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Abstract 

This paper proposes a methodology for the study of program comprehension and debugging 
through the capture and analysis of rich process data. A software debugging environment with 
enhanced functionality is used to capture these data and a mixture of qualitative and quantitative 
approaches is employed to analyse them. 

The functionality added to the software debugging environment allows it to record the 
programmers’ verbalisations, their focus of visual attention and their keyboard and mouse 
actions. These synchronous data are analysed to build a model that relates debugging expertise to 
strategy in terms of representation coordination and individual differences in representation use. 

Introduction 

Program debugging, the ability to detect errors in computer programs, is a skill that is central to 
programming. This is a complex skill that comprises comprehension of the program, 
troubleshooting ability and knowledge of the computerised working environment in which this 
activity takes place, among other skills. Program debugging is a particularly important skill for 
programming students to acquire, as they typically spend long periods of time trying to detect 
errors in their programs. Despite this, debugging is rarely taught explicitly as part of computer 
science courses. 

Debugging is typically performed with the help of a computerised environment, a Software 
Debugging Environment (SDE). Modern SDEs provide the user with a highly interactive, multi-
representational interface. Also, it is not uncommon for programmers to verbalise their cognitive 
processes while debugging as they usually do so when seeking help. 

When working in a SDE, the range of data that can, in principle, be captured includes i) use of the 
environment (navigation, ease of locating information, patterns of display-use, etc); ii) debugging 
performance (number of errors found and spotting times); and iii) verbalisations of programmers. 

These data can be analysed at various levels of granularity, from keystroke and mouse clicks to 
the construction of debugging episodes and strategies. We are particularly interested in relating 
these data to debugging expertise, coordination of multiple representations and individual 
differences in representation use with a view to understanding the nature of the debugging 
process and helping students to acquire this skill in a more systematic way (Romero et al., 2002b; 
Romero et al., 2003b; du Boulay et al., 2003). 

Rich process data capture and its analysis has proved very useful for evaluating virtual museum 
applications (Cox et al., 1999), investigating individual differences in logic proof development 
(Stenning et al., 1995) and for studying health science students’ diagnostic reasoning skill 
acquisition (Cox and Lum, 2004) among other areas. Because of the characteristics mentioned 
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above, we believe that rich data capture and analysis is a suitable methodology for an in depth 
study of the program debugging activity. 

In this paper we propose a methodology for the study of program debugging through the use of a 
SDE equipped with the appropriate functionality to record the participants’ verbalisations, focus 
of visual attention and keyboard and mouse actions. In addition to the capture of these data, this 
methodology includes a protocol for analysing synchronic events and relating them to debugging 
experience, representation coordination and individual differences in representation use. 

The components of the debugging task  

Program debugging comprises several subskills. These include program comprehension, 
troubleshooting, representation decoding and coordination, as well as knowledge about the SDE 
with which the programmer is working. 

Program comprehension involves the understanding of several domains and the acknowledgment 
and understanding of various types of information implicit in a program. During domain 
understanding, mappings are established between the problem domain (the real world problem to 
be solved) and the program domain (the code that implements the solution to the problem) 
possibly via a number of intermediate domains. These mappings are produced via the generation 
and refining of hypotheses about the program’s execution and its relation to the other domains 
(Brooks, 1983). 

The programming information types that need to be understood during program comprehension 
indicate the different ways in which a program can be interpreted. Examples include function, 
data structure, data-flow and control-flow. Function refers to what the program does, data 
structure to the programming language objects used, data-flow to the transformations which data 
elements undergo and control-flow to the sequence of actions that will occur when the program is 
executed (Pennington, 1987b). 

The result of the program comprehension process is a mental representation of the program being 
studied. The qualities and level of detail of this mental representation may vary according to a 
number of factors including the programmer’s skill level and background knowledge, the size of 
the program and the task at hand. 

Troubleshooting is the generic cognitive process by which people diagnose and correct faults in 
computer systems (Rouse et al., 1980). The majority of studies in the area have considered 
debugging as a troubleshooting activity and debugging strategies as specific cases of general 
troubleshooting strategies. Particular debugging strategies include information gathering (Jeffries, 
1982; Eisenstadt et al., 1993), symptomatic search (Eisenstadt et al., 1993) and controlled 
experiments (Eisenstadt et al., 1993). Information gathering is reported to comprise a variety of 
techniques aimed at better understanding the error through the program behaviour. Symptomatic 
search (also called expert recognised cliche) is the search for ’typical’ errors, which experts can 
easily detect on reading the program. Controlled experiments are performed once the programmer 
has a number of hypotheses about the error and wants to test their validity. 

