
Theoretical Considerations on Navigating Codespace
with Spatial Cognition

Anthony Cox1, Maryanne Fisher2, and Philip O’Brien1

1 Computer Science, Dalhousie University, Halifax, NS, CANADA
2 Psychology, Saint Mary’s University, Halifax, NS, CANADA

Abstract. Spatial cognition has been well examined using various psycholog-
ical perspectives. Here we suggest that this previous research can be utilized
to provide insight into source-code navigation and program comprehension. In
our model, code represents an abstract space that must be navigated using the
same cognitive strategies as for natural environments. Thus, when navigating
‘codespace’ computer programmers face many of the same challenges as peo-
ple navigating within the real world, and consequently, will likely rely on similar
skills and strategies. In support of this observation, we explore from a theoretical
perspective the use of spatial cognition during program comprehension. Exam-
ination reveals that research in spatial cognition provides, albeit currently un-
proven, explanations for programmer behaviours during program comprehension
activities. To validate our model, we suggest a preliminary experiment to explore
the existence of codespace.

1 Introduction

Program comprehension, reading a map, and driving an automobile are tasks that, at
first, appear to have little in common. However, it is highly unlikely that we have devel-
oped a highly specialized skill set for each of these tasks. Instead, as a result of evolu-
tionary pressures, we have developed a small set of widely adaptable, general purpose
cognitive skills and structures [1]. When given a new activity that requires a cognitively
complex skill set, the needed skills are generated by adapting and combining existing
skills [2]. Furthermore, mechanisms and structures that have proved useful in one do-
main will be used in similar domains and will be changed only when driven by the need
for performance improvement [2]. Hence, an important question to ask is – To what
other activities does program comprehension exhibit similarities?

Our focus on program comprehension stems from its importance with respect to
computer programming. Computer programs are formal specifications for describing a
set of actions that one wishes a computer to perform. These specifications are written in
an artificial language known as a computer programming language. The text of the pro-
gram is known as the program’ssource-code. While source-code can be generated by
anyone familiar with the programming language’s syntax, a program that accomplishes
a desired task can only be created by a programmer that comprehends or understands
the semantics (meaning) of the language and the program’s source-code. That is, almost
all software maintenance activities require a programmer to comprehend the software’s

In P. Romero, J. Good, E. Acosta Chaparro & S. Bryant (Eds). Proc. PPIG 17 Pages 92 - 105

17th Workshop of the Psychology of Programming Interest Group, Sussex University, June 2005 www.ppig.org

source-code, making program comprehension one of the key human elements of com-
puting.

While there are many models and corresponding definitions for the termprogram
comprehension, for the purposes of this paper, we adopt the definition of Biggerstaff,
Mitbander and Webster [3]:

“A person understands a program when able to explain the program, its struc-
ture, its behaviour, its effects on its operational context, and its relationships to
its application domain in terms that are qualitatively different from the tokens
used to construct the source-code of the program.”

Using this definition, program comprehension is the process of generating a cognitive
map from the program source-code to a set of application domain concepts. The re-
sulting cognitive map is referred to as acode-to-concept map. An example of a typical
application domain is the banking domain and example concepts within this domain
include accounts, assets, deposits and compound interest calculations. The set of appli-
cation domain concepts is limited only by one’s ability to describe, communicate and
reason about them.

As the need for program comprehension skills has developed only recently, in evo-
lutionary terms, these skills must result from the ‘new’ application of existing skills.
We postulate that some of the skills used during program comprehension overlap sig-
nificantly with those used for spatial cognition. In other words, we equate the navigation
of source-code when building a code-to-concept map, with ‘wayfinding’ when explor-
ing a real-world geographic space. This equality identifies a new component of program
comprehension that explains documented phenomena and generates new research op-
portunities.

Support for this view is provided by Green [4], who postulates that “mental rep-
resentations of programs seem to use spatial imagery where possible.” Evidence also
suggests that, when possible, programmers use spatial imagery as a coding for program
concepts [5]. Green and Navarro found that program comprehension was facilitated
when related program concepts occurred in close physical proximity [5].

Douceet al. [6] suggest that comprehension and maintenance substantially use pro-
grammer’s spatial abilities and that the source-file can be viewed as “program space.”
Singeret al. [7] have developed a tool called ‘NavTracks’ to support navigation in
“software space.” We support the idea that source-code creates an abstract space and
examine it more fully in this paper. Using the literature on spatial cognition, we explore
source-code navigation during program comprehension in order to provide new insights
into some of the cognitive processes that occur.

