
In E. Dunican & T.R.G. Green (Eds). Proc. PPIG 16 Pages 121-132

16th Workshop of the Psychology of Programming Interest Group. Carlow, Ireland, April 2004 www.ppig.org

XP: Taking the psychology of programming to the eXtreme

Sallyann Bryant
IDEAS Laboratory

 University of Sussex
S.Bryant@sussex.ac.uk

Keywords: Extreme Programming, XP, pair programming, metaphor, external representation

Abstract

Extreme Programming (XP) is a software development methodology which is growing in popularity
and commercial use. Despite a number of published experience reports and a small number of studies,
predominantly in an academic environment, our knowledge about how and why some aspects of it
work is still in its infancy.

One major limitation of many of these studies is a failure to question why the practices of XP appear
to work or fail. This paper reviews the research on Extreme Programming and suggests further work
is required in order to ascertain how these practices fit into the framework of existing knowledge on
the psychological aspects of programming.

Introduction

Much progress has been made in terms of our knowledge and understanding of the manner in which
computer systems are both produced and used. Studies of subjects ranging from the use of metaphor
in user interface design (Marcus, 1997) to the implications of collaborative systems (Crabtree, 2003)
and from debugging Java programs (Romero et al. 2002) to using external representations in systems
design (Petre, 2003) have allowed researchers to start to uncover the psychological aspects and
processes underlying our behaviours when working on or with IT.

Relatively recently, Extreme Programming has been introduced as a new way of approaching the
production of software. Extreme Programming is a form of ‘agile development’, defined by the Agile
Alliance Manifesto (2004) as valuing:

Individuals and interactions over processes and tools

Working software over comprehensive documentation

Customer collaboration over contract negotiation

Responding to change over following a plan.

Beck (2000), who coined the phrase Extreme Programming, explains that XP consists of a set of 12
practices. Whilst some of these (e.g. the 40 hour week) are self-explanatory, and others (e.g. the
planning game) are outside of the scope of this paper, the overall use of external representations, pair
programming and system metaphor will be considered in more detail in terms of the studies which
have taken place and the links they have to current knowledge regarding the psychology of
programming.

External representations

Extreme Programming requires a development project to be defined as a number of ‘stories’. These
stories are written on a set of story cards, each of which is prioritised and those selected for
development in the next iteration are split into tasks, each detailed on a task card. Both story cards and

 ii

16th Workshop of the Psychology of Programming Interest Group. Carlow, Ireland, April 2004 www.ppig.org

task cards typically consist of nothing more than a single sentence written on a ‘cue card’ and are
discarded once they have been developed and integrated into the system.

Beyond these cards information regarding the system is communicated in two other ways, verbally via
a system metaphor and/or representationally via the code itself. Thus the only three types of physical
external representation prescribed in Extreme Programming are: story cards, task cards and the
program code. This is in direct contrast with traditional system design, where a number of
representations of the system design, such as structured diagrams of various kinds, are produced and
maintained throughout the project, and indeed are in many cases retained after the system has ‘gone
live’.

The projected benefits of the traditional structured diagrams include their helpfulness in seeing the
‘bigger picture’, providing a means of representing each level of abstraction in top-down design,
structuring and helping to understand the problem, reducing cognitive load on the designer/developer,
providing a common grammar between the developers and the customer in which to communicate the
solution detail, allowing the representation to form a ‘contract’ between the user and the project about
what will be produced and ensuring that a co-ordinated approach is taken by developers on large
projects. However, Extreme Programming asserts that coding is an evolutionary endeavour and
requirements usually change long before development is complete, thus rendering other external
representations obsolete and costly to maintain. An XP approach would therefore seem to assume that
between them the cards and code articulate the system at the only two necessary levels of abstraction,
and that there is no need for the overhead of maintaining additional representations.

This poses a number of questions, two of which will be considered here: First, how do developers
define and understand problems and produce solutions using only the code as representation? Second
how can the user and programmers communicate about requirements? In short, how does Extreme
Programming allow the project team to “ensure accurate and effective communication regarding a
product that no-one can see” (Perry et al. 1994) without the use of diagrams?