Despite the fact that programmers normally work with computerised multi-representational 
environments, there is little research about representation decoding and coordination in 
programming. SDEs frequently offer several other views of the program in addition to program 
code listing. Such environments might include data-flow and control-flow visualisations and 
output displays and typically permit the user to switch rapidly between these multiple, linked, 
concurrently displayed views (Romero et al., 2003a). 
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Issues to consider about representation decoding and coordination are the format of the 
representations (graphical or textual), information types highlighted and the programmers’ level 
of familiarity with relevant representation formalisms (Romero et al., 2002b). Important questions 
to address in this area include: 

� Are particular patterns of representational use associated with superior debugging 
performance? 

� Do representation characteristics such as the information type highlighted or its format 
(graphical or textual) affect representation use and debugging strategy employed? 

� Is there a relationship between programmers’ characteristics such as their level of 
familiarity with representation formalisms, format preference and programming 
experience and their debugging behaviour? 

In order to answer these kinds of question it is necessary to look at both the outcome and the 
process of the debugging activity and analyse the experimental data in both a quantitative and a 
qualitative way. 

Analysis of process data in programming  

Program comprehension and debugging studies that have looked at programmers’ verbalisations 
have normally asked participants to think aloud, either while performing the task on their own 
(Vessey, 1985; Pennington, 1987a; Bergantz and Hassell, 1991) or collaboratively (Mulholland, 
1997). Such studies have then performed protocol analysis to explore strategy and to investigate 
how it relates to programming experience and proficiency (Vessey, 1985); to explore the 
relationship between notational properties of the language and the SDE to the information types 
programmers consider as important (Bergantz and Hassell, 1991; Mulholland, 1997); and to study 
program comprehension strategy in terms of the mappings programmers establish between the 
program and problem domains (Pennington, 1987a). 

Studies that have looked at focus of visual attention have been rare. These studies have either 
restricted the focus of visual attention by limiting the size of the editing buffer (Robertson et al., 
1990), or employed eye-tracking devices (Crosby and Stelovsky, 1989). Such studies have 
analysed code reading patterns to investigate whether they are more similar to prose reading or to 
tasks related to problem solving (Robertson et al., 1990) and also to investigate the relationship 
between focusing on critical areas of the code and the participant’s characteristics (programming 
experience and cognitive style) (Crosby and Stelovsky, 1989). 

The Restricted Focus Viewer technology  

In this paper we describe a methodology for the capture and analysis of rich process data in 
program debugging. The technology employed for the capture of this data comprises a SDE with 
additional functionality that allows the recording of programmers’ interactions, verbalisations and 
focus of visual attention in real time. The SDE employed allows focus of visual attention to be 
tracked by blurring all but one of the windows in the application and allowing the section of that 
window around the mouse pointer to be focused. In this way, the SDE restricts how much of a 
stimulus can be seen clearly and it allows visual attention to be tracked as the user moves an 
unblurred ‘foveal’ area around the screen (see Figure 1). Additionally, the SDE records all mouse 
and keyboard actions as well as programmers’ verbalisations. The mouse and keyboard events are 
recorded in a log file and the programmers’ verbalisations are digitally recorded onto the 
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computer’s hard disk. In this way, the programmer’s working sessions with this environment can 
be replayed for later analysis and the data recorded can be analysed in a synchronous way1. 

Besides these characteristics, the SDE employed provides some of the usual functionality present 
in debugging environments. The SDE enables programmers to view the execution of a Java 
program and presents, in addition to the code, its output and two visualisations of its execution. 

 
Figure 1: The SDE employed for rich data capturing 

Participants are able to view stages of the execution of the program stepping between predefined 
breakpoints for a specific sample input. The SDE employed does not provide editing capabilities 
nor compilation and interpretation of programs. This is mainly because we are interested in error 
identification rather than error correction. 