Sections 2 and 3 provide overviews of program comprehension and spatial cogni-
tion, respectively. In Section 4, the structure of source-code is examined and its simi-
larities to the physical world are identified. Using these similarities, source-code navi-
gation is examined in Section 5 to relate previous research on program comprehension
and spatial cognition. In Section 6, we present a preliminary experiment to investigate
our hypothesis that source-code and the physical world are navigated using the same
cognitive skills.

Cox, Fisher and O’Brien

PPIG 2005 Sussex University www.ppig.org

2 Program Comprehension

Program comprehension begins with source-code and ends with a mental model de-
scribing the code’s purpose, operation, and abstractions. To construct this model, pro-
grammers must examine the text of the source-code using some form of strategy.

Brooks [8] hypothesised that maintainers use a top-down hypothesis driven model
of comprehension. Beginning with a primary hypothesis, programmers examine source-
code to confirm and refine this hypothesis, generating new supplementary hypotheses
as part of the process. Soloway and Erlich [9] suggest that a top-down approach is used
by maintainers that are familiar with the source-code. Using “rules of programming dis-
course,” programmers match code fragments to a suspected “program plan” that gen-
eralizes similar and familiar programs. In both these models, programmers begin at a
high level of abstraction and move towards a lower level.

Pennington [10] finds that maintainers use a bottom-up model of comprehension
and begin by forming a control flow “program model” based on the syntactic elements
of the source-code. A “situation model” is then constructed to describe the program
in terms of semantic objects and concepts. In bottom-up comprehension, programmers
begin at a low level of abstraction and move towards a higher level.

To unify the bottom-up and top-down comprehension approaches, an integrated
comprehension model was developed by von Mayrhauser and Vans [11]. In the in-
tegrated model, maintainers opportunistically shift between top-down and bottom-up
approaches. Generally, programmers begin using a top-down approach if they have suf-
ficient experience to generate high-level hypotheses or they begin using a bottom-up
approach when they lack this experience. A shift between approaches occurs when ei-
ther they lack the experience to form additional hypotheses (top-down to bottom-up) or
they encounter a recognizable element (bottom-up to top-down). Switches continue to
occur as opportunities present themselves.

These models suggest that programmers use multiple strategies during program
comprehension, depending upon a variety of contextual factors. Some of these factors,
such as programmer experience [10], have been identified, while others remain un-
known. However, independent of strategy, these models are based on the examination
of source-code. As documented by Mosemann and Wiedenbeck [12] programmers do
not examine a file sequentially. Thus, as part of program comprehension, programmers
must develop some mental representation of the source-code so that they are aware of
where the features they are examining are located within the code.

3 Spatial Cognition

Just as individuals vary in their use of a program comprehension strategy, they simi-
larly vary in their performance of navigational tasks. As will be demonstrated in this
section, the literature on spatial cognition indicates that individual, task and situational
differences all affect the choice of skills used for spatial cognition.

Spatial cognition has been defined by Downs and Stea [13] as:

“A process composed of a series of psychological transformations by which an
individual acquires, stores, recalls, and decodes information about the relative

Cox, Fisher and O’Brien

PPIG 2005 Sussex University www.ppig.org

locations and attributes of the phenomena in their everyday spatial environ-
ment.”

Spatial cognition is composed of several elements: landmarks, route maps and survey
maps. Landmarks are identifiable environmental markers associated with specific geo-
graphic locations [2]. Route maps are sequences of instructions, often involving land-
marks, that describe at a personal level how to get from one location to another [14].
Survey maps are similar to topological maps and describe the spatial layout of the en-
vironment as opposed to reflecting a specific navigational task [14].

It is well accepted in the spatial cognition literature that Piaget’s model for children
is correct and that we develop and learn to use these concepts in the order they are listed
[15]. However, as adults, when placed in a new and unfamiliar environment, we do not
learn about the environment in the same order. Additionally, as part of spatial cognition,
individuals must also determine their own location. Self location depends on onessense
of directionfor which we use the definition of Kozlowski and Bryant [16]:

“the awareness of location or orientation which specifies where the participant
is when he or she moves around the environment.”

Moeser found that after two years in the same building, nurses had not developed
survey maps of a hospital and used other strategies to navigate [17]. Appleyard [14]
suggests that about 75% of the population use route maps and the remainder survey
maps, but that this choice is mediated by need. Drivers are more likely to use a survey
map while bus passengers are more likely to use a route map. It is also suggested that
routes and landmarks are inseparable. A landmark is identified when one is needed to
associate with an important element of a route, such as a change of direction.

Aginsky et al. [18] show that the use of a route oriented or survey oriented strategy
is an individual preference and that users of the survey oriented strategy use it before
developing a prerequisite route map. However, one is not restricted to using a sole
strategy as Kitchin [19] found that one person uses many strategies.

