In P. Romero, J. Good, E. Acosta Chaparro & S. Bryant (Eds). Proc. PPIG 17 Pages 278 - 292

Using Roles of Variables in Teaching: Effects on
Program Construction

Pauli Byckling and Jorma Sajaniemi

University of Joensuu, Department of Computer Science
P.O.Box 111, 80101 Joensuu, Finland,
pauli.byckling@cs.joensuu.fi ,
WWW home pagehttp://www.cs.joensuu.fi/"pbyckli/

Abstract. Roles of variables capture tacit expert knowledge in a form that can,
e.g., be taughtin introductory programming courses. A role describes some stereo-
typic use of variables, and only ten roles are needed to cover 99 % of all variables
in novice-level procedural programs. This paper presents the results from a pro-
tocol analysis of program creation tasks in an experiment where roles were intro-
duced to novices learning Pascal programming. Students were divided into three
groups that were instructed differently: in the traditional way with no treatment
of roles; using roles throughout the course; and using a role-based program an-
imator in addition to using roles in teaching. The results suggest that the use of
the program animator increases novices’ ability to apply data-related program-
ming plans in program construction and thus increases programming skill. Plan
knowledge and use is analyzed using a new model that is based on Rist’s theory
of schema expansion.

1 Introduction

Programming skill is hard to acquire. Efforts to ease and enhance learning have varied in
their general approach to improve learning: most studies report effects of new teaching
methods and new ways of presenting teaching materials, while reorganisation of topics
and introduction of new concepts are far more rare.

We know only two examples of research intew conceptshat can be utilized
in teaching elementary programming: software design patterns, and roles of variables.
Software design patterns [1] represent language and application independent solutions
to commonly occurring design problems. The number of patterns is potentially unlim-
ited, and there are sets of patterns for various levels of programming expertise (e.g.,
elementary patterns for novice programmers [2]) and application areas (e.g., data struc-
tures [3]). Research into the use of patterns indicates that instructors should expect on
a regular basis to refine the patterns they offer students [1].

Roles of variables [4, 5] describe stereotypic usages of variables that occur in pro-
grams over and over again. Only ten roles are needed to cover 99 % of all variables in
novice-level procedural programming, and they can be described in a compact and eas-
ily understandable way [4]. Ben-Ari and Sajaniemi [6] have shown that in one hour’s
work, computer science teachers can learn roles and assign them successfully in normal

17th Workshop of the Psychology of Programming Interest Group, Sussex University, June 2005 WWw.ppig.org

Byckling and Sajaniemi

cases. As opposed to the patterns approach, the set of roles is so small that it can be
covered in full during an introductory programming course.

To find out the effects of using the role concept in teaching programming to novices,

a classroom experiment with three experimental conditions was conducted: one group
of students were instructed in the traditional way, another with roles covered during the
course, and the third group with roles and role-based animation of programs. Sajaniemi
and Kuittinen [7] analyzed the final examination of the course. They found that roles
provide students a new conceptual framework that enables students to mentally process
program information in a way that demonstrates good programming skills. Moreover,
Sajaniemi and Kuittinen found some support for the assumption that the use of the
animator fosters adoption of role knowledge. The current paper reports the results of
program creation tasks conducted during the experiment.

The rest of this paper is organized as follows. Section 2 describes the role concept
and its potential uses in teaching to program. Section 3 presents the experiment fol-
lowed by results in Section 4 and discussion in Section 5. Finally, Section 6 contains
the conclusion.

2 Roles of Variables

Sajaniemi [4] has introduced the concept of thies of variablesas a result of a search

for a comprehensive, yet compact, set of characterizations of variables that can be used,
e.g., for teaching programming and analyzing large-scale programs. His work is based
on earlier studies on variable use made by Ehrlich and Soloway [8], Rist [9], and Green
and Cornah [10]. Later, roles have been found to be a part of experts’ programming
knowledge [11] and it has been applied to object-oriented and functional programming.
In this Section we will describe the role concept and its potential uses in teaching to
program.

2.1 The Role Concept

A role describes the dynamic character of a variable embodied by the succession of
values the variable obtains, and how the new values assigned to the variable relate to
other variables. For example, in the role aftappera variable is assighed a succession

of values that is usually known in advance as soon as the succession starts—even though
the length of the succession may be unknown. The role concept does not concern the
way a variable is used in the program; only the succession of values, and their lifetimes,
do matter.

