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Abstract 

This paper describes an investigation using data from a number of open source mailing lists. A 
methodology is described that details the procedure used to extract program summaries posted to 
mailing lists by experienced programmers as well as the type of analysis involved. The data are 
analyzed for patterns and correlations between task type and the program comprehension scheme 
categories used. When compared to laboratory style empirical studies, an advantage is gained allowing 
stronger ecological valid insights into programmer comprehension. 

Introduction 

The study described in this paper was performed in order to examine the patterns of abstraction levels 
used by experienced programmers when describing a program. The data was also examined for 
evidence of task type correlations, i.e. whether the task type affected the type of abstractions used. 
From such results, requirements may be gathered for a supportive Software Visualisation (SV) tool 
allowing appropriate abstractions of the software system to be developed based on the gathered data. 
For example, it was found that data flow and function type abstractions were repeatedly used together 
during the program summaries. Such evidence supports the need to allow the user to easily switch 
from the data flow view in the software visualisation tool to higher abstractions. 

Gathering such data using empirical studies requires the setting up of an environment that is 
unfamiliar to the programmer. Monitoring equipment for talk-aloud, video and keystrokes are often 
used. The tasks given are often artificially created by the experimenter. Even in more immersive 
approaches where the experimenter works within the participants' workplace forces the presence of an 
unfamiliar person. In both these cases the environment is unnatural and the participant is aware of 
being monitored. 

Using content analysis of Open Source mailing lists provides a wealth of information while 
overcoming many of these issues. Used on its own or in conjunction with other studies a rich data set 
can be obtained. Open Source lists deal with a real, large and more often than not, industry standard 
program. Such projects attract regular contributions from programming enthusiasts who are both 
experienced and knowledgeable of their domain and language. The tasks being performed are real and 
require solving within a reasonable amount of time. The environment is not manufactured in any way 
by the researcher. Content analysis in this manner is unobtrusive as the participant is not even aware 
of the experimenter or monitoring of any kind. 

As already stated, the investigation described here is motivated by the need to gather requirements for 
a SV tool. For the purposes of clarity, SV will now be defined and discussed before the study is 
detailed. 

Software Visualisation was concisely described by (Ball and Eick 1996) as the following, "Software is 
intangible, having no physical shape or size ... Software Visualization tools use graphical techniques 
to make software visible through the display of programs, program artifacts, and program 
behaviour".  
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Typical real-world software systems, are quite complex and difficult to comprehend. An in-depth 
knowledge of such a system takes significant investments of time. As a result, a large cognitive load is 
placed on the maintainer upon seeing the code for the first time. Software Visualisation aims to help 
the programmer carry such a cognitive burden. Consequently, SV tools are bound to the results from 
program comprehension studies to provide direction in achieving this goal.  

This paper describes a study that analyzed programmers' summaries found in Open Source Java 
mailing lists. The benefits of which are described in next Section. The motivation behind the study is 
discussed further along with the study itself. Good's program comprehension scheme (Good 1999) 
was used for the analysis of the gathered program summaries. This scheme, is discussed further in the 
Procedure Section. It is particularly suitable in helping us to find the appropriate abstractions needed 
by programmers. Allowing us to appropriately measure the abstractions used. The Procedure Section 
also describes how the lists were chosen and how the summaries were selected from these lists without 
a bias of one type of summary over another. A description is provided of how the program 
comprehension scheme was applied to these summaries. 

Following this, the results, discussion and conclusions are detailed. 

Advantages of Examining Online Mailing List Data 

Software Visualisation tools are often evaluated by comparing the levels of program comprehension 
achieved by its users during controlled experiments.  

However, one could argue that experimental controls associated with many of these studies impede on 
the ecological validity of the obtained results. This is due to the fact that the programmer is in an 
unfamiliar/unnatural environment and will quite possibly function and behave differently than under 
more normal circumstances, i.e. empirical experimental controls have potential to lack ecological 
validity. 

On the other hand, what other options do we have when dealing with professional programmers in an 
industrial setting? Immersive approaches such as action research are possibilities. For instance to 
perform research within the company over a longer period of time and gather data from within the 
programmers' own environment. Which technique is used is a matter of suitability for the type of data 
that is required.  

The method we have used here is to gather the results from the wild in an unobtrusive manner. The 
raw data is gathered from online mailing lists and analyzed, by doing so, ecological validity is 
maintained as the programmer is unaware of the observational study. 