Whilst a number of overviews of the use of external representations have been published (e.g. Scaife
& Rogers, 1996) which are both insightful, thorough and useful, as far as the author is aware use of
external representations within Extreme Programming has not been specifically studied so far. This
might be because the adoption of particular forms of structured diagrams or alternative articulations of
the system is not encouraged. Further studies are required to ascertain the extent to which formal and
informal representations are actually used on extreme projects. The use of informal external
representations may also prove a key factor in the successful communication of ideas and solving of
complex problems within a programming pair and external representation of the system metaphor (see
below), albeit informal and temporary, may help to provide a method of assisting in its successful use.
Should alternative representations be found absent, the production and use of story and task cards are
in themselves external representations, whose form, production and usage should warrant further
investigation in order to assess how and when they assist the cognitive processes involved in the
production of software which conforms to the users requirements.

Some interesting progress can be made in understanding the use of external representations in XP by
considering the relevance of publications on the use of external representation in other areas of
software development, then applying them to the Extreme Programming context. However there is a
need for some more specific studies to take place. In particular, studies identifying the extent to which
the external representations which are currently used may allow insight into the cognitive aspects of
whether the identified, or indeed further, external representation might be desirable and why. This
information could prove valuable not only in furthering our understanding of the usefulness and

 iii

16th Workshop of the Psychology of Programming Interest Group. Carlow, Ireland, April 2004 www.ppig.org

applicability of XP, but also in making decisions about the integration of extreme practices into more
traditional approaches to software development.

Metaphor as architecture

Extreme Programming assumes the use of a system metaphor as a replacement for a more formal
system architecture. This metaphor acts as a shared informal model. It should ideally take the form of
a ‘true metaphor’, not directly related to the problem domain, for example using ‘cookie cutter’ to
refer to instantiating an object. However, where this is not possible, the metaphor may be transferred
directly from problem domain to programming domain. Such metaphors are known as ‘naïve
metaphors’. A common example would be the use of the term ‘customer’ to refer to something in both
the real world and the system. For further examples of potential systems metaphors see Wake (2002).

Rather than being physically expressed, metaphors are used mainly to ‘talk about’ the system. In
practice, the use of metaphor has been found to be sparse and often problematic as shown in the
studies outlined in Figure 1. Only three of the thirteen studies considered lead to positive results
regarding continued use of metaphors on all projects. The overwhelming majority of studies found
problems either in the understanding or use of system metaphors. Nevertheless empirical work
showing that experts maintain a mental model of the design in progress (e.g. Adelson & Soloway,
1988) would lead us to assume that the transformation of this working model into an expressible
metaphor could prove invaluable in assisting collaboration on system development tasks. In addition,
the many success stories in other arenas such as analogical problem solving (Gick & Holyoak, 1985)
and user interface design (Preece et al., 1994) suggests that the appropriate use of true metaphor is
highly desirable, especially when that use provides a means of exploring the problem space and
applying knowledge from other areas to the problem at hand. In fact, Carrol and Thomas (1982)
provide us with a scenario by which the use of metaphor may be understood at a cognitive level
whereby the metaphor is entered into working memory, as a consequence of which general knowledge
is retrieved from long term memory and the limited capacity of working memory forces consolidation
of the two by creating associations.

Whilst in Extreme Programming system metaphors are not typically represented in an external form
beyond verbalization, there may be some call to encourage doing so. External representations have
been shown to lessen cognitive load on the designer (Suwa & Tverksy, 2002) and assist in managing
complexity (Dogan & Nersessian, 2002). Similarly, Scaife & Rogers (1996) state that systems design
is better and faster with diagrams. Perhaps even a simple representation of the system metaphor in a
prominent place in the project space may be enough to encourage its consistent use and ensure
improved co-ordination of development effort. The study by West (2002) in Figure 1 suggests the use
of metaphor ‘cartoons’. However to be consistent with the ethos of XP, care should be taken that the
metaphor is not so complex that significant effort is required to keep the representation in sync with
the evolving code. Therefore, any cartoon produced should be simple enough to avoid on-going
modifications.

Despite being considered a ‘last resort’ in Extreme Programming literature, current research seems to
show that naïve metaphors – those taken directly from the problem domain - are more often used than
true metaphors. One theory might be that because metaphor use and its benefits are poorly
understood it is hard to justify the investment required to come up with a relevant and suitable
metaphor.