4.The Software Debugging Environment 

The SDE was implemented as a modified version of the Restricted Focus Viewer (RFV) 
(Blackwell et al., 2000). The RFV implements the original functionality for the blurring and 
focusing of stimuli. This functionality was modified in several ways in the SDE. First, the 
stimulus images can be presented in a scroll or a tab pane. This enables us to present big images 
or more than one image in a specified display area. Second, in the RFV original implementation, 
the focused (‘foveal’) spot follows the movement of the mouse but in the SDE implementation 
users have to click a mouse button to set the focused spot in the desired place. Every window 

                                                 
1 A Quicktime movie file containing a fraction of a debugging session can be found at 
http://www.cogs.susx.ac.uk/projects/crusade/clips/subj26.mov 
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image ‘remembers’ where its focused spot is, so when the user returns to that window the region 
in focus is the one that was set by the previous mouse click performed on that window image. 
This feature makes switching between windows easier, because participants do not have to re-
establish the place where they were looking at every time they switch their attention from one 
window image to another. Also, this change enabled us to distinguish between two kinds of 
mouse-usage i.e. using the mouse to navigate among images versus using it to position the 
focused region. 

A third functionality modification was that the stimuli images in the original RFV are static while 
in the SDE they are dynamic in the sense that the images in the SDE windows change as the 
execution of the program unfolds (the SDE allows participants to view the execution of programs 
in steps). 

The RFV technology has been validated in the context of reasoning about simple mechanical 
systems via the inspection of static diagrams (Blackwell et al., 2000) and for Java program 
debugging (Romero et al., 2002a). In the first case, no significant differences in inspection 
strategies were found when working with this technology compared to eye-tracker data. When 
validated for Java debugging, although the RFV technology was found to slow down 
performance, there was no evidence to suggest any decrease in accuracy or in the qualitative 
nature of the debugging behaviour. 

The SDE records programmers’ verbalisations digitally. In our empirical studies (Romero et al., 
2002a; Romero et al., 2002b; Romero et al., 2003c), participants were asked to think aloud while 
they performed a debugging task on their own. This instruction normally prompts participants to 
verbalise information that they are attending to in short memory. It has been found that 
verbalisations of this nature, although compact and incorporating many idiosyncratic referents, do 
not change the course and structure of participants’ cognitive processes (Ericsson and Simon, 
1980). 

Rich data analysis 

Capturing rich data is a technical achievement but this effort can only pay off if there is a sensible 
framework for the analysis of such data. The framework that we propose analyses these data both 
quantitatively and qualitatively. The quantitative analysis can relate programmers performance to 
SDE use while the qualitative analysis can explore programmers’ behaviour and strategy by 
taking into account three sources of data synchronically: focus of attention trace, low level events 
(mouse and keyboard actions) and verbalisation data. 

Quantitative analysis 

The quantitative analysis requires programmer’s performance to be extracted from the 
verbalisation data and the log file of keyboard and mouse actions to be transformed into a 
description of target program execution and window fixations and switches. The latter task can be 
automated (through a computer program that performs this transformation) but the former needs 
to be performed by a human rater. The description of target program execution is related to how 
participants decide to view the execution of the program to be debugged. They can view the 
execution in steps, moving between predefined points (breakpoints) in the program. As the 
execution of programs is sequential, programmers can move forward to the next breakpoint, 
backwards to the previous breakpoint, forward to the end of the execution, or backwards to the 
beginning of it. One question regarding how execution is viewed is whether there is a relationship 
between this pattern of use and debugging performance. 
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Window fixation refers to the total time participants spent focusing on each window of the SDE, 
while window switches between the available representations refers to the number of changes of 
focus between these representations. Relating these two measurements to debugging performance 
enables us to investigate whether there are patterns of representation use associated with superior 
debugging accuracy. 

The content and format of the visualisations presented by the environment can be manipulated. 
For example, the current version of the SDE presents either graphical or textual visualisations that 
highlight data structure or control-flow information. These experimental conditions, together with 
the variables mentioned before (patterns of program execution, representation use and debugging 
accuracy) can be analysed looking for significant main and interaction effects. 

Finding out about these relationships offers important information about patterns of environment 
usage and programming expertise. However, this information can be complemented by 
investigating the debugging strategies that shaped this environment usage. 