Software Visualisation Abstractions 

Figure 1 shows a software system (source code files shown on the left) which can be examined at 
many levels of abstraction. The highest abstraction is the software architecture view, further down the 
abstractions are the relationship view, data flow view and control flow view. The dots in between each 
of these views in Figure 1 shows that many have yet to be defined/discovered through empirical 
evidence gathered from experienced programmers. At the bottom of the abstractions is the source code 
itself.  
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Figure 1: Presenting Abstractions of a Software System 

 

The programmer accumulates much of this abstraction information from many varying sources during 
comprehension (e.g. from source code, documentation, run-time analysis of the system, etc.) 

Appropriate visual representations of the software can be used to abstract the system into many views 
and present them to the user for further investigation. Each abstraction view is synchronised with each 
active view. That is, an event in one abstraction view will cause all the other visualisation windows to 
be updated.  

The tool is to be integrated with an existing industry standard development environment. It will also 
be closely integrated with the debugger to support interactive user queries. The supported language is 
to be an Object Oriented language environment. Java was chosen as it is widely used in industry and 
provides various monitoring capabilities as part of its implementation. 

For our purpose Open Source Java mailing lists provide a wealth of information. Well known Open 
Source projects were examined and experienced/regular contributors were chosen as part of the study. 
Much of the software is used in industry and attracts industry standard contributions. It is program 
summaries from such lists that have been analyzed in order to provide the requirements for the SV 
tool. 

Our objective can be stated in the form of a research question as follows: “Which level of abstraction 
or levels of abstractions of the software system are most important to the experienced programmer 
during maintenance?'' 

For the purposes of this study, we are most interested in finding what patterns of abstractions are most 
used by the programmers in their summary accounts. These results will provide feedback for the 
abstractions that need to be implemented and closely integrated in the tool. 

Procedure 

Open Source Java mailing lists were identified1 and summaries/programmers were chosen equally 
from each list (data permitting). 

                                                           
1 Although there are many Open Source Java projects, our list was chosen from: 

http://jakarta.apache.org/ 
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Once the lists were chosen, the posts were listed from the most recent to the oldest. Threads were 
searched for messages that contained program summaries. A program summary was identified using 
the keyword “summary'' as the search criteria. In the majority of cases, the summaries were contained 
within submitted bug reports and patches. All program summaries were recorded until fifteen2 
summaries were collected from each list. 

Two types of variables were gathered from the program summaries. Both structural variables and 
content variables were gathered as was done by (Gold and Auslander 1999). 

Structural Variables consisted of the following: 

� Mailing List Name: The name of the project that the developer mailing list belongs to. 

� Thread Title: The subject of thread being discussed. 

� ID: An identification number was assigned to each message and programmer 

� Reason for Summary: For example, if the programmer was requesting help, giving help, 
describing a bug or solution etc. 

� Summary Length: The total number of segments in the summary. 

� Code Inserts: Whether the message contained a source code insert. This meant that the source 
code for one or more lines of code was counted. 

� Documentation References: Whether the summary contained references to Javadoc, API, 
Comments etc. 

� Architectural References: Whether the summary described the architecture of the system in 
some way. Examples include the use of the following keywords: (inherits, subclass, 
superclass, interface, abstract, extends, protected, private, public, static, etc.). As well as any 
comments made in general about the design, for example, ``this is not designed to handle...''. 

� Error References:  Whether the message included any error messages. Examples include the 
following: Full/Partial Stack Traces, Exceptions, Compiler Errors, Runtime Errors, etc. 

� File Name References: Whether the summary names the Java files by name, i.e. any *.java 
references. 

 

Content variables consisted of the categories from the program comprehension scheme (Good 1999). 
There are eleven categories plus one rarely used additional category donated by a minus sign (“-'') for 
segments that could not be categorized in any way. Examples of such statements were: ``The patch is 
attached to this message.'' These content variables will now be enumerated along with examples from 
the study. 

� Function (F): The overall aim of the program is described succinctly. Example: “is intended 
to represent exceptions thrown explicitly by JS throw statement'' 

� Actions (A): Events occurring in the program which are described at a lower level than 
function. Example: “we need to try each of the IP addresses''. 

� Operation (O): Small scale events which occur in the program, such as tests, assignments, etc. 
Example: “from SMTPHandler doRCPT()''. 

� Data (D): Inputs and Outputs to programs, data flow through programs, and descriptions of 
data objects and data states. Example: “it remains as zero''. 