As an example, consider the Pascal program in Figure 1. In the first loop, the user
is requested to enter the number of values to be later processed in the second loop.
The number, stored in the varialdata , is requested repeatedly until a valid input is
obtained. The variablealue is used similarly in the second loop: there is no possi-
bility for the programmer to guess what values the user will enter. Since these variables
always hold the latest one in a sequence of values, their role is saidno$terecent
holder. The variablecount , however, behaves very differently: once it has been ini-
tialized, its future values will be known exactly. It will step downwards one by one until

PPIG 2005 Sussex University WWW.ppig.org

Byckling and Sajaniemi

program doubles (input, output);
var data, count, value: integer;
begin
repeat
write(Enter count: ’); readin(data)
until data > 0;
count := data;
while count > 0 do begin
write(Enter value: ’); readin(value);
writeIn(Two times ’, value, ' is ', 2*value);
count := count - 1
end
end.

Fig. 1. A short Pascal program.

it reaches its limiting value of zero. The role of this variable is that stepper Table 1
gives short descriptions of all roles; for a more comprehensive treatment, deelése
of Variables Home Pagpp]. The role of a variable may change during the execution of
a program and this happens usually somewhere between two loops. For example, in the
program of Figure 1, the two variabldsta andcount could be combined to a sin-
gle variable, sagount (making the assignmentbunt := data; " unnecessary).
The role of this variable would first be rmost-recent holdeand then, in the second
loop, astepper

It should be noted that roles are cognitive—rather than technical—concepts. As an
example, consider the Fibonacci sequence 1, 1, 2, 3, 5, 8, 13, ... where each number is
the sum of the previous two numbers. A mathematician who knows the sequence well
can probably see the sequence as clearly as anybody sees the sequence 1, 2, 3, 4,5, ...,
i.e., the continuum of natural numbers. On the other hand, for a novice who has never
heard of the Fibonacci sequence before and who has just learned the way to compute it,
each new number in this sequence is a surprise. Hence, the mathematician may consider
a variable as stepping through a known succession of values (&&ppe) while the
novice considers it as gathereraccumulating the previous values to obtain the next
one.

2.2 Using Roles in Teaching

The set of roles is so small that it can be fully covered in an introductory programming
course. As roles are tools for programming, they should not be taught as a separate
issue but introduced gradually as they appear in programs. Even though there is an
exact technical definition for each role, informal definitions (in the style of Table 1) are
sufficient for novices.

In addition to schema knowledge concerning the roles themselves, role utilization
includes strategic knowledge about their use in programming. For a novice it may be
difficult to start to write a program: new programming concepts form an overwhelming
set of fragile knowledge that is hard to apply [12] and the decision of what knowledge
to apply first is not easy. This problem can be diminished by guiding novices to start a
programming task by thinking about data requirements: what roles (and consequently

PPIG 2005 Sussex University WWW.ppig.org

Byckling and Sajaniemi

Table 1. Informal role definitions.

Role Informal definition

Fixed value (FIX) A variable which is initialized without any calculation and
whose value does not change thereafter.

Stepper (STP) A variable stepping through a succession of values that can

be predicted as soon as the succession starts.
Most-recent holder (MRH) A variable holding the latest value encountered in going
through a succession of values.

Most-wanted holder (MWH) A variable holding the “best” value encountered so far in
going through a succession of values. There are no restric-
tions on how to measure the goodness of a value.

Gatherer (GAT) A variable accumulating the effect of individual values in
going through a succession of values.

Transformation (TRN) A variable that always gets its new value from the same
calculation from value(s) of other variable(s).

Follower (FOL) A variable that gets its values by following another vari-
able.

One-way flag (ONE) A two-valued variable that cannot get its initial value once
its value has been changed.

Organizer (ORG) An array which is only used for rearranging its elements
after initialization.

Temporary (TMP) A variable holding some value for a very short time only.

Other (OTH) Any other variable.

variables) are needed to cover the input and output requirements of the programming
assignment, and what code sequences are typical for these roles.

Role knowledge can be further advanced by role-based program visualization and
animation. PlanAni [13]is a role-based program animator that uses role images for visu-
alizing variables and role-based animation for visualizing operations. A role image—a
visualization used for all variables of the role—gives clues on how the successive values
of the variable relate to each other and to other variables. For examplestawanted
holderis depicted by two flowers of different colors: a bright one for the current value,
i.e., the best found so far, and a gray one for the previous, i.e., the next best, value.

