
Graphical visualisations and debugging: a detailed
process analysis

Pablo Romero, Benedict du Boulay, Richard Cox
Rudi Lutz and Sallyann Bryant

Department of Informatics, Sussex University, U.K.

Abstract. This paper investigates the question of how programmers exploit and
integrate multiple sources of information. In particular it analyses how under-
graduate computer science students used the multiple representations available
in a software debugging environment (SDE). This environment allowed them to
view the execution of a program in steps and provided them with concurrently
displayed, adjacent, multiple and linked representations. These programming rep-
resentations comprised the program code, two visualisations of it and its output.
This investigation studied debugging strategy in terms of rich process data about
the use made of the representations available in the SDE and stepping facility.
These data comprised computer interaction logs, audio recordings and data about
visual attention focus.
The experimental results suggest that graphical representations seemed to pro-
mote a more efficient use of the available visualisations and were therefore asso-
ciated with a relatively low level of interaction. This paper discusses these results
and their implications for programming instruction.

1 Introduction

Much computer programming is performed via the use of software development envi-
ronments which provide a variety of external representations and other sophisticated
functionality. These representations and functionality enable programmers to treat pro-
grams not just as code text, but also as a range of abstract entities which can be visu-
alised according to different criteria or executed under a variety of conditions. These
visualisations can be presented in formats that range from mostly textual to mostly
graphical [1].

The debugging step facility is one of the most helpful pieces of functionality of
such environments. This facility allows programmers to execute and pause the program
at different points. At these points they can inspect the visualisations provided to ob-
tain information about various aspects of the program. Such program visualisation and
debugging facilities should be especially helpful for novice programmers because they
have the potential to enable them see the program not as a black box but as an abstract
machine containing a set of elements and states. However, their effective use requires
the programmer to deploy knowledge about how to decode and coordinate the avail-
able representations as well as skill in operating the SDE itself. It is often assumed
that novices possess this knowledge. Thus, novice programmers can face a double chal-
lenge. As well as trying to learn abstract concepts about programming, they have to

In P. Romero, J. Good, E. Acosta Chaparro & S. Bryant (Eds). Proc. PPIG 17 Pages 62 - 76

17th Workshop of the Psychology of Programming Interest Group, Sussex University, June 2005 www.ppig.org

master the decoding and representation coordination skills required to use debugging
environments.

This study characterises the debugging strategies of Java novices in terms of step-
and-trace choices and representation use in a multi-representational debugging environ-
ment. This characterisation is drawn from hybrid data; a mixture of data from different
types but which originate from the same empirical episode. The types of data considered
were computer interaction logs, audio recordings and data about visual attention focus.
Section 2 explores research in programming strategy focusing on the way programmers
manipulate the tools and representations available. Section 3 describes the experimental
design and method. Section 4 presents the results of this study and Section 5 discusses
these results. Finally, Section 6 presents some conclusions and describes further work.

2 External representation usage in programming

Programming studies have suggested that there are a range of strategies for finding
errors in computer programs [2–5]. Bug finding strategies can be classified broadly
into forward reasoningandbackward reasoning[3]. The first category comprises those
strategies in which programmers start searching for bugs from the program code, while
the second involves starting from the incorrect behaviour of the program (typically its
output) and reasoning backwards to the origin of the problem in the code. Examples of
forward reasoning includecomprehension, where bugs are found while the programmer
is building a representation of the program andhand simulation, where programmers
evaluate the code as if they were the computer. Backward reasoning includes strategies
such assimple mappingandcausal reasoning. In simple mapping the program’s output
points directly to the incorrect line of code, while in causal reasoning the search starts
from the incorrect output going backwards towards the code segment that caused the
bug.

Despite the debugging environment itself being a possible factor determining strat-
egy, studies of debugging have mostly considered only the program code and its output
as the two sources of information available for the debugging task. This is unfortunate
because programmers normally work with a variety of visualisations and tools in addi-
tion to the program code and its output. Little is known about the way in which these
visualisations and functionality affect strategy choice in debugging or about the way in
which these resources are used in the debugging task.