                                                           
2 This number was chosen in an effort to keep the number of summaries from each list evenly 

distributed. It is a typical number of participants that would have been used in an empirical study. 
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� State-High (SH): High-level definition of state. An event is described at a more abstract level 
than state-low. Example: “If the DNS lookup fails''. 

� State-Low (SL): Lower version of state-high. State-Low usually relates to a test condition 
being met, or not met, and upon which an operation depends. Example: “Consider, too, that 
this feature works only if STATE is “ERROR””. 

� Control (C): Information having to do with program control structures and with sequencing, 
e.g. recursion, calls to subprograms, stopping conditions. Example: “But instead it exits''. 

� Unclear (U): Statements which cannot be coded because their meaning is ambiguous. 
Example: “and the height is recorded''. It is not clear here whether “recorded'' means 
“printed'', “added to a list'', “assigned to a variable'', etc. 

� Incomplete (I): Statements which cannot be coded because they are incomplete. Examples 
include unfinished sentences. 

� Meta (M): Statements about the participant's own reasoning processes. Example: “As I see it 
this is because the code catches ArrayIndexOutOfBoundsException''. 

� Elaborate (E): Further information about a process/event/data object which has already been 
described. Example:”(which would be mx1.mail.yahoo.com)''. 

 

During the study, the summaries were split into segments before coding, e.g. the following statement 
was split into segments as shown below. 

“This is the class that goes through a file and gets the data to be graphed, in this case port numbers.''. 

“/ This is the class / that goes through a file / and gets the data / to be graphed, / in this case port 
numbers ./''. 

Each segment is examined and categorized into one of eleven categories. The results were calculated 
as a percentage of the number of occurrences of the category type to the total number of segments in 
the summary.  

Each of the eighteen programmers remained anonymous and is given an identification number. During 
the study, the programmers will only be referred to by their identification number (i.e. Numbers 1-18). 
Multiple summaries by these programmers are examined for both usage patterns and correlations. 

The individual programmers were selected from five different mailing lists. This was to eliminate bias 
on the type of descriptions used to describe the programs. For example, programmers working on the 
Lucene search engine project would be expected to produce more data type descriptions than 
programmers working on the James (Java Apache Mail Enterprise Server) project. By having a broad 
range of projects where programmers were selected from, such biases are reduced. The mailing lists 
will now be enumerated with a short description of the domain each belongs to. 

� Slide Project (4 programmers: 1, 2, 3, and 4) 

“The Slide project main module is a Content Management and Integration System, which can 
be seen as a low-level content management framework” (Slide Project). 

� Lucene Project (4 programmers: 5, 6, 7, and 8) 

“Jakarta Lucene is a high-performance, full-featured text search engine written entirely in 
Java” (Lucene Project). 

�  James Project (3 programmers: 9, 10 and 11) 

“The Java Apache Mail Enterprise Server (a.k.a. Apache James) is a 100\% pure Java SMTP 
and POP3 Mail server and NNTP News server” (James Project). 

� BSF Project (2 programmers: 12 and 13) 
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 ``Bean Scripting Framework (BSF) is a set of Java classes which provides scripting language 
support within Java applications, and access to Java objects and methods from scripting 
languages”. (BSF Project). 

� jEdit Project (5 programmers: 14, 15, 16, 17 and 18) 

 “jEdit is a ... programmer's text editor that has been in development for over 5 years'' (jEdit 
Project). 

Results 

Three types of patterns were recorded: function, data and control type categories. These are 
enumerated below. The notation used is with an arrow operator. For example, the forward arrow     (d-
>f) shows that data flow descriptions were often followed by functional type descriptions. The 
function (f) category is shown in bold to highlight that the pattern was found when examining 
functional type statements. The three highest patterns are described for each pattern type.  

The summaries were categorized into five task types, “Code Explanations” (the author was attempting 
to explain either their own code or somebody else’s code to a poster), “Help Requests” (the author 
was asking for help by describing their problem), “Providing Help” (the author was attempting to help 
the poster by providing solutions), “Proposed Changes” (the author is detailing their intentions to 
change or update or even add a feature to the program) and “Bug Descriptions”(the author has found a 
bug and is describing a report of how it can be replicated).  

The task type is also reported along with the three most popular categories used throughout such 
summaries. Additionally, the most frequently used categories for the first, second and third opening 
segments of the summary were also recorded, in an effort to find if there is a difference in the level of 
abstraction used by the programmer when first discussing the problems of different task types, i.e. 
where does the programmer being the investigation? 