Kato and Takeuchi [20] discovered that, independent of wayfinding ability, indi-
viduals are able to use both survey maps and route maps and switch between the two
strategies. However, individuals with a better sense of direction made more effective use
of each strategy and switched more appropriately. They also suggest that wayfinding is
an opportunistic process and that individuals change strategies at different parts of a
route. Also, one’s choice of strategy is often dictated by the environment. For example,
when a lack of sufficient landmarks exists, one adopts a survey strategy.

Thus, spatial cognition is a complex task for which individual differences exist. Of
the multiple cognitive skills such as using routes or survey maps, there is considerable
variation depending upon the individual, the task and the current situation. As with
program comprehension, an individual will often use more than one strategy or skill
and will change according to their current needs and situation.

4 Codespace

Experienced programmers are comfortable viewing source-code from many different
perspectives [21]. Thestructuralview of source-code considers the code’s structure –

Cox, Fisher and O’Brien

PPIG 2005 Sussex University www.ppig.org

its layout, indentation, organization into lines and files, use of blank-lines, and so forth.
Thesyntacticview organizes source-code with respect to the syntax of the programming
language in which the code is written. There are manysemanticviews of source-code,
with each view applying the semantics of a specific domain. For example, in the pro-
gramming domain the source-code is considered with respect to the data structures and
algorithms commonly used by programmers. In the business domain, the code is viewed
using the terminology of business, such as assets, accounts, and interest calculations.

The views of source-code, structural, syntactic and semantic, are considered as in-
creasing in their complexity. That is, the structural view is considered as the most sim-
plistic, and the various semantic views as the most complex. For the most part, the struc-
tural view of source-code has been ignored in the study of program comprehension. It
has been shown that the structure of source-code significantly affects its readability and
comprehensibility, as it permits the code to be more readily decomposed into syntactic
units [22, 23]. However, once a syntactic model has been generated, there is little further
reference to the structural model.

We suggest that the structural model is more important than currently believed, as
it provides a basis with which programmers can ‘move around’ the source-code. Our
hypothesis is that programmers form a mental model using the structural elements of
the source-code and then use this model to navigate the code. As it is likely that source-
code navigation will use the same skills as real-world navigation, we refer to this mental
model of source-code structure ascodespace. More formally, we define codespace as
an abstract world corresponding to a programmer’s view of source-code with respect to
the format, layout and organization of objects identified within the code.

In addition to the source-code, there are many other representations for a software
system, such as flow graphs, class hierarchies and architecture diagrams. We define
codespace with respect to the source-code, as opposed to the entire set of system rep-
resentations, as these alternative representations can all be considered as abstractions
of the source-code. Codespace is only an element of a software system. While abstract
concepts are frequently mapped to the source-code that implements them, it is the code
that populates codespace and not the abstract concepts. Codespace is populated with
source-code constructs, such as type definitions and procedures, not with abstract do-
main concepts such as bank accounts and withdrawals.

When we move to a new city, our knowledge of how to get around the city in-
creases with practice and experience. Similarly, as programmers become more familiar
with code, they should become more adept at navigating codespace. It is likely that as
programmers develop more complex views of the source-code, they determine struc-
tural positions for any new-found objects, and thus, increase the number of known and
meaningful objects in codespace. For example, when viewing code that has not been
previously examined, a programmer forms a simple structural model of the code using
only the code’s physical layout. Then, as the programmer identifies syntactic elements
such as subroutines and loops, the positions of these syntactic elements are located in
the structural model to increase the number of recognizable objects. Codespace should
grow in detail and size as programmers become more familiar with source-code.

Codespace and our physical world have many similarities. These similarities are
now presented to provide evidence that the same skills are used to navigate both worlds.

Cox, Fisher and O’Brien

PPIG 2005 Sussex University www.ppig.org

First, both have a physical manifestation that can be viewed and manipulated. Program-
mers can modify source-code using a tool such as text editor, just as we can modify the
physical world using a tool such as a shovel.

Second, both worlds have identifiable constructs (objects). In the physical world,
there are rivers, mountains, buildings, roads and so on, while in codespace there are
functions, subroutines, loops and blocks (compound statements). In codespace, editors
and visualization tools function as eyes, permitting programmers to view the world and
identify objects. However, in both worlds, the number of objects that exist covers a
larger geographic space than can be simultaneously viewed. Hence, navigation must be
performed to explore these worlds and gather information for use in building cognitive
models for understanding and comprehension. Just as we would have limited knowledge
of the real world if we never left our home, equivalently, programmers will have little
knowledge of a software system if they never view more than a single screen of code.

Third, both worlds have the property of direction. In the physical world, we use
terms such as ‘up,’ ‘left,’ and ‘north’ to identify direction. In codespace, we can move
‘forward’ and ‘backward’ in a source file, and ‘left’ or ‘right’ on a specific line in that
file.