Research on the use of multiple external representations in other areas has shown
that an important factor when dealing with multi-representational systems is their het-
erogeneity in terms of modality. Here modality is used to mean the representational
form used to present or display information, rather than in the psychological sense of
a sensory channel. A typical modality distinction is between propositional and dia-
grammatic representations. It has been suggested that in general, the more graphically
heterogeneous representations are, the more difficult it is for students to coordinate
them [6].

A particular type of representation can constrain the interpretation of other represen-
tations because it might be more familiar or because of its inherent semantic properties.
Graphical representations, for example, are weakly expressive (exhibit ‘specificity’) and

Romero, du Boulay, Cox, Lutz and Bryant

PPIG 2005 Sussex University www.ppig.org

therefore compel the representation of specific information [7]. Such graphics can, in
turn, constrain the interpretation of textual representations.

A series of studies of our own ([8], [9] and [10]) have investigated the issue of
coordination of multiple external representations in program debugging. These stud-
ies tracked the visual attention of computer science undergraduates while debugging
programs in a multi-representational (multi-window) debugging environment. We em-
ployed a modified version of the Restricted Focus Viewer (a visual attention tracking
software system) to record moment-by-moment representation switching between con-
currently displayed, adjacent representations. The studies suggested that there was a
link between programming experience and a balanced use of the available representa-
tions. Although switches between the code and the visualisation were the most com-
mon, programming experience appeared to be associated with a more balanced switch-
ing behaviour between the main representation, the code, and the secondary ones. These
studies also highlighted the importance of modality. In [9], for example, it was found
that, in general, the higher the degree of interactivity with the SDE, the better the de-
bugging performance. However, this relationship was not linear for those participants
with a high level of skill working with graphical visualisations. The graphical condition
seemed to promote a more efficient use of the available visualisations and was there-
fore associated with a relatively low level of interaction. However these studies only
took into account data about representation usage. The study reported here builds on
them but considers an additional type of data, the programmers’ verbalisations, employ-
ing an analysis methodology that combines qualitative and quantitative aspects [11].
This study addresses the following questions in terms of the debugging behaviours and
strategies deployed by programmers: i) Why is it that generally speaking the more inter-
activity with the system the better the debugging performance? and ii) Why was there
a relatively low level of interaction with the visualisations (in the form of representa-
tion switching) for participants with a high level of debugging skill when considering
modality?

3 Method

The main aim of the study described in this paper was to relate debugging behaviour
(especially the use of the debugging step facility and the representations provided) and
visualisation modality (employing either textual or diagrammatic visualisations) to de-
bugging accuracy employing an analysis methodology that comprises qualitative and
quantitative aspects. This detailed analysis explored participants’ behaviour and debug-
ging strategy by observing replays of the debugging sessions. This analysis took into
account three types of data simultaneously: the trace of focus of attention, control of the
presentation of the program’s execution and verbalisation data. A detailed description
of this methodology can be found in [11].

The detailed analysis took into account only a subset of the experimental data of the
study reported in [9]. In this previous study, participants debugged six programs with
one error each and employing either textual or graphical visualisations. They were en-
couraged tothink aloudand their task was to identify the place and nature of the error
as well as to suggest a fix for it. The detailed analysis reported in this paper focuses on

Romero, du Boulay, Cox, Lutz and Bryant

PPIG 2005 Sussex University www.ppig.org

only one of the six target programs. The program version chosen was not significantly
different to the other versions in terms of the use of representations (code and visual-
isations) that participants displayed and was the one that showed the widest spread of
debugging accuracy scores. As one of the questions to address was related to represen-
tation modality, the subset of debugging sessions considered comprised examples of
textual and graphical visualisation usage. This was a between factors experimental con-
dition as some participants employed a version of the SDE with graphical visualisations
and others with textual visualisations. Examples of these representations are presented
in Figures 2 and 3.1

The SDE enabled participants to view the pre-computed execution of a Java pro-
gram and presented, in addition to the code, its output and two visualisations of its exe-
cution. Participants were able to view the execution of the program by stepping between
predefinedbreakpointsfor a specific sample input. The SDE did not provide students
with tools to edit, compile or re-execute the program with different input values or to
reset breakpoints to places in the code. The motivation to limit the functionality of the
tool in this way was to ensure, as much as possible, that all participants saw the same
information and to reduce the complexity of operating the debugging environment.

