
Concretising Computational Abstractions: What works,
what doesn’t, and what is lost

Ken Kahn

Abstract. In order to create programs in a programming language, one needs to
understand the abstractions of the computation model underlying the language.
How can one program without understanding the underlying conceptual build-
ing blocks such as variables, data structures, procedures, recursion, and the like?
Since 1992, I have been developing a programming language whose primitives
are not abstract, but instead are familiar objects that exist in an animated game-
like virtual world. The primitives of this language, ToonTalk (www.toontalk.com),
are robots, boxes, birds, nests, number and text pads, magic wands, trucks, and
bombs rather than the corresponding abstractions of methods, arrays, send and
receive capabilities, numbers, strings, and ways of expressing copying, process
spawing and termination. ToonTalk is a general-purpose concurrent programming
language that even very young children are able to program. They do so because
they understand the behaviour of the basic elements, e.g. that if you or a robot
you’ve trained gives a bird something, she’ll take it to her nest.
Children, in some cases on their own, have learned to build ToonTalk programs
because each of the primitives can be understood metaphorically and concretely.
Furthermore, there is a sense that there is no syntax and hence the mechanics of
programming is trivial to master. But there is more to programming than mas-
tering the primitives and the mechanics: planning and design remain. These are
the remaining hurdles to making programming “child’s play”. ToonTalk program
fragments cannot be inspected; they can only be observed as they execute. You
can’t see at a glance what a program does; you can only see a program unfold over
time. Iterative design can be difficult as it often entails rebuilding many program
fragments.
Despite ten years of usage by children, many questions remain. Even if the con-
crete analogs preserve all the expressive power of the computational abstractions
they have replaced, has something been lost? Do abstractions enable a kind of
thinking that the corresponding concretisations don’t?

In P. Romero, J. Good, E. Acosta Chaparro & S. Bryant (Eds). Proc. PPIG 17                                                       Page 2

17th Workshop of the Psychology of Programming Interest Group, Sussex University, June 2005                    www.ppig.org