The animation of operations depends on the roles, also. For example, an assignment
to a follower is animated by transferring the value of the followed variable into the
follower whereas the update of a stepper is animated by transferring values within the
role image itself. Similarly, the animation of comparisons varies according to the role.

Figure 2 is a screen shot of the PlanAni user interface. The left pane shows the
animated program with a color enhancement showing the current action. The upper
part of the right pane is reserved for variables, and below it there is an input/output area
consisting of a paper for output and a plate for input. The currently active action in the
program pane on the left is connected with an arrow to the corresponding variables on

PPIG 2005 Sussex University WWW.ppig.org

Byckling and Sajaniemi

FAland: DiSA S Hbonace

gram fibonacci (input, output);
arJast_fih, b, temp, munber, i: integer;
begin
last_fib := ;b := 1;
write(How many Fhonacci monhers you want: ');
readinfmmher);
‘munher := ahsfmmber};
if mmber <=2 then
witeln{ Both the fivst and second manbexs are 1.}
else hegin
writeln{' 1. monber is 1');
writeln{ 2. onber is 1);
for i := 3o munber 1o begin
temp :=last_fib;
Last_fib :=fib;
fib i~ £ih + temp;
writelnfi:2, ' number is', £

Fig. 2. The user interface of the PlanAni program animator.

the right. Whenever the color enhancement is moved to a new location in the program,
the enhancement flashes.

3 Experiment

To test the hypothesis that introducing roles of variables in teaching facilitates learn-
ing programming, an experiment was conducted during an introductory Pascal pro-
gramming course at university level [7]. Students attending to the course were divided
into three groups that were instructed differently: one receiving normal lectures and
exercises (theraditional group, one attending lectures with systematic use of roles
throughout the course (tleles group), and one attending the same lectures as the roles

PPIG 2005 Sussex University WWW.ppig.org

Byckling and Sajaniemi

group but using role-based animator in exercisesgtiimation group. The experiment

was a between-subject design with the content of instruction as the between-subject
factor. Preparations of the experiment were made with caution in order to prevent un-
controlled effects (see [7] for detailed information about the experiment).

Sajaniemi and Kuittinen [7] analyzed tlimal examinationof the course. They
found that students were able to understand the role concept and to apply it in new
situations: after the course, 35 % of the subjects used role names in their answers even
though the questions did not mention roles in any way. But the exposition to roles re-
sulted not only in a better vocabulary; a more important effect was that roles provided
students a new conceptual framework that enabled them to mentally process program
information in a way similar to that of good code comprehenders. The use of role-based
animation seemed to foster the adoption of role knowledge as animation users had less
problems with variables in program construction. Moreover, animation users tended to
stress deep program structures which is a sign of better comprehension. Thus, both the
use of roles in teaching and the use of role-based animation led to results that indicate
better programming skills.

In the middle and at the end of the course, some students werepgivgram con-
struction taskswhich were videotaped. Speech protocols were transcribed from the
videotapes of the tasks. This paper presents results of the two Ba&KONSTR-MID
in the middle of the course alR*CONSTR-EN[Rt the end of the course.

Subjects Subjects were undergraduate students studying computer science for the
first semester. They were randomly selected among those attending the course and hav-
ing no or little previous background in programming. In total, 22 students attended the
first program construction task: 6 students from the traditional group, 6 students from
the roles group and 10 students from the animation group. In the latter task the amount
of subjects was 20: again 6 students both from the traditional group and from the roles
group and 8 students from the animation group. Students participating in the sessions
were given a small compensation in the form of a coffee voucher.

Materials For both program construction tasks a single elementary level program-
ming problem was made. Complexity of these problems reflected the prevailing state
of the course. Thus the first task was more trivial with no loops or complex role plans
needed in the solution, whereas the latter task was more challenging.

The programming assignment in P-CONSTR-MID was to calculate number of men
in Scandinavian countries using a percentage value and populations of countries given
as input. In P-CONSTR-END the assignment was to read times in hours and minutes
repeatedly and to transform each input pair into minutes only. In addition, time closest
to one hour had to be found as well as whether any of the given times was exactly
two hours. Both tasks consisted of two separate parts, part A (basic functionality) and
part B (supplementary functionality). All materials for the protocol tasks were pretested
using second-year students, and small adjustments were made to simplify the second
programming task. The final versions can be found at

http://cs.joensuu.fi"saja/vawoles/literature.html.

