog language course to a second course using Lisp, found that transfer of cognitive skills

between complex domains is dependent on the level of schema acquisition.

Two studies (Van Merriënboer & De Croock, 1992; Van Merriënboer, 1990) examined the effect that two

approaches to learning computer programming had on learning outcomes. One group of students used an

instructional strategy of working on modifying and completing existing programs while the second group

focused on developing new programs. In both studies, students who were in the group completing existing

programs demonstrated significantly improved program development skills, including developing new

programs. There was considerable evidence that students in the completed programs group experienced an

optimal cognitive load. This study should have profound effects in computer science education, but other

than a push for both approaches in a lab setting, it seems to have little effect.

Perhaps the lack of clear support for completion tasks results from different levels in prior knowledge in

programming classrooms. In contrast to van Merrienboer’s findings, Nicholson and Fraser (1997) found no

significant difference between the two approaches when students already familiar with programming learned

a new language. In Van Merriënboer’s studies, the novice students may have used the partially completed

programs to construct new schemas whereas in Nicholson’s study, the students may have had existing

schemas to build on.

Although cognitive load theory appears to have received little interest in computer science education

research, it has been applied with considerable success in the associated field of multimedia learning

(Moreno, 2000; Mayer, 2001). At the very least, it would make sense to incorporate multimedia learning

theories, based on cognitive load theory, into the ubiquitous fields of on- line learning and software

visualization.

PPIG Proposal Page

12

Conclusion: A research agenda

The connection between cognitive load theory and the challenges faced by novice computer science students

has not been fully addressed. Research is needed to determine how the previously-mentioned potential

changes can improve computer science education (Tuovinen, 2000). Possibilities for future research in this

area include:

• using partially-completed examples of the form (presentation – repeated example and practice –

broad practice)

• exploring ways to apply means-ends analysis without goals

• replicating the Van Merriënboer studies (1992; 1990) in university environments

• investigating the use of multimodal instruction in learning complex computer programming concepts

• investigating the identification of students’ prior schematic computing content knowledge and the

consequent adaptive teaching of further concepts and procedures using alternative approaches best

suited for students with differential expertise and prior knowledge

• applying the cognitive load theory to the process of programming by professionals: Can language

constructs be designed to be more cognitively efficient in terms of the programmers using them?

• Studying the effect of the use of abstraction on cognitive load.

• Identifying and classifying sources of high element interactivity in introductory computer

programming and developing strategies to reduce it.

PPIG Proposal Page

13

References

Baddeley, A. (1993). Working memory and conscious awareness. In A. F. Collins, S. E. Gathercole, M. A.

Conway, & P. E. Morris (Eds.), Theories of Memory (pp. 11-28). Hillsdale: Lawrence Erlbaum.

Beaubouef , T., Lucas, R., & Howatt, J. (2001). The UNLOCK system: enhancing problem solving skills in

CS-1 students. ACM SIGCSE Bulletin 33(2).

Chandler, P. & Sweller, J. (1991). Cognitive load theory and the format of instruction. Cognition and

Instruction, 8:293-332.

Cooper, G. (1998). Research into Cognitive Load Theory and Instructiona l Design at UNSW,

http://www.arts.unsw.edu.au/education/CLT_NET_Aug_97.HTML.

Harvey, L. & Anderson, J. (1996). Transfer of declarative knowledge in complex information-processing

domains. Human-Computer Interaction, 11:69-96.

Mayer, R. (2001). Multimedia Learning. Cambridge University Press, Cambridge:.

Moreno, R. & Mayer, R. (2000) Meaningful design for meaningful learning: applying cognitive theory to

multimedia explanations. Proceedings Ed-Media 2000, Montreal, Canada.

Miller, G. A. (1956). The magical number seven, plus or minus two: Some limits on our capacity for

processing information. The Psychological Review, 63:81-97.

Nicholson, A & Fraser, K. (1997). Methodologies for teaching new programming languages: a case study for

teaching LISP. Proceedings 2nd ACSE Conference, Melbourne, Australia.

Owen, E. & Sweller, J. (1985). What do students learn while solving mathematics problems. Journal of

Educational Psychology, 77:272-284.

Pavio, A. (1990). Mental Representations: A Dual Coding Approach. New York: Oxford University Press.

Shultz, G. (2000). Using the “boxes” support software in teaching CS1. The Journal of Computing in Small

Colleges 16(1):133-141.

Roberts, E., Kassianidou, M., & Irani, L. (2002). Encouraging women in computer science. ACM SIGCSE
Bulletin, 34(2):84-88.

Robertson, L.A. (2000) Simple Program Design: A step by step approach Nelson Thomson Learning,

Melbourne.

Shaffer, D. (2003). Cohesion, coupling, and abstraction. In H. Bigoli (Ed.) Encyclopedia of Information

Systems (pp. 127-139). New York: Academic Press.

Sweller, J. (1988). Cognitive load during problem-solving: Effects on learning. Cognitive Science,

12(2):257-285.

PPIG Proposal Page

14

Sweller, J., Van Merriënboer, J., & Paas, F. (1998). Cognitive architecture and instructional design.
Educational Psychology Review 10(3):251-294.

Thweatt , M. (1994). CSI closed lab vs. open lab experiment. ACM SIGCSE Bulletin, 26(1):80-82.

Tuovinen, J. (2000). Optimising student cognitive load in computer education. Proceedings of the Fourth

Annual Australasian Computing Education Conference, Melbourne: ACM. pp. 235-241.

Tuovinen, J. & Sweller, J. (1999). A comparison of cognitive load associated with discovery learning and

worked examples. Journal of Educational Psychology, 91(2):334-341.

Van Merriënboer, J. (1990). Strategies for programming instruction in high schools: Program completion vs.

program generation. Journal of Educational Computing Research, 6:265-285.

Van Merriënboer, J. & De Croock, M. (1992). Strategies for computer-based programming instruction:

Program Completion vs. Program Generation. Journal of Educational Computing Research, 8:365-394.

Wilson, B. & Cole, P. (1996). Cognitive teaching models. In D. Jonassen (Ed.) Handbook of Research in

Instructional Technology. New York: Scholastic Press.

Wilson, B. & Shrock, S. (2001). Contributing to success in an introductory computer science course: a study

of twelve factors. ACM SIGCSE Bulletin, 33(1):184-188.