Cartesian space is generally reduced to one dimensional space in source-code. Pro-
grammers tend to assign a linear ordering to code, just as we assign a linear ordering to
the words, sentences and paragraphs that make up this paper. The linear nature of code
is made explicit in older dialects of BASIC and Fortran where all lines are monotoni-
cally numbered. This simplifies the concept ofdirection, since one can only go forwards
or backwards in a file. The treatment of codespace as uni-dimensional results from the
fact that to improve readability, each line usually contains a single meaningful syntactic
element.

Fourth, both worlds can be considered at various levels of abstraction. In the physi-
cal world, we can describe a person’s office as room 322 in the computer science build-
ing of Dalhousie University in the city of Halifax and the country of Canada. Thus,
a hierarchy of abstraction levels exists, presented here from most detailed to least de-
tailed. In codespace, one can reference the guard clause in the partitioning loop of the
‘quicksort’ subroutine in the file ‘utilities.c’ of the program ‘Excel.’ Again, a hierarchy
of abstraction levels exists. These abstraction hierarchies permit the reduction of large
spaces to smaller more manageable ones.

Fifth, there are concepts of distance and layout relating objects in both worlds. Two
subroutines can be adjacent, just as two buildings are, while two functions can be 4
screens (of a monitor) apart just as two mountains are 7 kilometers apart. Program-
mers typically view distance in terms oflinesandscreensdue to the historical ‘transit’
techniques – pressing the↑, ↓, page-up, and page-down keys.

In codespace, there are effectively two transit techniques: scrolling and jumping.
Scrolling is the use of the keyboard, window scroll bars, or mouse scroll wheel, to move
the cursor forwards and backwards through a source file. Scrolling is the equivalent of
‘walking’ in codespace since one can watch the ‘landscape’ pass by during the process.
The amount of code that is displayed and the amount of time it takes to display it
provides programmers with a sense of distance, similar to walking.

Cox, Fisher and O’Brien

PPIG 2005 Sussex University www.ppig.org

Jumping occurs when the entire viewing window (screen) is rewritten as a result
of accessing a search result or a previously marked location. Closing the current file
and opening a new file is equivalent to jumping to the start of the new file. Jumping
is like instantaneous teleportation, as there is no scaled time lag to provide any sense
of distance and no sensory input to indicate direction. We have not yet identified any
existing real world transit that displays the same characteristics as jumping.

While codespace and the real world have many similarities, they also have signifi-
cant differences as the existence of jumping illustrates. These differences do not prevent
the same skills from being used in both environments. Instead, the differences suggest
that a common subset of skills is used in each world and that this subset is augmented
and modified to deal with the unique aspects of each. Cosmides and Tooby [24] support
this view in their “swiss army knife hypothesis.”

The similarities listed here suggest that both worlds can be navigated using the same
cognitive skills. As humans, it is likely that we plot a route to get to our office using the
same mechanism as a programmer uses to get to the ‘quicksort’ subroutine. In the next
section, we use research on program comprehension and spatial cognition to identify
similarities between navigation in the real world and navigation in codespace.

5 Navigating Codespace

From an evolutionary perspective, humankind has only recently needed skills for per-
forming program comprehension. Hence, the skills we use for this task should have
resulted from the adaptation of an existing skill used for some other task. Furthermore,
as source-code provides the notational representation for a complex set of domain and
programming concepts, the skills needed to manipulate and understand code must be
similarly complex and have arisen to manipulate and understand an equally complex
environment. For the remainder of this section, we exploit the similarities between
source-code and the real world to explore the hypothesis that codespace creates an ab-
stract environment that must be navigated and manipulated using the same cognitive
skills as for physical space.

Mosemann and Wiedenbeck consider a programmer’s “working through source-
code” as source-code navigation [12]. They describe navigation as the path that a pro-
grammer takes when performing comprehension. We do not believe that this is an accu-
rate view of navigation, since it equates navigation with a specific task. More accurately,
navigation can be considered as the behavioural and cognitive elements used to identify
one’s position and to move to other identifiable positions [25]. Using the latter defini-
tion, we now examine codespace navigation.

5.1 Visual Sub-Systems

Viewing the world is much like program comprehension – we gather data using our
visual system and then generate meaning for this data. During program comprehen-
sion, we read source-code to gather data, and then map the data to application domain
concepts to give it meaning.

Cox, Fisher and O’Brien

PPIG 2005 Sussex University www.ppig.org

Within the human visual system, it has been shown that there are two separate sub-
systems: thecontourand thelocationsystems [26]. The contour system identifies ob-
jects while the location system determines an object’s spatial location. Analogously, we
can expect to find parallel systems in place for navigating source-code.