Qualitative analysis 

The qualitative analysis takes into account three sources of synchronous data: focal attention 
trace, patterns of movement between breakpoints and programmers’ verbalisations. As the SDE 
supports the replay of programmers’ debugging sessions, a rater can execute these replays to 
extract the desired information. Table 1 presents part of a sample coding sheet. In this section of 
coding sheet there are six columns, the first one is for the event number, the second one is for the 
programmer’s utterances, and the third, fourth, fifth and sixth are for the different windows of the 
SDE (the code, objects, call sequence and output windows as shown in Figure 1). Each row of 
this table codes one debugging event. In general, debugging events are programmers’ 
verbalisations (utterances), inter-window switches of visual attention focus or breakpoint 
switches. The unit of verbalisation that we considered as an utterance is that verbalisation which 
is limited by a considerable pause and/or by a change of topic. Inter-window switches occur when 
the user moves the unblurred area from one window to another and breakpoint switches take 
place when the programmer moves the state of the program execution from one breakpoint to 
another. In the example in Table 1, most debugging events are programmer’s utterances except 
for the last one which is a window switch. 

 
Verbalisation Focus of attention  

 Code Objects Call Sequence Output 
8 Enter type of drink. Fanta DrinkMachine.ma

in (line 41) 
   

9 Let’s have a look at it 
again 

DrinkMachine.ma
in (line 34) 

   

10 Ah! Interesting  piles[0] to 
piles[3] 

  

11 In the object window, it’s 
interesting to see 

   Enter type of drink. 
Coke - Now enter 
the number of 
fantas. 4 

12   piles[0] to 
piles[3] 

  

Table 1: Section of coding sheet for a specific debugging session 
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An interesting question that can be addressed taking into account these sources of data is whether 
there are any relationships between programming experience and debugging behaviour. In other 
words, are there specific debugging strategies that categorise successful and unsuccessful 
debugging performance? 

Program comprehension and debugging behaviour coding categories 

The literature on programming already suggests a classification of successful and unsuccessful 
program comprehension and debugging strategies (Vessey, 1985; Pennington, 1987a; Davies, 
1994; Pennington et al., 1995; D´etienne, 1997). We took this suggested classification as the basis 
for developing a list of program comprehension and debugging behaviour coding categories. This 
list of behaviour coding categories is presented in Table 2. This table is divided into program 
comprehension and program debugging coding categories, and within each of these, there are 
instances of successful and unsuccessful coding categories. For example, coding category C8 is 
an instance of a successful program comprehension coding category because it is intended to 
register the occurrence of a strategy that tries to link the program domain and the problem 
domain. Such cross-referencing strategy has been associated to good debugging performance 
(Pennington, 1987a). On the other hand program debugging coding category D13 is intended to 
register the occurrence of a strategy which, for example, tries to understand specific details of the 
program without having a clear idea of what the effects of the error are in terms of the output. 
Such early commitment to analysing details is unlikely to produce good performance results. 

These coding categories were developed iteratively by the authors on the basis of a subsample of 
protocols. The main aspects that required tuning were the granularity of the debugging event, 
comprehensiveness and disambiguation. As mentioned in Section 5.2, a debugging event can be 
an utterance, an inter-window switch of visual attention focus or a breakpoint switch. The coding 
categories are comprehensive, in that, for example, there are some coding categories that will 
never be observed when analysing the data but that were nevertheless included for the sake of 
completeness (see Section 5.4 for an example of this). Finally the meaning of several categories 
had to be carefully disambiguated. For example, while both coding categories C1 and C2 refer to 
looking at the program in a dynamic way, C1 focuses on whether programmers conceptualise the 
program as a dynamic entity, regardless of their use of breakpoint switching facilities. Coding 
category C2, on the other hand, is directly associated to breakpoint switching. 

Data encoding 

To obtain a detailed characterisation of programmers’ program comprehension and debugging 
strategies, their coding sheets are analysed to look for occurrences of the behaviour coding 
categories in Table 2. This is a procedure that has to be performed by a human rater and requires 
the rater to consider information about focus of attention, program execution and programmers’ 
verbalisations synchronously. For example, clue C7 requires verification of whether simple 
stepping (a program execution behaviour) happened while the focus of visual attention was 
located in a specific window (the objects view). Verbalisations referring to executing the program 
in steps and/or to the contents of the objects window can strengthen the case for acknowledging 
the occurrence of this behaviour. 
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Comprehension coding categories 
C1 Utterances reflect the stage of program execution  
C2 Use of breakpoints 
C3 Comments relating the information types 
C4 Switching between information types a minimum of twice (A to B then back to A)  
C5 Utterances regarding hypothesis followed by switching from code to other type of representation 
C6 Utterances regarding hypothesis followed by switching to code from other type of representation 
C7 (Single) stepping through the code carefully watching the objects view 
C8 Whilst looking at code or object view, utterances reflect real world objects in the problem domain 
C9 Looking at the output or object view whilst talking about the code 