Whilst this is undesirable, in that it may more easily obscure differences in assumed knowledge or
discourage full exploration of the problem domain beyond current practices, it may help to explain the
lack of external metaphor representation. It is possible that this highlights a dependency between the
form of metaphor articulation and the type of metaphor. As Hutchins (1995) questioned whether
mental models are still required when an actor is directly interacting with the environment, so naïve
metaphors with existing real world manifestations may lessen the importance of producing a physical
metaphor representation. For example, why have a diagram of a customer, when you can interact with
a real one on your very project team?!

 iv

16th Workshop of the Psychology of Programming Interest Group. Carlow, Ireland, April 2004 www.ppig.org

Nevertheless encouraging the production of true metaphor and manifesting it using a physical
representation may still help promote its production and adoption. This concept is similar to that of
‘focal images’, which in studies by Petre (2003) were seen to be both a useful and important aid in
system design.

 v

16th Workshop of the Psychology of Programming Interest Group. Carlow, Ireland, April 2004 www.ppig.org

Study Setting Type Size For Against Outcome

West, D
(2002)

Academic Observation
and
presentations

>15
courses

Recall tripled.
High design
convergence.

 Retained -
use
cartoons

Harrison
(2003)

Commercial Interviews 6 projects
of < 20
people

 Not used.
No-one
interested

Rejected

Rumpe,
Schroder
(2002)

Commercial Survey 45 people 40% didn't use
68.9% had
difficulties

N/A

Deias R
(2002)

Commercial Experience
report

2 projects
of 6/7
people

 Could not make
it work.
Did not
understand it.

Sketch
architecture
instead

Karlstro
m D

(2002)

Commercial /
Academic

Experience
report

1 project of
9 people

 Too detailed &
not properly
maintained

Use simpler
metaphor
or cards &
code
instead

Lappo P
(2002)

Academic Experience
report

1 course More relevant
with more
experience.

No-one really
understood it.

N/A

Tomayko
(2003)

Academic Observation
and interviews

1 course of
35 students

Not very
costly. Many
thought
helpful

Not considered
very useful for
any purpose

Students
recommend
further use

Herbsleb
et al

(2003)

Academic Observation
and interviews

1 course of
35 students

Little
difficulty
developing
metaphors

Evidence of
metaphor in 6 of
14 architectures.
Relatively
useless.

N/A

Sharp H
&

Robinson
H (2003)

Commercial Ethnographic 1 team of
10

Considered
fundamental
for shared
vision

Metaphor
integrity
'onerous but
important'

Not stated

Lippert
M et al
(2003)

Commercial Experience
report

1 project
(size
unknown)

Use accepted Finding the right
metaphor is
demanding

Use
accepted

Johnson
et al

(2003)

Commercial Experience
report

1 project -
team of 4

 Used existing
system instead

Naïve
metaphor

Ambu et
al (2003)

Commercial Experience
report

2 projects -
one team
of 10/one
unspecified

 Metaphor
unused and hard
to apply.

Metaphor
not used

Becker et
al (2003)

Academic Experience
report

3 projects
of 8-12
students

Believe
metaphors
important

System too
small -
unnecessary

Not used
on small
projects

Fig 1 Studies of the use of metaphor in Extreme Programming

 vi

16th Workshop of the Psychology of Programming Interest Group. Carlow, Ireland, April 2004 www.ppig.org

The studies considered seem to suggest that metaphors in the XP sense are rarely used, and when they
are their use is fraught with difficulties. Similarly, literature on Extreme Programming assumes that
the production of diagrammatical representations of the systems architecture, are an un-necessary
overhead. This is in direct contradiction with literature on the psychology of programming, which has
consistently found both metaphors and diagrams to be useful in problem understanding, representation
and solving (e.g. Suwa & Tversky, 2002, Carrol & Thomas, 1982). As West (2002) mentions and the
studies shown highlight, the system metaphor is currently considered the weak point of Extreme
Programming. Perhaps with a more in depth investigation into its effective use this could be reversed.