Procedure The program creation tasks were run on computer terminal using Turbo
Pascal programming environment. We used pairs of students working together. The
purpose of this procedure was to encourage subjects to verbalize their thinking when

PPIG 2005 Sussex University WWW.ppig.org

Byckling and Sajaniemi

Table 2. Number of variables used by each pair in P-CONSTR-MID.

Pair FIX TRN GAT Total
TRAD-M1 6 O 0 6
TRAD-M2 6 O 1 7
TRAD-M3 6 5 0 11
RoLE-M1 6 4 0 10
RoOLE-M2 6 1 1 8
ROLE-M3 6 5 0 11
ANIM-M1 6 1 2 8
ANIM-M2 6 O 2 7
ANIM-M3 6 O 0 6
ANIM-M4 6 0 1 7
ANIM-M5 6 O 0 6
OpPTIMAL 1 1 1 3

creating the program. Both parts of the assignments were given in the same session with
no pause between them. Depending on the implementation of part A, implementation of

part B caused modifications to existing program code in some cases. Program creation
sessions lasted between 18 and 65 minutes. If subjects tried to give up with an incom-

plete solution before the time limit of one hour was reached, they were encouraged to

give a better try.

4 Results

Sections 4.1 and 4.2 present the properties of the final programs: the use of variables
and correctness of solutions. The main analysis—expression of plan development in
the implementation of variables—is presented in Section 4.3. The data for this analysis
consisted of program writing protocols collected from the videos and of the transcribed
speech protocols. Analyses of the results were made by the first author of this paper.

4.1 Use of variables

In P-CONSTR-MID, variables in the optimal implementation are a fixed value, a most-
recent holder, and a gatherer. In P-CONSTR-END, the optimal set of variables com-
prises two most-recent holders, one transformation, one most-wanted holder, and a
one-way flag. Use of variables by each pair of students is presented in Tables 2 and
3. Each pair is referred to by the name of the group followed by an abbreviation of the
task (M for MID; E for END) and pair number, e.g., TRAD-M1 refers to the first pair
of the traditional group in P-CONSTR-MID.

In P-CONSTR-MID differences between groups were small and no patterns could
be identified. Thus, the rest of this paper concentrates on the latter task.

Due to the small sample size in P-CONSTR-END (10 pairs), no statistical signifi-
cance tests could be made. However, frequencies in Table 3 show a distinctive difference
between the animation group and the two other groups. While in the traditional and in

PPIG 2005 Sussex University WWW.ppig.org

Byckling and Sajaniemi

Table 3. Number of variables used by each pair in P-CONSTR-END.

Pair MRH TRN MWH ONE STP OTH Total Full coverage
TRAD-E1 2 1 - - - - 3 no
TRAD-E2 2 2 2 2 - - 8 yes
TRAD-E3 2 1 - 1 - 4 no
RoLE-E1 2 1 - - - - 3 no
RoLE-E2 2 1 2 1 - 1 7 yes
RoOLE-E3 2 2 1 - - - 5 no
ANIM-E1 2 1 1 1 - - 5 yes
ANIM-E2 2 1 1 1 - - 5 yes
ANIM-E3 2 1 1 1 - - 5 yes
ANIM-E4 2 1 1 1 - - 5 yes
OPTIMAL 2 1 1 1 - - 5

the roles group there is a variety of variables used (traditional: 3-8, roles: 3-7), each
pair in the animation group used the optimal set of variables. The column 'Full cov-
erage’ presents whether the pair has implemented all five variables needed in the task.
However, this is not an indication of fully correct implementation. The single variable
considered as 'OTH'’ is a variable which was declared but not used.

4.2 Correctness

Programs were next analyzed according to their semantical correctness. For this analy-
sis we divided the latter task (P-CONSTR-END) into three subtasks and then examined
the correctness of each subtask separately.