In codespace, there are also objects and locations. Objects are meaningful source-
code fragments. These fragments can be identified with respect to the syntax of a pro-
gramming language or with respect to the task that the fragment performs. An example
of the former is a block (grouped sequence of statements) in a block-structured lan-
guage such as C or Pascal and an example of the latter is a group of statements that
swap the values of two memory locations. As mentioned, codespace is linearly struc-
tured permitting objects to have a location within the single available dimension.

Research on program comprehension suggests that programmers generate mean-
ing for a program by assigning code fragments to domain concepts. This task can be
considered as using the contour subsystem. That is, programmers identify meaningful
conceptual objects that can be associated with the code.

Current research on program comprehension pays little attention to the equivalent
of the location system. There is little examination on the location of these objects, or of
their manifestations in source-code. Program comprehension models specify the cog-
nitive structures used to generate meaning for code and ignore the spatial relationships
between code fragments and domain concepts. It is likely that this omission is tied to the
lack of attention that is given to the structural view of source-code. As well, by ignoring
positional relationships the current models of program comprehension can be viewed as
incomplete. Addressing this incompleteness can lead to an improved knowledge of the
comprehension process and in turn can motivate the production of better techniques,
environments, and tools for software maintenance.

5.2 Strategies for Navigation and Comprehension

While we have been considering source-code navigation as an element of program
comprehension, there is some benefit in examining the relationship between compre-
hension strategies and spatial cognition navigation strategies. However, when directly
compared, the two areas do not exhibit much similarity or appear to be highly related.
The key to achieving a successful comparison is found by using known gender differ-
ences in program development and spatial cognition. While program development is not
the same as program comprehension, evidence suggests that the two tasks will exhibit
similar differences in source-code navigation. This evidence is now presented.

Green, Bellamy and Parker [27] have observed that programmers do not gener-
ate code linearly and will jump forwards and backwards in a file when programming.
This behaviour suggests the programmers are building and maintaining a ‘geographic’
model of the code and using this model to navigate during the programming process.
The similarity of navigation models for software development and program compre-
hension, indicates that research on source-code navigation is independent of the task
being performed as it is likely the same model is being used. We next provide a brief
description of the two main program development models.

To describe program development strategies, we will use the analogy of writing
a book. Top-down program development begins at the most abstract level and creates

Cox, Fisher and O’Brien

PPIG 2005 Sussex University www.ppig.org

a skeleton program lacking detail, much like beginning a book by writing the table
of contents. Then, detail is added through the implementation of the subroutines that
are directly referenced by the initial skeleton. Detail continues to be added through the
development of subroutines that are referenced more and more indirectly from the initial
skeleton. The adding of detail is similar to developing a chapter by first generating the
section headings, then its sub-headings and so on, until the actual text is written as the
final step.

Bottom-up development follows a reversed process. The most detailed elements are
developed first and then combined by writing successively higher-level subroutines that
use the previously developed lower-level subroutines. In a book, this is like writing,
in an arbitrary order, a set of paragraphs and then ordering these paragraphs into sub-
sections, then sections, and finally into chapters.

It is documented that women tend to program using a bottom-up approach while
men tend towards using a top-down approach [28]. For program comprehension tasks
we expect a similar difference will exist as comprehension can also be performed us-
ing a top-down or bottom-up approach. It is reasonable to expect that, when feasible,
women will tend to use a bottom-up comprehension strategy while men will prefer to
use a top-down strategy.

It has also been documented that women, more than men, tend to use less abstract,
more concrete representations of the environment, such as landmarks. Conversely, men
prefer to use more abstract representations such as cardinal directions (e.g. north, south)
[29]. When the level of abstraction is considered, it can be seen that bottom-up pro-
gramming and landmark identification both use a low level of abstraction. Similarly,
top-down programming and cardinal direction tend towards a higher level of abstrac-
tion.

Postmaet al. [30] suggest that route-based navigation can be performed at both an
abstract or a concrete level, but that the use of survey maps is predominately performed
at an abstract level. If women tend towards the less abstract, then they should tend to use
a route-based navigation strategy. Lawton [31, 32] confirms this suggestion and found
that women were more likely than men to use route-based strategies whereas men were
more likely than women to use survey navigation strategies.

Using these observations, it is possible to suggest that since women tend to favour a
less abstract, bottom-up programming style and the less abstract route-based navigation
strategy, the two can be equated. That is, route-based navigation is similar to bottom-up
program comprehension. Similarly, since men tend towards the abstract and use a top-
down programming style and survey map navigation strategies, these approaches can
also be equated.

Codespace navigation is only a part of program comprehension. As well, it has been
suggested that computing is a male dominated domain that forces women to adopt male
strategies to be successful [33]. For these reasons, it is possible that measurable sex
differences will not be found. In future work we intend to explore these issues.