Pair programming

Extreme Programming advocates programming in pairs. Once a task has been allocated, a
programming pair proceed to develop together, taking it in turns to ‘steer’ at the terminal. Pairs are
dynamic and can - in fact many say should - change between tasks in order to maximize the spread of
knowledge about the system. As shown in Figure 2, the majority of studies which have taken place
have either been in an academic environment or have provided experience reports from practitioners.
The single ethnographic study (Sharp & Robinson, 2003) provides an insightful story of XP in a
commercial environment, but does not assess pair programming from a cognitive perspective. Whilst
studies have compared pair programming favourably with programming alone in terms of quality of
software produced and side effects such as decreased ‘tunnel vision’ and positive ‘pair pressure’ (e.g.
Williams et al. 2000), the addition of an extra programmer to review and make suggestions may lead
to a number of problems.

Figure 2 also highlights some apparently contradictory results regarding the extent to which
programmers enjoyed working in pairs. Whilst four of the studies found programmers enjoyed
pairing, six other studies found either the opposite or a preference for selective use of pairing. The
study by Dick & Zarnett (2002) showed that care is required regarding the suitability of developers to
this approach. On an example project, they saw that the necessary role changes sometimes did not
happen, which lead to one developer ‘driving’ all the time, and the other one drifting off. They
therefore suggest that during interview, development candidates are assessed on the basis of
communication, comfort in pair working, confidence and ability to compromise but without much
evidence into the relevance of these particular characteristics to pair programming.

The author’s own initial observation of just two pairs programming highlighted two very different
approaches to pairing: a co-worker model and an apprenticeship model. This apprenticeship model
accords well with suggestions by Williams et al. (2000) that pair programming may help provide an
apprenticeship environment within a community of practice (Lave & Wenger, 1991). Here the
apprentice learns through legitimate peripheral participation, that is, not only through ‘doing’
themselves, but also through ‘seeing’ those with more expertise perform some more advanced tasks in
the surrounding area. Four of the studies in Figure 2 suggest pairing provides a good learning
environment, however, this must be offset against the fact that during the apprenticeship period,
particularly early on, there is only one experienced programmer working on the development, which
may decrease the benefits of pair programming as, for example, the quality of code produced may not
be suitably reviewed.

Thought also needs to be given to the effect of the apprenticeship on development time where
deadlines are tight. In fact, the study by Ambu & Gianneschi (2003) found that pair programming
was often seen as impractical when pressing deadlines loomed.

The same study raises a similar issue regarding training experts in Extreme Programming through its
finding that programmers were sometime reluctant to pair once they were competent. As Dick &
Zarnett (2002) mention, such a culture change may be more suited to individuals with particular
working styles than others. However, as far the author knows of no empirical studies showing how
this might be ascertained. That is, what characteristics or behaviours are found in successful pair
programmers, which are not present in those who are less successful at pair programming.

 vii

16th Workshop of the Psychology of Programming Interest Group. Carlow, Ireland, April 2004 www.ppig.org

Study Setting Type Size For Against Outcome
Williams et al (2000) Academic Timesheets,

auto test
28 pairers

13 solo
40%+ faster.
96% enjoyed

15-60% slower Benefits
outweigh costs

Noll et al (2003) Academic Observation 4 teams of 6-8 Hoarded Little difference
Harrison (2003) Commercial Interviews 6 projects Not practical –

remote
Voluntary

Benedicenti &
Paranjape (2001)

Commercial
& academic

Experience 12 participants Morale &
integration.

 Not mandatory

Dick & Zarnett (2002)Commercial Experience Not all are suited Phase in.
Interview traits.

Macias et al (2002) Academic Experience 80 students Higher
quality

 XP higher quality

Rumpe (2002) Commercial Survey 45 developers Some refused 93.3% use again
Deias et al (2002) Commercial Experience 15 people Disciplined Developers only
Pulugurtha et al (2002)Commercial Experience ? Improved

comms.
 Pair on other

tasks too
Lappo (2002) Academic Experience ? None took to it
Sharp & Robinson
(2003)

Commercial Ethnographic
study

8 developers All paired.
More comms

 'Exposed pair' to
manage comms

Tessem (2003) Academic Observation/
survey

6 developers All positive.
More quality

Exhausting.
Communication

Frequent partner
changes

Jensen & Zilmer
(2003)

Commercial Experience 1 project - 400
people

 Less value if
don’t re-pair

Heiberg et al (2003) Academic Experiment 110 students No correlation
NEO PI traits

Lui & Chan (2003) Commercial Experiment 15 developers Helped new
problems

No help on old
problems

Work at rate of
'smarter guy'

Vanhanen et al (2003) Commercial Interviews 3 project One project,
used for debug

Fuqua & Hammer
(2003)

Commercial Experience 2-4
programmers,
40 iterations

New
members up
to speed fast

Johnson et al (2003) Commercial Experience 1 project
(team of 4)

Behaviour
improved

Johnson & Johnson
(2003)

Academic Experience ? > interaction
Role models

Ambu & Gianneschi
(2003)

Commercial Experience 10
programmers

Faster. Less
bottlenecks.