Participants were able to see the program code, its output for a sample execution,
and two visualisations of this execution. A screen shot of the system is shown in Fig-
ure 1. Participants were able to see the program class files in the code window, one
at a time, through the use of the side-tabs. Theobjectsand call sequencewindows
presented visualisations of the program’s execution similar to those found in Object-
Oriented software development environments [1]. The objects window (top right) pre-
sented data structure aspects while the call sequence window (bottom middle) showed
control-flow information.

The SDE presents image stimuli in a blurred form. When the user clicks on an im-
age, a section of it around the mouse pointer becomes focused. In this way, the program
restricts how much of a stimulus can be seen clearly and thus indirectly allows visual
attention to be tracked as the user moves an unblurred area around the screen. Use of
the SDE enabled moment-by-moment representation switching between different pro-
gram breakpoints and between concurrently displayed, adjacent representations to be
captured for later analysis. The system was also able to record audio and to replay ses-
sions, showing what participants did as well as what they said. In this way, the SDE
can allow both quantitative and qualitative analyses of the recorded data. The user-
computer interaction data (window and breakpoint fixation time and switching) can be
analysed in a quantitative way (for example writing programs to process the logged
data) to compare switching and fixation behaviour among the different experimental
conditions. Observing replays of experimental sessions, on the other hand, can be used
to interpret intentions and behaviours of participants. More details about the system and
methodology employed can be found in [11].

Previous studies [8, 10] suggested that the restricted focus technology works best
for program comprehension and debugging purposes if the unblurred area is of a size

1 A detailed hybrid analysis such as the one performed is extremely time consuming and rather
than focusing on a subset of the participants, we decided to select one (the same) debugging
session for all of them

Romero, du Boulay, Cox, Lutz and Bryant

PPIG 2005 Sussex University www.ppig.org

Fig. 1.The debugging environment used by participants

appropriate to cover entire representation units. In the case of the code, for example,
these units can be equated to methods. The objects window represents an extreme case
because the representation unit is the main object and therefore the unblurred spot cov-
ers the whole window. Studies that have validated the use of this technology have found
that it does not modify task performance significantly [8, 12]. Studies that have com-
pared visual attention behaviour using of this technology and employing eye-tracking
equipment have however found differences in these two conditions [13]. The central
issue concerns the validity of these techniques as measures of visual attention. Re-
searchers have tended to interpret measurement differences between the two techniques
as reflecting the superiority of eye tracking methods. However, recent evidence from
the visual attention, change blindness and attention design literatures [14] questions
this assumption.

3.1 Participants and procedure

The experimental participants were twenty-nine computer science undergraduate stu-
dents from the School of Cognitive and Computing Sciences at Sussex University, U.K.
All had taken a three month introductory course in Java. Some of them had previous
programming experience, in most cases consisting of a few extra months of academic
programming experience. Participants performed a program modification exercise, a

Romero, du Boulay, Cox, Lutz and Bryant

PPIG 2005 Sussex University www.ppig.org

program comprehension activity and six debugging sessions. The experiment was di-
vided into two sessions of about one hour each which took place on different days. The
program modification and comprehension tasks were intended to familiarise partici-
pants with the program they were going to debug and with the program visualisations
that were going to be presented to them in the objects and call sequence windows.
Following the familiarisation tasks participants proceeded to the debugging part of the
experiment.