5.3 Landmarks

When examining source-code,beaconsare used to identify features and structures
(meaningful objects) within the code [8]. Brooks suggests that programmers scan or

Cox, Fisher and O’Brien

PPIG 2005 Sussex University www.ppig.org

search source-code for beacons that confirm or suggest the existence of specific syntac-
tic and semantic objects. This use of beacons suggests that they may have a relationship
to landmarks. However, we know of no research that explores the use of beacons for
navigation.

We suggest that beacons are distinct to source-code landmarks. Beacons identify the
existence of a specific feature. Just as a square-shaped mound indicates the existence
of a probable archaeological site, three sequential assignments using three variables
indicates a probable swap and consequently, a sorting algorithm. The role of a beacon
is the indication of an object’s existence.

Landmarks identify a significant positional location in codespace. In a source file,
subroutines that serve a similar purpose are often grouped together and preceded by a
comment (computer ignored annotation) that identifies the group’s purpose. This com-
ment is a landmark that identifies the start of a subroutine group. Landmarks are used
during codespace transit as a navigational element.

Although they are distinct from landmarks, beacons are not unrelated. We suggest
that beacons are a component of a landmark. With a church, the spire can serve as a
beacon to indicate that a church exists and the church can serve as a navigational land-
mark. In code, the name ‘sort’ in a subroutine definition acts as a beacon that suggests
the existence of a sort subroutine that can be used as a source-code landmark. As they
are a component of landmarks, the known gender differences in the ability to recall
landmarks should also be exhibited for beacons.

Although unproven, anecdotal evidence suggests that source-code landmarks exist.
Programmers, when working with code, do not always search for a construct that they
wish to view. Instead, they search for a different construct that is close to the target con-
struct and then scroll to the target. We believe that programmers are using a landmark
– the searched for construct – to perform transit. When they cannot accurately describe
the location of a target, programmers use a nearby landmark as part of the navigation
process.

Subroutines will likely be found to serve as landmarks. We have observed that when
asked, colleagues can identify the ordering of subroutines within a familiar file. As well,
in some formatting styles, subroutine names are specifically placed so that they can be
used as search targets. Thus, programmers develop a locational model of subroutine
locations and use this model to navigate. The subroutines that stand-out, for their role,
uniqueness of name, or for some other feature, serve as landmarks for navigation.

Landmarks are not just used as search targets. When scrolling through a large file
using a scroll bar, it is difficult to scroll to a specific location in a single movement of
the slider. However, programmers have no trouble displaying a desired code fragment,
as they can slow down the slider movement so that a passing subroutine can be used to
determine the distance to the desired fragment. By using landmarks, programmers can
scroll forward and backward through a file without getting lost, even when there is no
status line to indicate the cursor’s current file position.

When using search tools that permit programmers to jump to an arbitrary location
in a file, it is documented that programmers can become disoriented [34]. It is likely
that disorientation occurs when there is no visible landmark on the screen. Without an

Cox, Fisher and O’Brien

PPIG 2005 Sussex University www.ppig.org

indicator of the current cursor position, programmers must resort to hunting for such an
indicator to determine their current position.

6 Verification

To begin the process of verifying our hypothesis, we have designed an experiment that
explores the existence of codespace. From Downs and Stea’s definition of spatial cog-
nition [13], it can be seen that the acquisition, storage and recall of information about
the relative locations and attributes of a set of entities is a fundamental component of
spatial cognition.

A very conservative approach would be to experimentally determine the set of en-
tities that form codespace. However, we believe that such conservatism is extreme. It
is highly likely that programmers will use domain concepts to partition source-code
into meaningful entities. While some of these concepts may come from more abstract,
application domains, the majority of entities are highly likely to be formed from the
syntactic units of the code’s programming language. That is, for an object-oriented pro-
gramming language such as Java, codespace will contain the definitions and declara-
tions of classes, methods and fields. Thus, our first experiment explores programmers’
ability to learn and recall the spatial relationship between procedural abstractions; a key
construct in most programming languages.

As many undergraduate programs use Java as the initial programming language,
we have selected it as the source language of the experiment. Using a file containing
approximately 30 methods, in a single class, participants will be asked to explore the
program with the intent of creating a static inter-method call-graph. We chose this task
since it encourages programmers to examine the entire file so that a complete graph can
be created. Thirty methods should be large enough to be interesting but small enough to
fit within the scope of a short experiment. The selected code, a 712 line file, implements
a simple checkers game to minimize the effects of the application domain. We hope to
avoid distraction by using a domain that is relatively well known to most participants.