SubtaskKT1 is directly part A of the assignment consisting of the reading of input,
implementation of a loop, calculation and output functions. SubTaskontains the
comparison of inputs in order to find time closest to one hour and storage of the best
value. Third subtaskT3, comprises checking if the entered time is exactly two hours
and storing the information whether the condition is met. The results are presented in
Table 4. Definitions for the error abbreviations are introduced in Table 5. The animation
group performed best, having 11 correct subtasks out of 12 (92 %). The roles group and
the traditional group performed evenly, both having 4 correct subtasks out of 9 (44 %).

All actual errors are in subtasks T2 and T3. Percentage of correctness in overall is
30 % in T2 and 60 % in T3. In these subtasks the animation group has 7/8 correct (88
%) whereas the same ratio in the two other groups combined is 2/12 (17 %). In T2, none
of the pairs from the traditional nor from the roles group reached correct outcome.

4.3 Role plan development
The preceding results are based on an analysis of the final programs. In this Section we

analyze role plan development by examining the writing order of program code lines
observed in the videos. The basis of this analysis is Rist's model of schema creation in

PPIG 2005 Sussex University WWW.ppig.org

Byckling and Sajaniemi

Table 4. Correctness of subtasks in P-CONSTR-END.

Pair T1T2T3
TRAD-E1 ok - -
TRAD-E2 ok iw ok
TRAD-E3 ok - ar
ROLE-E1 ok - -
ROLE-E2 ok- i- ok
ROLE-E3 okuw -
ANIM-E1 ok ok ok
ANIM-E2 ok ok ok
ANIM-E3 ok ok ok
ANIM-E4 ok i- ok

Table 5. Notation used in Table 4.

SymbolInterpretation

ok correct implementation
ok- acceptable but obscure implementation
ar variable replaced with an array

- missing totally

i- missing initialization

iw variable intialized with wrong value
uw improper variable update(s)

programming [9, 14]. According to Rist, programming process consists of implemen-
tation of program planswhich either have to be retrieved from memory, or created. A
program is designed by the processofiema expansioshowing a pattern of forward
design, if the process is guided by existing knowledge and program plans are retrieved
from memory. Furthermore, this forward design continues all the way to the level of
program code so that the corresponding program code is written top down, i.e., in the
order it appears in the final program. On the other hand, if plans are created during
programming, the development will show a pattern of local backward design, called as
focal expansion

The analysis modelAccording to Rist [14], the development of a program can be
traced by defining the plans used in the program and noting the order in which pieces of
the plans appear during programming. Rist introduces a few basic plans (prompt plan,
label plan, running total plan, found plan, and loop plan) which he divides into three
specific pieces: Initialization (1), Calculation (C) and Output (O).

Roles of variables can be considered as a certain kind of programming plans but
Rist’s model does not apply to roles as such. For roles a larger number of plan pieces
are requiredGoal (G) (can be found from the speech protocol onBgclaration (D)
Initialization (l), Extension (E)Computation (C)Use of the latest value (UBndUse
of the final value (U2)Table 6 lists actions which execute these pieces for each role.

PPIG 2005 Sussex University WWW.ppig.org

Byckling and Sajaniemi

The model is not restricted to the programs in the current experiment but it is generally
applicable when examining role plans in program creation.

The major difference between Rist's model and our model is in the scope of exam-
ination. Rist uses the whole program code in the analysis, but our main interest is in
the use of variables, so each variable is analyzed individually. The data consists only
of lines which are directly related to the role plan accompanied with complementary
fractions from the speech protocol in some cases.

Scoring When deciding whether the emergence of a plan represents schema expan-
sion or focal expansion, Rist looked at the order in which plan pieces are written during
programming. In focal expansion (backward development) code development proceeds
from the calculation—so called focal line—to initialization. In schema expansion (for-
ward development) the chronological appearance order of plan pieces reflect the final
form of the plan schema in program code.

In Rist's model, the decision is based upon the plan components | and C only, C-I
meaning focal and I-C schema expansion. In small programs, schema expansion can,
however, be expected to cover other plan pieces, also. On the other hand, small pro-
grams may also be written obeying the final textual order even though this order of plan
pieces may sometimes differ from the theoretical order G-D-I-E-C-U1-U2. Therefore,
we will consider plan emergence to represent forward development (FD) if the appear-
ance order of plan pieces follows either the theoretical order of the role plan or the order
of the final program code. Other orders are considered to reflect backward development
(BD). With incomplete plans, missing pieces are scored as though they would appear
later.