Reluctant if
Competent or

tight deadlines.

Becker-Pechau et al
(2003)

Academic Experience 3 teams of 12-
18 students

Better
integrated

Changing pairs
slowed down

Use on critical
tasks

Steimann et al (2003) Academic Experience ? Only 1/3 of
work in pairs

Alternative to co-
location

Gittins et al (2001) Commercial Observation,
interviews &

survey

? Did not pair
all the time

Very taxing

Cockburn & Williams
(2001)

Academic Interviews &
experiments

? Better speed
quality &
enjoyment

Development
cost increase

15%

Phase pairing in

 viii

16th Workshop of the Psychology of Programming Interest Group. Carlow, Ireland, April 2004 www.ppig.org

Figure 2 Studies of pair programming

Beck (2000) suggests several changes to the physical environment can encourage Extreme
Programming, and that the best way to introduce it is to use it on a really tricky problem as a test.
However, essentially one would imagine that the extent to which this pilot project team had ‘bought
into’ the approach could directly affect the outcome of this test and that their attitude towards Extreme
Programming might be quite sceptical considering how far XP seems from current ‘best practice’. The
author feels that further evidence concerning why pair programming might work and how it works
best could be essential aids in providing a more factual basis for its introduction.

Another interesting aspect of pair programming not covered in the studies considered, is the
collaborative use of a computer system, which was designed for a single person. Of course,
collaborating over a single screen is nothing new – more than one person often work together to solve
word-processing problems (for example, see Twidale, 2000). The provision of a suitable tool to
support pair programming, potentially remotely, could prove instrumental in allowing the benefits of
pair programming to be gained where a physically ‘side by side’ environment is not possible. For
example, Harrison (2003) observes cases where developers who were 2000 miles apart wrote code
individually (presumably as they lacked a suitable shared development environment) but debugged
their code together using a shared desktop and Kircher et al. (2001) describe a project with members
in India, Germany, Italy and the USA, but freely admit that they could not completely substitute close
physical proximity. Beck (2000) emphasizes the importance of a supportive environment, which
should encourage pair programming and project team interaction but also provide privacy as and
when required, but appears to assume that this is not possible without close physical proximity.
Further research is required to ascertain whether this is, indeed, the case.

Within Extreme Programming experience reports (see Figure 2) pair programming is generally
considered a successful, useful and enjoyable approach, at least on a voluntary basis. However,
sceptics have some reservations about the applicability of pair programming to every situation. Data
from further studies could provide insight into pair programming in three ways: First, by helping to
provide information regarding the suitability of particular individuals to pair programming by
identifying characteristics of potentially successful pairers; Second, by providing information
regarding behaviours and approaches which are observable in successful and less successful pairers,
thus assisting in identifying training needs to improve pairing; Third, by assessing the suitability of
remote pair programming given suitable tools. Further research could also provide empirical evidence
regarding whether cross-pairing successful with less successful pairers can provide a more helpful
learning experience than learning by ‘going it alone’ on successively harder tasks. If this is so then a
case might be made for introducing pair programming into system development education for reasons
other than the provision of a study group for research. In fact, one wonders whether pairing might
work equally well in other disciplines and domains.

Observations

The work reviewed in this paper illustrates the level of interest in Extreme Programming and the wide
number of studies that have taken place regarding this relatively new practice. While many studies
have made progress in understanding what XP involves and how it might be implemented, a number
of questions regarding its global application and the psychological aspects underlying its twelve
practices remain unexplored. In particular, questions regarding the mechanisms by which between-
programmer communication and programmer-user communication take place without the use of
external representations seem key. The use and relevance of the system metaphor could also be more
successfully discussed if these debates could be founded on a further understanding of when and how
metaphors are produced, used and discarded on commercial IT projects. There are also many areas of
pair programming which remain poorly understood – not least the attributes of successful pairs, the
potential provision of a rich apprenticeship environment and whether pair programming can be
facilitated by the provision of better tailored development tools, potentially remotely.