In the study, half of the participants will be given a file with line numbers and half
will not. Participants will not be directed to use or concentrate on the line numbers.
Thus, any knowledge that they display about these line numbers is an indicator that
incidental learning has taken place. Incidental learning occurs only when need, oppor-
tunity and motivation exists [35]. Consequently, participants will only gain knowledge
about line numbers when it is beneficial to do so. In codespace, line numbers provide
a fixed measure of distance, much like mileage indicators along the side of a road. If
programmers do not use spatial skills when navigating in codespace, there should be
no benefit from the existence of a distance scale. We hypothesise that when given line
numbers, programmers will be able to more accurately answer questions about the size
and locations of methods although they may not be aware of their use of line numbers.

After participants have been given a sufficient length of time to explore the file,
they will be asked perform four tasks. In the first task, participants will be asked to
order the signatures of all the methods contained in the file. Given an alphabetized list
of signatures, participants will number them according to their order within the file.
This task examines the ability of programmers to learn and recall the relative positions

Cox, Fisher and O’Brien

PPIG 2005 Sussex University www.ppig.org

of the methods. The task will be scored by assigning each method 1 point for each
method that is correctly positioned before or after it. This score will then be compared
against a mean random score where methods have half of their preceding and following
methods correctly identified.

In the second task, participants will be asked to identify the approximate line num-
ber where a method occurred. This task explores the ability of programmers to recall
absolute locations with respect to a fixed measurement system. While it is expected that
both groups will perform better than random, it is likely that participants who viewed
the version with line numbers will perform better than those that did not. This difference
should hold for the third and fourth tasks as well. The task will be scored by calculat-
ing the number of lines of error between participant responses and the method’s actual
location. The distances can be compared against a mean random error equal to one half
the file’s length.

In the third task, participants will be asked to identify the length in lines of some
methods. This task examines the ability of programmers to determine a spatial property
for a codespace entity. The length of a method identifies its size along the linear dimen-
sion measured by line numbers. Size is an absolute property that is formed from the
relative positions of the start and end of the method. To evaluate participant responses,
indicated method lengths will be compared against the mean length of the methods in
the file.

For the fourth task, participants will be given two methods and asked to indicate the
number of lines between the two methods. This distance is a relative property formed
from the absolute locations of the two methods. As in the second task, we will com-
pare participant responses against a mean random response that is one half of the file’s
length.

Based on the results of this experiment, we will potentially gain evidence that pro-
grammers use syntactic constructs to populate codespace and that codespace displays
meaningful spatial properties such as size and distance. We believe that this experiment
provides a foundation upon which future, more indepth, research can be based.

7 Conclusion

In this article, we have used a spatial cognition perspective to examine program compre-
hension. This perspective suggests that source-code navigation is not a trivial activity
occuring while we develop complex domain models of a software system. Instead, the
perspective suggests that we are developing highly effective route and survey maps to
navigate the system’s codespace. Without these navigation skills, maintainers would be
unable to locate the source-code fragments associated with a domain concept. While
the use of program bookmarks and search tools permits programmers to instantly jump
to any location in source-code, spatial navigation skills are still required to positionally
relate these locations when scrolling.

The similarities between codespace and the physical world suggest that source-code
navigation is a missing element of current program comprehension models. This ob-
servation suggests that there is a wealth of new research to be performed to explore
the navigational skills that programmers use on a daily basis. In this paper, we have

Cox, Fisher and O’Brien

PPIG 2005 Sussex University www.ppig.org

begun this exploration by presenting a preliminary experiment to investigate the exis-
tence of codespace. We believe that the use of spatial cognition to explain phenomena
in program comprehension will provide insights that are of value to both the fields of
psychology and computer science.

References

1. Clark, A.: Microcognition: Philosophy, cognitive science and parallel distributed processing.
MIT Press, Cambridge, MA (1989)

2. Chown, E., Kaplan, S., Kortenkamp, D.: Prototypes, location, and associative networks
(PLAN): Towards a unified theory of cognitive mapping. Cognitive Science19 (1995) 1–51

3. Ted Biggerstaff, B.M., Webster, D.: Program understanding and the concept assignment
problem. Communications of the ACM37 (1994) 72–83

4. Green, T.: Cognitive approaches to software comprehension: Results, gaps and limitations.
In: Experimental Psychology in Software Comprehension Studies, Limerick, Ireland (1997)
Extended abstract of talk.

5. Green, T., Navarro, R.: Programming plans, imagery, and visual programming. In: Human-
Computer Interaction: INTERACT-95, London, UK, Chapman and Hall (1995) 139–144

6. Douce, C., Layzell, P., Buckley, J.: Spatial measures of software complexity. In: 11th Annual
Workshop of the Psychology of Programming Interest Group, Leeds, UK (1999) 36–45

7. Singer, J., Elves, R., Storey, M.A.: Navtracks demonstration: Supporting navigation in soft-
ware space. In: IEEE International Workshop on Program Comprehension, St. Louis, MO
(2005) To appear.