In our scoring, forward development represents schema expansion. In backward
development, either the calculation or the use of a variable emerge earlier than expected,;
this represents either focal or use expansion respectively.

Example data in Table 7 will illustrate the analysis. The chronological appearance
order of these plan pieces (i.e., lines of code) is D-C-E-U1. The order of these lines in
the final program is D-E-C-U1, which is also the theoretical order, thus the example
shows a pattern of backward development.

As Table 4 shows, some pairs are lacking subtasks T2 or T3. In scoring, variables
needed in implementing these functions were scored as "no development” (ND). In the
analysis NDs are regarded as backward development. As the task consisted of two sep-
arate parts, in some cases implementation of the latter part caused some modifications
to the existing code. In the analysis only the first implementation of a variable has been
taken into account.

The frequencies of FD scores for the latter program creation task (P-CONSTR-
END) are presented in Figure 3.

5 Discussion

In overall, there were only three fully functional implementations out of ten programs in
P-CONSTR-END, all in the animation group. The animation group performed best in
all analyses (use of variables, correctness, role plan development) while the traditional
group was the worst. Most substantial differences were in the most complex subtasks.

PPIG 2005 Sussex University WWW.ppig.org

Byckling and Sajaniemi

Table 6. Actions in the role analysis model.

Y—
Y=

—
a

q

+—
N

()]

(uonerejoap| (uoneziemul
dooj e ul sa|qeltea U paj|y jou J1) dooj e a|qissod)
asn am] Jo sanfea jo dems -l Aeure ayr Jo Buyy| uonerepsp| 9O
anjen
-yl Aeme Buin@npen syl jo Juswubisse - -l uonerepsp| 41l
(sie
anfen ul anfeA 1s114 *6'3) anpen
- asm@au syl yum arepdn -Isiy yum uopeziepiul uopesepsp| 104
- asn arepdn - -l uonerepPap| NHL
Bey) ay1| (dooj ay1 Buljjonuod 19W sI| Bel) ayy s10aye yoiym (0 1o ,as]B), yuM
a1e1s [euly 8yl Jo asn| “6-8) Bely ayl Jo asmonipuod ayl i alepdmionipuod 8yl Jo YIaydK|eaidAl) uonezienul| uonesePsp| INO
dooj ayr
d1e anfen pare|nwnd (0 yum
be |eul ayl Jo asn dooj ay3 ur asn arepdn -KreaidAy) uonezienul| uonesepap| HIO
anjea
anfen anjen puneapu e pue anjeA pjo ay)| (peas anfeA 1sii yum
g [eul} ayl Jo 8$PQ 1S81e| AU} JO 9SBI anfeA Janag Jl arepdndamiag uosuredwodif|ealdAl) uonezieniul| uonese|dap| HMIA
(dooj ay1 jo uBisap
al uo Buipuadap) dooj
(dooj ay1 Buijjonuoaiojaq anjea ayr Hul
doo| ay} Jaye doqy] asn a|qissod) doocgpeas 10 anfea sl ayl
neA [eul ay} Jo asn dooj ayr ur asmil anjea ay) jo Buipesayl jo uonewawsdun Juswubisse a|qissod| uonelepap| HYN
an[eA [emul yum
dooj ayy Jaye asn dooj ayy ur asn dooj ay1 ul ayepdn Jonezieniul 9|gissod| uonelepap| 41S
nndui ayy Jo Buipeal Jo
asn ai[eA ays Jo awbuisse 1sn o11dwoud s|qissod| uonesePpap| X4
[(anren reuy) z asn| (enfenisaie)) T asn| uoendwo)] uoIsuax3| uonezienul| uonerepad] ajoy|

WWW.ppig.org

PPIG 2005 Sussex University

Byckling and Sajaniemi

Table 7.Chronological development of the variable 'hours’ in a programming protocol. Variable
names are translations from Finnish.

Line number Program code Piece type

3. var hours, minutes: integer; Declaration

9. readin(hours); Computation

8. while (hours> 0) or (minutes> 0) do Extension

11. transformation := 60 * hours + minutes; Use 1 (latest value)

Fig. 3. Percentages of forward development by each pair in P-CONSTR-END.