The debugging session consisted of two phases. In the first phase participants were
presented with samples of program output, both desired and actual. When participants
were clear about the difference between these two sample outputs they moved on to
the second phase of the session. In the second phase participants worked with the SDE.
They were allowed up to ten minutes to debug the program and were instructed to think
aloud and to identify the error in the program reporting it verbally by stating its location,
description and a proposed fix for it.

The target program simulated the behaviour of a drink dispensing machine, was
of medium size and complexity and was seeded with one error. This program loads
the drink machine with cans of different drink types and also dispenses drinks after
allowing the user to enter strings representing coins. The program is 201 lines long
and comprises six classes linked by inheritance and composition relations. A typical
execution of this program would create about 12 different objects, some of which are
array data structures. The error in this program consisted in an incorrect initialisation
of one array index and resulted in the amounts of each drink type being over-written to
the same array location.

There were four predefined breakpoint lines in the code which generated six de-
bugging steps or pauses. Sample objects visualisations for the textual and graphical
conditions are shown in Figures 2 and 3 respectively.

A previous study [9] performed a quantitative analysis relating debugging accuracy
to representation usage for the data of this experiment. That study divided participants
on the basis of quartile ranges according to their debugging performance and found
that, in general, the higher the degree of interactivity with the representations of the
computerised environment, the better the performance. However, this relationship was
not linear for those participants with the highest level of skill working with graphical
visualisations. The graphical condition seemed to promote a more efficient use of the
available visualisations and was therefore associated with a relatively low level of inter-
action. The qualitative analysis reported here takes the same definition of skill groups
and tries to offer an explanation for these findings in terms of debugging behaviour and
strategy.

4 Results

The detailed analysis quantified the frequency of occurrence of specific debugging be-
haviours. In order to perform this analysis, each debugging session was broken down
into a sequence of discrete debugging events. These debugging events were related to
the three types of data considered in this analysis: trace of focus of attention, control of
the presentation of the program’s execution and verbalisation data. A new event could

Romero, du Boulay, Cox, Lutz and Bryant

PPIG 2005 Sussex University www.ppig.org

MyDrinkMachine :

fridge :

n piles : 1

piles :

piles[0] :

type : coke

n elements : 7

piles[1] : null

piles[2] : null

till :

n piles : 4

piles :

piles[0] :

type : 5p

n elements : 2

value : 0.05

piles[1] :

type : 10p

n elements : 1

value : 0.1

piles[2] :

type : 20p

n elements : 2

value : 0.2

piles[3] :

type : 50p

n elements : 1

value : 0.5

Fig. 2. Textual objects
view of the DrinkMa-
chineprogram.

Fig. 3.Graphical objects view of theDrinkMachineprogram.

be triggered by a change in the focus of attention, a command related to the presentation
of the program’s execution, participants’ verbalisations or a mixture of these. Therefore
events were bounded by pauses or changes of topic in programmers’ verbalisations
(utterances), inter-window switches of visual attention focus or breakpoint switches.
Each one of these debugging events was categorised as an instance of a specific de-
bugging behaviour. The debugging behaviours taken into account are related to specific
debugging strategies and are shown in Table 1. This categorisation was performed by
replaying the debugging sessions and interpreting the three types of experimental data
simultaneously. A detailed description of this methodology can be found in [11].

The categorisation of debugging events into the different debugging behaviours of
Table 1 was performed by a rater who was trained to perform this interpretation but who

Romero, du Boulay, Cox, Lutz and Bryant

PPIG 2005 Sussex University www.ppig.org

was unaware of the specific questions that this analysis was addressing (those at the end
of Section 2).