C10 Utterances relating to higher level entities (e.g. method, sub-routine, section of code) 
C11 Returning to the same line of code from another type of representation several times to understand 

all its implications 
C12 Syntax verbalization 
C13 Explaining the code to themselves 
C14 Reading the code out loud from top to bottom 
C15 Lack of switching between views (especially the code view)  
C16 Relating only to real world objects and only looking at the output  
C17 Erratic jumping around within the code 
C18 Erratic jumping across information types 
C19 Repeatedly examining stereotypical lines of code  
C20 Finding a piece of code to account for the output  
C21 Searching for a line of code 
C22 Paraphrasing as a re-representation. 

Debugging coding categories 
D1 (Single) stepping through the code carefully watching the objects view  
D2 Considering negative evidence in their reasoning 
D3 Focusing in on an area of code after an uttered hypothesis  
D4 Re-running the code with fix in place 
D5 Temporarily considering regions of the program as free of errors  
D6 Attempting an a priory classification of errors and acting accordingly  
D7 Higher level code browsing to build up a complete picture before testing hypothesis  
D8 Being clear that something is an hypothesis 
D9 Comparison of actual with expected outcome. Early comments suggesting potential causes 
D10 Running the whole program again (including the previously commented out parts) or browsing 

previously discounted code 
D11 Talk in terms of breakpoints (dynamic view) but not stepping through  
D12 Utterances of code clichés 
D13 Early delving into the details 

Table 2: Comprehension and debugging behaviour coding categories 
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Due to the characteristics of our SDE, some of the coding categories will never be observed when 
analysing these data but they were nevertheless included for the sake of completeness. For 
example, the behaviour associated to coding category D4, Re-running the code with fix in place, 
cannot occur as it was mentioned in Section 4 that the SDE employed does not allow the code to 
be edited. This coding category, however, will be useful for future research. 

These low level behaviour coding categories can be integrated into program comprehension and 
debugging episodes (Vessey, 1985). These episodes are groups of behaviours which have a 
specific goal in common and which can be used to identify programmers’ strategies. 

A cluster analysis can allow us to categorise groups of programmers according to their displayed 
strategies and to compare this categorisation with their performance data. This categorisation can 
also be complemented with the findings of the quantitative analysis. In this way, a model of 
program comprehension and debugging expertise in terms of behaviour and strategy can be 
empirically derived. 

This way of deriving a program comprehension and debugging model, taking into account several 
sources of data synchronously, has advantages over models that have considered only one source 
of information. First, the range of behaviours, and therefore strategies, taken into account in the 
model can be wider. For example, behaviours C4, C11 and C19 would be difficult to take into 
account in a model that only considers verbal data. Also, having several sources of data enables 
the encoding process to have a higher level of certainty (as in the example about clue C7 above). 

Considering a wide range of strategies in a program comprehension and debugging model might 
increase the usefulness of the model. For example, if the model is going to be applied to the 
design of learning environments for programming (du Boulay et al., 2003), taking into account 
strategies that have to do with focus of visual attention can enable the environment, in principle, 
to give advice on these matters. The learning environment could, for example, embody a number 
of monitoring rules that kept dynamic track of both focus of attention and switching behaviour to 
guide the student to pay attention in more sensible places. 

Conclusions and further work 

This paper proposes a methodology for the study of program comprehension and debugging 
through the capture and analysis of rich data. The data is captured by a software debugging 
environment equipped with the appropriate functionality to record the participants’ verbalisations, 
visual attention focus and keyboard and mouse actions. 

Both qualitative and quantitative data analyses are undertaken. The qualitative analysis takes into 
account the three sources of data mentioned above in a synchronous way. 

We believe the models of programming derived in this way can be more complete and have a 
higher level of accuracy. One possible avenue of further work is to extend the proposed 
methodology to cover further programming tasks such as code generation and program re-use, or 
even activities in other areas like, for example, learning through the use of interactive learning 
environments. 
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