100—
80 — 80 %
60 — 60 %
% variables
40 —
29 %
17 %

20 — 17 %
13%
0 o 0%

Traditional Roles Animation

Forward development

All students had been given the appropriate programming knowledge in order to solve
the task and both the animation group and the roles group had the same theoretical role
knowledge. Still, students from the animation group were much more able to apply their
knowledge adequately in program construction.

In P-CONSTR-END the animation group showed mostly forward plan development
(overall FD: 65 %) whereas in the roles group there is considerably less forward devel-
opment (overall FD: 21 %). In the traditional group the amount of forward development
is only 10 %. Moreover, the forward development in these latter two groups concen-
trated on simple plans. In the two most complex plans needed in the task, the amount
of forward development is 0 % both in the traditional group and in the roles group.
Overall, the animation group is the only one showing forward development through all
variables. This means that students in the animation group possessed and were able to
apply programming schemas better than the other students.

Subjects in the animation group still had some typical novice level problems in their
programming processes like others, but their problems concerned mainly programming
language knowledge, i.e., details of implementation. They had considerably less prob-
lems in progamming knowledge than the students in the other two groups.

The poorer performance of the roles group as compared to the animation group can
be partly explained by a confusion about roles in the roles group. The speech proto-

PPIG 2005 Sussex University WWW.ppig.org

Byckling and Sajaniemi

cols revealed that students in the animation group explicitly used role knowledge when
designing their program code (ANIM-E1: "Let’'s make it a one-way flag”; ANIM-E2:
"Well - if some value happens to be two hours then it'll be like a one-way flag over
here.”) With the roles group the speech protocols reveal that the role knowledge re-
mained too abstract for the students to apply it successfully in problem solving (ROLE-
E1l, Subject B: "Mmm. Then we should do then do a stepper which then...”; Subject
A: "Or then a holder for each time.”; Subject B: "Yes. True. Do you remember this? It
is the temporary then, isn’t it?”; ROLE-E2, Subject A: "There has to be some... some
most-wanted holder which holds the... like the best value”; Subject B: "Well, yes”; Sub-
ject A: "and if it's closer to sixty, it then keeps it”; Subject B: "Yes, | suppose so, but

| just can’t get it into my head how it's done (laughing); Subject B: "I roughly kind of
know how it should be done, but | dont know how it can be placed into this code.”)

These results reflect the same tendencies as the results presented by Sajaniemi and
Kuittinen [7]. They found that groups that had been introduced to roles outperformed
the traditional group in program construction. Moreover, the animation group had least
problems with variables and made less errors that could be explained by poor plan
knowledge. All these results were, however, statistically insignificant and the analysis
was based on weak evidence that considered possible reasons for errors in final pro-
grams. Our current results are more solid and based on the amount of forward develop-
ment in the programming protocols. The current analysis reveals a distinct difference
between the roles group and the animation group. The optimal selection of variables
and the frequent appearance of forward development in the animation group is a clear
indication of superior plan knowledge and ability to apply it.

In the program comprehension task, Sajaniemi and Kuittinen found a statistically
significant difference in program summary types between the traditional group on one
hand and the roles and animation groups on the other hand, and they concluded that
the roles and animation groups possessed a better conceptual framework for processing
program knowledge. The roles group gave more detailed, low-level summaries than
the animation group but the difference was small and statistically insignificant. Thus
the major difference in the program comprehension task was between the traditional
group on one hand and the roles and animation groups on the other hand. The current
analysis indicates a major difference between the roles group and the animation group
in program construction which is a more demanding task than program comprehension.
This is in line with the findings of Mayer [15, p. 72—76] who found that the difference
between learning outcomes from text vs. text and animation is larger in problem-solving
tasks than in recall of the learned material. In our case, the (textual) presentation of
roles is sufficient for program comprehension but animation is needed to elaborate role
knowledge so that it can be fluidly applied in the harder task of program construction.

6 Conclusion

We have analyzed the program creation protocol tasks of an experiment studying the
effects of the roles of variables and role-based animation in teaching programming to

novices. The results show that the role concept had considerable effects on program-
ming knowledge. Students who were familiar with the concept possessed more schemas

PPIG 2005 Sussex University WWW.ppig.org

Byckling and Sajaniemi

and performed better. Subjects in the animation group applied forward development to
all variables whereas the two other groups showed only backward development in more
complex subproblems.