Debugging Description
behaviour
Single stepping Single stepping through the breakpoints of the program while watching

either the objects or output view. Utterances describe the behaviour of
the program in terms of the changes to its data structures or real world
objects

Homing in Homing in on an area of code after having uttered a debugging hypoth-
esis. Participant is reading the code searching for the place responsible
for the observed faulty behaviour

Code browsing High level browsing of the code to build up a more complete picture of
the program. Participant is reading the code for program comprehen-
sion purposes

Building a dynamic
view

Talking about the program in terms of a dynamic view of it, but without
stepping through it. Participant focuses on the code window comment-
ing on dynamic aspects of the program without actually executing the
program in steps

Comprehension hy-
pothesis

The participant states a program comprehension hypothesis. This type
of hypothesis is not directly related to the program error but rather to
the way the program is implemented

Debugging hypoth-
esis

The participant states a hypothesis regarding the identification of the
error in the program

Table 1.Debugging behaviours taken into account in the detailed analysis of representation usage

Some of the debugging behaviours taken into account are related to the debugging
strategies described in [3]. These debugging behaviours are described in Table 1.Hom-
ing in, for example, can be identified as the deployment of acausal reasoningstrategy.
Code browsingis associated to thecomprehensionstrategy whilebuilding a dynamic
view is related tohand simulation. There are not many references to a behaviour like
single steppingin the debugging literature, perhaps because only a few debugging stud-
ies have taken into account the programmer’s interaction with computerised debugging
environments and in particular with the visualisations provided by them.Single step-
ping is the only behaviour, of those considered in this analysis, which makes specific
reference to the available visualisations.Comprehension hypothesisanddebugging hy-
pothesisare not directly related to specific debugging strategies, rather, they can be
considered as behaviours that may occur as part of different kinds of strategy.

Table 2 shows an example analysis sheet. This analysis sheet is produced by cate-
gorising the debugging session events as instances of debugging behaviours, as exem-
plified in Table 1.

In [9], participants were divided post-hoc on the basis of quartile ranges accord-
ing to their debugging accuracy level. Quartile 1 comprised the participants with the

Romero, du Boulay, Cox, Lutz and Bryant

PPIG 2005 Sussex University www.ppig.org

Focus of visual attention
Time Utterance Code Objects Call

Sequence
Output Behaviour

category
0:29 Go, go, go.

Come on. I
see this.

piles[0]
to
piles[3]

Single step-
ping

0:43 Cool, I see
this.

piles[0]
to
piles[3]

Single step-
ping

0:49 The problem
is in the cans
in the fridge,
so...

piles[0]
to
piles[3]

Debugging
hypothesis

1:01 Let’s look
at the fridge
class

DrinkMachine.
main (line 38)

Homing in

1:12 Fridge.load
(line 16)

Homing in

Table 2.Section of analysis sheet for a specific debugging session

lowest scores while quartile 4 comprised those with the highest scores. In the analysis
reported in this paper, this classification was taken as an indicator of individual ability
and therefore as the basis to divide participants into different skill groups.

Table 3 illustrates the frequency of occurrence of specific debugging behaviours
for each skill group. This frequency of occurrence was normalised, so the values re-
ported are number of occurrences per minute. These figures show trends rather than
statistically significant results, as the experimental variables taken into account did not
exhibit a normal distribution, probably due to the low numbers of participants in each
condition. This table suggests that groups of low skill (1 and 2) performed less single
stepping than those of high skill (3 and 4).

Group 1 Group 2 Group 3 Group 4
Single stepping 1.80 1.61 4.00 2.91
Homing in 0.95 0.49 0.74 1.44
Code browsing 3.56 3.70 3.62 2.46
Dynamic view 0.22 0.00 0.00 0.00
Comprehension hypothesis 0.20 0.23 0.16 0.52
Debugging Hypothesis 0.57 0.39 0.53 0.85

Table 3.Mean frequencies of debugging events (per minute) by skill group.