Function Type Patterns 

The most frequently used function-type pattern was the “d->f” pattern. The “f->d” pattern was the 
next most frequently used. Both of these were used by eight of the eighteen programmers. This was 
followed by the “f->sh” pattern which was used by seven programmers. 

Data Type Patterns  

The “f->d” pattern was the most frequently used by nine of the eighteen programmers. Seven 
programmers used the “d->f” pattern, while six programmers used the “d->d” pattern. 

Control Type Patterns 

The “c->d” pattern occurred most frequently, used by five of the eighteen programmers. The “d->c” 
pattern was found to be the next most employed pattern by four programmers, followed by the “c->c” 
pattern as the third most frequently used.  

Task Type: “Code Explanations” 

The highest three categories found were function, data and state-high. The top three categories used 
for the first, second and third segments were function, function and function respectively. 

Task Type: “Help Requests” 

The highest three categories recorded were control, function and data. The top three categories used 
for the first, second and third segments were data, function and control respectively. 
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Task Type: “Providing Help” 

The highest three found were function, data and state-high. The top three categories used for the first, 
second and third segments were function, stat-high and elaborate respectively. 

Task Type: “Proposed Changes” 

The three highest categories used here were function, meta and data. The top three categories used for 
the first, second and third segments were function, data and control respectively. 

Task Type: “Bug Descriptions” 

The three highest categories used overall were data, function and state-high. The top three categories 
used for the first, second and third segments were function, data and meta respectively. 

Discussion 

The results recorded in relation to the patterns of category usage have an impact on how the 
abstraction levels in the SV tool should be integrated. These will now be discussed in turn. 

The function category switched to data most often. The next highest interaction was with the state-
high category. From the SV tool perspective, the data flow views should be integrated with the higher 
abstractions in order to facilitate such switching. 

The data category interacted with the function category most frequently. This was followed by 
interactions with other data type statements. The need to easily switch between function and data and 
vice versa within the SV tool is highlighted again here. 

Surprisingly the control category interacted the most with the data category. This was followed by 
interactions with other control type statements. Showing that data and control type views are not as 
exclusive as they are currently treated within SV tools. Support is found here for integration with the 
debugger, in such a way, variable values can be found for example from the control flow view at any 
time. 

The results from the examination of task types and the number of categories used found less 
differences than expected. However, there are some interesting results (e.g. for the “Help Request” 
task type), which will now be discussed.  

The “Code Explanations” task type employed the same three highest categories as the “Providing 
Help” task type and the “Bug Description” task type. Interestingly, the categories were used in the 
same order as well. All task types employed function and data in the top three most used categories. A 
difference was seen in the “Help Request” task type where control was the most used category. When 
providing help it emerges that control flow of the program is more important to explain than the actual 
data values. Another difference was seen in the “Proposed Changes” task type, where the meta 
category was the second most used category. This is intuitive as the changes are being discussed, 
while the reasoning behind such changes must be negotiated between the programmers, hence the 
meta category emerged as being heavily used. 

It appears that both function and data are the most important categories no matter what the task type. 
Differences appear when help is being provided, in those cases it emerges that the control flow of the 
program is more important to understand than any other category when asking for help.  

When changes are being proposed, the programmer’s own reasoning earns more importance as was 
seen by use of the meta category. State-high also became important when explaining code, providing 
help or describing bugs.  

All task types opened the summary with a function type statement except for the “Help Request” task 
type which opened with a data type statement most often.  
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Conclusion 

The study set out to discover category usage patterns in program summaries belonging to experienced 
programmers. Open Source mailing lists were used and provided a wealth of information. Experienced 
programmers are often attracted to open source development and the programmers studied here were 
frequent contributors. Advantages are also gained as the programmers are not influenced by the 
‘presence’ of an experimenter. We also examined the types of categories used depending on the task 
being performed. These results were successfully gathered and have implications for the design of the 
described SV tool, which will now be described. 

The data abstraction and the higher abstractions need to be closely integrated to allow easy switching 
between them. The control abstraction also needs to be integrated with the data abstraction, as the 
control category most often interacted with the data category. 

No matter what the task being performed is, both function and data abstractions will be needed. The 
state-high category is important for tracking down bugs along with the data and function categories. 
When investigating the code in order to make changes, the programmer defends their reasoning and 
this is seen through the heavy use of the meta category. This supports a feature such as annotated 
views. For example, a “post-it” type feature that allows the programmer to make notes (aside from 
comments) that are visible within in the integrated development environment and can be used a means 
of guidance when the code is being discussed between one or more additional programmers. 
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