The earlier analysis done by Sajaniemi and Kuittinen [7] showed that in program
comprehension the mental models of both the roles group and the animation group were
better than those of the traditional group. Thus the increased programming knowledge—
given in the form of roles—enhanced the construction of program knowledge in pro-
gram comprehension. The current analysis showed that in program creation only the
animation group performed well. This suggests that the animator elaborated the in-
creased programming knowledge so that the students could use it successfully also in
program construction. This, along with the best performance of the animation group
in all the analyses suggests that role knowledge should be elaborated by role-based
program animation in introductory-level teaching.

The analysis of plan development was done using a new analysis model. The model
is based on Rist's theory of programming plans and schema expansion [14] but it is
extended to cover a larger number of plan components. Moreover, it includes explicitly
a goal component that cannot be seen in the program code but is observable in the
speech protocol only. The new model is based on the specific properties of roles, and
is general in the sense that it can be applied in analyzing role schema usage in the
construction of arbitrary programs.

Acknowledgments

The authors would like to thank Marja Kuittinen for active participation in the experi-
ment; Elina Risinen, Markku Hauta-Kasari, Jenni Ritlen, and Matti Niemi for act-
ing as teachers of the course; Pauli Harfikinand Veli-Pekka Laasonen for practical
help in running the experiment.

This work was supported by the Academy of Finland under grant number 206574.

References

1. Clancy, M.J., Linn, M.C.: Patterns and pedagogy. In: Proc. of the 30th SIGCSE Technical
Symposium on CS Education, Vol. 31 of ACM SIGCSE Bulletin (1999) 37-42

2. Wallingford, E. The elementary patterns home page.
http://www.cs.uni.edu/"wallingf/patterns/elementary/ (2003) (Accessed Jan. 24th, 2003).

3. Nguyen, D.: Design patterns for data structures. In: Proc. of the 29th SIGCSE Technical
Symposium on CS Education, Vol. 30 of ACM SIGCSE Bulletin (1998) 336—340

4. Sajaniemi, J.: An empirical analysis of roles of variables in novice-level procedural pro-
grams. In: Proceedings of IEEE 2002 Symposia on Human Centric Computing Languages
and Environments (HCC'02), IEEE Computer Society (2002) 37—-39

5. Sajaniemi, J.: Roles of variables home page. http://www.cs.joensuu.fi/"sajalesir(2004)
(Accessed Dec. 22th, 2004).

6. Ben-Ari, M., Sajaniemi, J.: Roles of variables from the perspective of computer science ed-
ucators. In: The 9th Annual Conference on Innovation and Technology in Computer Science
Education (ITICSE 2004), Association for Computing Machinery (2004) 52-56

PPIG 2005 Sussex University WWW.ppig.org

Byckling and Sajaniemi

7.

8.

10.

11.

12.

13.

14.
15.

Sajaniemi, J., Kuittinen, M.: An experiment on using roles of variables in teaching introduc-
tory programming. Computer Science Educatl&(2005) 59-82

Ehrlich, K., Soloway, E.. An empirical investigation of the tacit plan knowledge in pro-
gramming. In Thomas, J.C., Schneider, M.L., eds.: Human Factors in Computer Systems.
Norwood, NJ: Ablex Publishing Company (1984) 113-133

. Rist, R.S.: Knowledge creation and retrieval in program design: A comparison of novice and

intermediate student programmers. Human-Computer Intera@{(0991) 1-46

Green, T.R.G., Cornah, A.J.: The programmer’s torch. In: Human-Computer Interaction -
INTERACT'84, IFIP, Elsevier Science Publishers (North-Holland) (1985) 397-402
Sajaniemi, J., Navarro Prieto, R.: Roles of variables in experts’ programming knowledge, Ac-
cepted to the the 17th Annual Workshop of the Psychology of Programming Interest Group
(PPIG 2005) (2005)

Davies, S.P.: Models and theories of programming strategy. International Journal of Man-
Machine Studie89 (1993) 237-267

Sajaniemi, J., Kuittinen, M.: Program animation based on the roles of variables. In: ACM
2003 Symposium on Software Visualization (SoftVis 2003), Association for Computing Ma-
chinery (2003) 7-16

Rist, R.S.: Schema creation in programming. Cognitive Sci€B¢£989) 389—414

Mayer, R.E.: Multimedia learning. Cambridge University Press, U.K. (2001)

PPIG 2005 Sussex University WWW.ppig.org