8. Brooks, R.: Towards a theory of the comprehension of computer programs. International
Journal of Man-Machine Studies18 (1983) 543–554

9. Soloway, E., Erlich, K.: Empirical studies of programming knowledge. IEEE Transactions
on Software EngineeringSE-10(1984) 595–609

10. Pennington, N.: Stimulus structures and mental representations in expert comprehension of
computer programs. Cognitive Psychology19 (1987) 295–341

11. von Mayrhauser, A., Vans, A.M.: Comprehension processes during large scale software
maintenance. In: International Conference on Software Engineering, Sorrento, Italy (1994)
39–48

12. Mosemann, R., Wiedenbeck, S.: Navigation and comprehension of programs by novice pro-
grammers. In: IEEE International Workshop on Program Comprehension, Toronto, Canada
(2001) 79–88

13. Downs, R., Stea, D.: Image and Environment: Cognitive Mapping and Spatial Behaviour.
Aldine, Chicago, IL (1973)

14. Appleyard, D.: Why buildings are known. Environment and Behavior1 (1969) 131–156
15. Piaget, J., Inhelder, B.: The Child’s Conception of Space. Norton, New York, NY (1967)
16. Kozlowski, L., Bryant, K.: Sense of direction, spatial orientation, and cognitive maps. Jour-

nal of Experimental Psychology: Human Perception and Performance3 (1977) 590–598
17. Moeser, S.: Cognitive mapping in a complex building. Environment and Behavior20 (1988)

21–49
18. Aginsky, V., Harris, C., Rensink, R., Beusmans, J.: Two strategies for learning a route in a

driving simulator. Journal of Environmental Psychology17 (1997) 317–331
19. Kitchin, R.: Exploring spatial thought. Environment and Behavior29 (1997) 123–156
20. Kato, Y., Takeuchi, Y.: Individual differences in wayfinding strategies. Journal of Environ-

mental Psychology23 (2003) 171–188

Cox, Fisher and O’Brien

PPIG 2005 Sussex University www.ppig.org

21. Shneiderman, B., Mayer, R.: Syntactic/semantic interactions in programmer behaviour: A
model and experimental results. International Journal of Computer and Information Sciences
8 (1979) 219–238

22. Miara, R., Musselman, J., Navarro, J., Shneiderman, B.: Program indentation and compre-
hensibility. Communications of the ACM26 (1983) 861–867

23. Baecker, R., Marcus, A.: Human Factors and Typography for More Readable Programs.
Addison-Wesley, Reading, MA (1990)

24. Cosmides, L., Tooby, J.: Cognitive adaptations for social exchange. In: The Adapted Mind.
Oxford University Press, Oxford, UK (1992) 163–228

25. Passini, R.: Spatial representations, a way-finding perspective. Journal of Environmental
Psychology4 (1984) 153–164

26. Kaplan, S., Kaplan, R.: Cognition and Environment. Praeger, New York, NY (1982) Repub-
lished, 1989, Ulrich’s, Ann Arbor, MI.

27. Green, T., Bellamy, R., Parker, J.: Parsing and gnisrap: A model of device use. In: Empirical
Studies of Programmers: 2nd Workshop. (1987) 132–146

28. Turkle, S., Papert, S.: Epistemological pluralism: Styles and voices within the computer
culture. Signs16 (1990) 128–157

29. Saucier, D., Bowman, M., Elias, L.: Sex differences in the effect of articulatory or spatial
dual-task interference during navigation. Brain and Cognition53 (2003) 346–350

30. Postma, A., Jager, G., Kessels, R., Koppeschaar, H., van Honk, J.: Sex differences for selec-
tive forms of spatial memory. Brain and Cognition54 (2003) 24–34

31. Lawton, C.: Gender differences in way-finding strategies: Relationship to spatial ability and
spatial anxiety. Sex Roles30 (1994) 765–779

32. Lawton, C.: Strategies for indoor way-finding: The role of orientation. Journal of Environ-
mental Psychology16 (1996) 137–145

33. Cooper, J., Weaver, K.: Gender and Computers: Understanding the Digital Divide. Lawrence
Erlbaum Associates, Mahwah, NJ (2003)

34. Janzen, D., De Volder, K.: Navigating and querying code without getting lost. In: Interna-
tional Conference on Aspect-Oriented Software Design, Boston, MA (2003) 178–187

35. Marsick, V., Watkins, K.: Informal and incidental learning. New Directions for Adult and
Continuing Education (2001) 25–34

Cox, Fisher and O’Brien

PPIG 2005 Sussex University www.ppig.org