 ix

16th Workshop of the Psychology of Programming Interest Group. Carlow, Ireland, April 2004 www.ppig.org

In order to begin to address some of these shortfalls the impact of study environment and
methodology must be thoroughly considered. As stated by Curtis (1986), for example, the
extrapolation of results from academic findings to a commercial setting may provide misleading
conclusions. Similarly, whilst practitioners experience reports remain useful for advising how to
introduce or practice XP, and highlighting some of the pitfalls to be avoided, they do not provide
insight into the mechanisms employed, nor do they tend to take a standard approach to study design.
Suitably disciplined ethnographic studies of extreme programmers ‘in the wild’ could assist in
obtaining this insight into the cognitive aspects of Extreme Programming. One particularly fruitful
approach might be to seek informed hypothesis through observational studies that could then form the
basis of further empirical work.

Conclusion

The studies reviewed in this paper highlight an apparent gap between the psychology of programming
and Extreme Programming. Whilst experience reports may prove useful in highlighting some of the
potential problems with the introduction and on-going use of XP in a variety of companies and
projects, there is a need for some over-arching understanding about the use of Extreme Programming
practices on a psychological level. To the author’s knowledge this work has not yet begun, and the
handful of empirical studies which have taken place have done so in an academic environment, or
have attempted to answer questions about whether or not a practice is appropriate, without taking any
more than an educated guess at why this may be the case.

Further commercially based research into the cognitive aspects of Extreme Programming may not
only assist in ensuring where, when and to whom these practices may be most applicable, but also
what the highlights and shortfalls of Extreme Programming are, and how it might usefully be
modified or extended. Such information is essential if companies and educational institutions are to
make informed choices about their development methodological paradigm rather than taking a ‘leap
of faith’ into the unknown.

Acknowledgements

The author would like to thank Professor Benedict du Boulay and Dr Pablo Romero for their
invaluable advice and ideas and Genaro Robelledo-Mendes for his assistance and input.

References

Adelson B & Soloway E (1985). The role of domain experience in software design. IEEE
Transactions on Software Engineering, 11 (11), p1351-1360.

Agile Manifesto (2004). www.agilemanifesto.org

Ambu W & Gianneschi F (2003).Extreme Programming at work. Proceedings of the 4th International
conference in Extreme Programming and Agile Processes in Software Engineering in Lecture
Notes In Computer Science, 2675, p.347-350.

Beck K (2000). Extreme Programming Explained: Embrace Change. Addison Wesley.

Becker-Pechau P, Breitling H, Lippert M and Schmolitzky A (2003). Teaching team work: An
extreme week for first year programmers. Proceedings of the 4th International conference in
Extreme Programming and Agile Processes in Software Engineering. Lecture Notes in Computer
Science, 2675, Goos G, Hartmanis J, van Leeuwen J (eds), p360-362.

Benedicenti L, Paranjape R (2001). Using extreme programming for knowledge transfer. Proceedings
of the 2nd International Conference on eXtreme Programming and Agile Processes in Software
Engineering.

 x

16th Workshop of the Psychology of Programming Interest Group. Carlow, Ireland, April 2004 www.ppig.org

Carroll JM, Thomas JC (1982). Metaphor and the cognitive representation of computing systems.
IEEE Transactions on Systems, Man and Cybernetics, 12 (2), p107-116.

Cockburn A, Williams L (2001). The costs and benefits of pair programming. Extreme Programming
Examined. Addison Wesley.

Crabtree A (2003). Designing Collaborative Systems: a Practical Guide to Ethnography. Springer-
Verlag, London.

Curtis, Bill (1986). By the way, did anyone study any real programmers? Empirical Studies Of
Programmers, First Workshop. Soloway E & Iyengar S (Eds), p.256-261.

Deias R, Mugheddu G, Murru O (2002). Introducing XP in a start-up. Proceedings of the 3rd
International Conference on eXtreme Programming and Agile Processes in Software
Engineering, Alghero, Italy.

Dick AJ, Zarnett B (2002). Paired programming and personality traits. Proceedings of the 3rd
International Conference on eXtreme Programming and Agile Processes in Software
Engineering, Alghero, Italy.

Dogan F & Nersessian N (2002). Conceptual diagrams: representing ideas in design. Diagrammatic
Representation and Inference, Hegarty M, Meyer B, Narayanan N H (Eds), p353-355.

Fuqua AM & Hammer JM (2003). Embracing change: An XP experience report. Proceedings of the
4th International conference in Extreme Programming and Agile Processes in Software
Engineering in Lecture Notes in computer science, 2675, Goos G, Hartmanis J, van Leeuwen J
(eds), p298-306.

Gick ML, Holyoak KJ (1985). Analogical problem solving. Cognitive Psychology 12(80), p306-356.

Gittins RG, Hope S, Williams I (2001). Qualitative studies of XP in a medium sized business.
Proceedings of the 2nd International Conference on Extreme Programming and Flexible
Processes in Software Engineering,Villasimius, Sardinia, Italy.

Harrison NB (2003). A study of Extreme Programming in a large company.
www.research.avayalabs.com/techreport/ ALR-2003-039-paper.pdf

Heiberg S, Puus U, Salumaa P and Seeba A. Pair-programming effect on developers’ productivity.
Proceedings of the 4th International conference in Extreme Programming and Agile Processes in
Software Engineering. Lecture Notes in computer science, 2675, Goos G, Hartmanis J, van
Leeuwen J (eds), p.215-224.

Herbsleb, James; Root, David; & Tomayko, James. The eXtreme Programming (XP) metaphor and
software architecture. (Technical Report CMU-CS-03-167) Pittsburgh, PA: School of Computer
Science, Carnegie Mellon University.

Hutchins E (1995). Cognition in the Wild. The MIT press, Cambridge, MA

Jenson B & Zilmer A (2003). Cross-continent development using scrum and XP. Proceedings of the
4th International conference in Extreme Programming and Agile Processes in Software
Engineering in Lecture Notes in computer science, 2675, Goos G, Hartmanis J, van Leeuwen J
(eds), p146-153.

Johnson S, Mao J, Nickell E, Smith I (2003). Extreme makeover: bending the rules to reduce risk
rewriting complex systems. Proceedings of the 4th International conference in Extreme
Programming and Agile Processes in Software Engineering in Lecture Notes in computer
science, 2675, Goos G, Hartmanis J, van Leeuwen J (eds), p307-314.

Johnston A & Johnson CS (2003). Extreme Programming: A more musical approach to software
development. Proceedings of the 4th International conference in Extreme Programming and Agile
Processes in Software Engineering. Lecture Notes in computer science, 2675, Goos G, Hartmanis
J, van Leeuwen J (eds), p325-327.

 xi

16th Workshop of the Psychology of Programming Interest Group. Carlow, Ireland, April 2004 www.ppig.org

Karlstrom D (2002). Introducing extreme programming – an experience report. Proceedings of the
3rd International Conference on eXtreme Programming and Agile Processes in Software
Engineering. Alghero, Italy.

Kircher M, Jain P, Corsaro A, Levine D (2001). Distributed extreme programming. Proceedings of
the 2nd International Conference on eXtreme Programming and Agile Processes in Software
Engineering, Cagliari, Sardinia, Italy.

Lappo P (2002). No pain, no XP: Observations on teaching and mentoring Extreme Programming to
university students. Proceedings of the 3rd International Conference on eXtreme Programming
and Agile Processes in Software Engineering, Alghero, Italy.

Lave J & Wenger E (1991). Situated Learning: Legitimate Peripheral Participation. Cambridge
University Press.

Lippert M, Schmolitzky A and Zullighoven H (2003). Metaphor design spaces. Proceedings of the 4th
International conference in Extreme Progrmming and Agile Processes in Software Engineering.
Lecture Notes in computer science, 2675, Goos G, Hartmanis J, van Leeuwen J (eds), p.33-40.

Lui KM & Chan KCC (2003) When does a pair outperform two individuals? Proceedings of the 4th
International conference in Extreme Programming and Agile Processes. Software Engineering in
Lecture Notes in computer science, 2675, Goos G, Hartmanis J, van Leeuwen J (eds), p225-233.

Macias F (2002). Empirical experiments with XP. In Proceedings of the 3rd International Conference
on eXtreme Programming and Agile Processes in Software Engineering. Alghero, Italy.

Marcus A (1995). Metaphor design in user interfaces: how to manage expectation, surprise,
comprehension and delight effectively. Conference companion on Human Factors in Computing
Systems, p373-374.

Noll J & Atkinson D (2003). Comparing extreme programming to traditional development for student
projects: a case study. Proceedings of the 4th International Conference on eXtreme Programming
and Agile Processes .Software Engineering. Lecture Notes in computer science, 2675, Goos G,
Hartmanis J, van Leeuwen J (eds), p372-374.

Perry DE, Staudenmayer NA, Votta LG (1994). Understanding software development: processes,
organizations and technologies. IEEE Software, 11(4), p36-45.

Petre, M. (2003). Team coordination through externalised mental imagery. Proceedings of the co-
located 15th Annual Psychology of Programming Interest Group Workshop and Empirical
Assessment of Software Engineering Conference. (Keele, April). Petre, M (Ed).

Preece, Rogers Y, Sharp H, Benyon D, Holland S & Carey T (1994). Human-Computer Interaction.
Addison-Wesley, Wokingham, England.

Pulugurtha S, Neveu J-N, Lynch F (2002). Extreme programming in a customer services organization.
Proceedings of the 3rd International Conference on eXtreme Programming and Agile Processes
in Software Engineering, Alghero, Italy.

Romero P, Cox R, du Boulay B and Lutz R (2002). Visual attention and representation switching
during Java program debugging: a study using the Restricted Focus Viewer. Lecture Notes in
Artificial Intelligence, 2317. Goos. G, Hartmanis, J & van Leeuwen J (Eds). Springer.

Rumpe B, Schroder A (2002). Quantitative survey on extreme programming projects. Proceedings of
the 3rd International Conference on eXtreme Programming and Agile Processes in Software
Engineering, Alghero, Italy.

Scaife M & Rogers Y (1996). External cognition: how do graphical representations work? Int J.
Human Computer Studies, 45, p185-213.

Sharp HC & Robinson HM (2003) An ethnography of XP practice, Proceedings of the co-located
15th Annual Psychology of Programming Interest Group Workshop and Empirical Assessment of
Software Engineering Conference. (Keele, April). p15-27.

 xii

16th Workshop of the Psychology of Programming Interest Group. Carlow, Ireland, April 2004 www.ppig.org

Steimann F, Gossner J & Muck T (2003). Filleting XP for educational purposes. Proceedings of the
4th International conference in Extreme Programming and Agile Processes in Software
Engineering. Lecture Notes in computer science, 2675, Goos G, Hartmanis J, van Leeuwen J
(eds), p.225-233.

Suwa M & Tversky B (2002). External representations contribute to the dynamic construction of
ideas. Diagrammatic Representation and Inference, Hegarty M, Meyer B, Narayanan N H (Eds),
p341-343.

Tessem B (2003). Experiences in learning XP practices: a qualitative study. Proceedings of the 4th
International conference in Extreme Programming and Agile Processes in Software Engineering
in Lecture Notes in computer science, 2675, Goos G, Hartmanis J, van Leeuwen J (eds), p131-
137.

Tomayko JE & Herbsleb J (2003). How useful is the metaphor component of agile methods? A
preliminary study. (Technical Report CMU-CS-03-152) Pittsburgh, PA: School of Computer
Science, Carnegie Mellon University.

Twidale, M.B. (2000). Interfaces for supporting over-the-shoulder learning. Proceedings of HICS
2000: The Fifth Annual Conference on Human Interaction with Complex Systems. The Beckman
Institute, University of Illinois at Urbana-Champaign, M. Benedict (Ed.), p33-37.

Vanhanen J, Jartti J, Kahkonen T (2003). Practical experiences of agility in the telecom industry.
Proceedings of the 4th International conference in Extreme Programming and Agile Processes.
Software Engineering. Lecture Notes in computer science, 2675, Goos G, Hartmanis J, van
Leeuwen J (eds). P279-287.

Wake, W (2002). Extreme Programming Explored. Addison Wesley, NJ, USA

West D (2002). Metaphor, architecture and XP. Proceedings of the 3rd International conference on
Extreme Programming and agile processes, Alghero, Italy.

Williams L, Kessler RR, Cunningham W, Jeffries R (2000). Strengthening the case for pair-
programming. IEEE Software, 17(4), p19-25.