Romero, du Boulay, Cox, Lutz and Bryant

PPIG 2005 Sussex University www.ppig.org

Low groups focused mainly on the code and therefore tended to do more code
browsing. Also, it seems that their homing in episodes were supported by the code
rather than by the visualisations. Their behaviour was guided by a mixture of compre-
hension debugging strategies (as defined in Section 2) as well as by genuinely trying to
understand the program rather than attempting to debug it. In this latter case they were
concerned with understanding the code, frequently at the level of decoding syntax (‘is
this a method? It is, isn’t it?’). Sometimes they did not succeed at this task (‘I’m just
looking at all the different methods. I’m not really seeing them though, just seeing lots of
meaningless words’). When they were employing a comprehension debugging strategy,
the types of hypotheses they uttered were frequently syntax-related (‘it might just have
too many closed brackets, I think line 41 has too many closed brackets’). In both cases
episodes of reading code aloud were frequent (‘class MoneyPile... n dot elements times
value’). Sometimes they were able to extract the relevant information from the avail-
able representations. However, big gaps in their knowledge prevented some of them
from understanding important aspects of the program and led them to infer the wrong
conclusion (e.g.‘That constructor class would have to make a type of drink rather than
just a string’2).

Group 3 performed the highest rate of single stepping. This tendency suggests that
they had a high level of interaction with the visualisation windows. Their protocols
frequently show detailed descriptions of the visualisations (‘Five cokes are entered.
Number of cokes, number of drinks... right, is it?’). It seems that their global debugging
strategy combined episodes of looking at the execution of the program in steps to find
out what was wrong with it and then trying to reason backwards to find the place in
the code were the error was generated. However, sometimes gaps in their programming
knowledge got in their way (‘Protected, protected, protected. Well it can’t be because...
they are all protected... I forgot what that means’). Despite these problems, their be-
haviour is different from participants of the two lower skill groups in that they were
trying to do debugging rather than program comprehension. They were looking at the
visualisations trying to extract information about the program error and then referring
back to the code attempting to find the place responsible for this error.

Participants of Group 4 did lesssingle steppingthan those of Group 3. However they
did the mosthoming inof all groups. They proceeded in much the same way as par-
ticipants of Group 3, combining periods ofsingle steppingandhoming inbehaviours,
apparently deploying a backward reasoning strategy to debug the program. However
their presumably more advanced programming knowledge enabled them to be more
successful when trying to find the place in the code responsible for the error. Associ-
ated with this success is the fact that they produced the highest number of hypotheses.
They also performed the least amount of code browsing of the four groups. This fact
strenghtens the conclusion that their behaviour was guided mainly by a backward rea-
soning strategy.

The second research question of Section 2 involved the comparison of behaviours
for graphical and textual conditions for members of the high skill groups. Due to the
low numbers of participants in these skill groups for these conditions (for example,

2 In this case the participant is suggesting that there is an error with the type of object returned
by a constructor. An error of this type would show at compilation rather than at execution time

Romero, du Boulay, Cox, Lutz and Bryant

PPIG 2005 Sussex University www.ppig.org

for Group 4, three participants in the textual and four in the graphical condition), any
comparisons have to be considered with caution. Table 4 presents the frequency of
occurrence of debugging behaviours for the members of groups 3 and 4 taking modality
into account. This table shows that members of Group 4 had a low frequency of single
stepping but a high frequency of homing in behaviours in the graphical condition. They
also produced a high number of debugging hypotheses.

Participants of Group 4 in the textual condition were similar to those of Group 3 in
that sometimes they described the visualisations in a detailed way. Also, they sometimes
viewed the same execution episode in steps several times (‘Let’s go back to the start.
Selecting the piles. Hmm, the next section has added coke to the first element of the
pile... Returned 5 cokes. But for some reason it’s added three...’). Participants in the
graphical condition, on the other hand, seemed to report the relevant information in the
visualisations in a more direct way and then moved on to try to identify the place in
the code responsible for the observed behaviour (‘Ok, I see this. Cool, I see this. The
problem is the cans in the fridge, so ... Let’s look at the fridge class’).

Group 3 Group 4
Text Graphic Text Graphic

Single stepping 3.21 4.79 6.17 1.6
Homing in 0.67 0.81 0.31 1.90
Code browsing 4.09 3.16 2.78 2.32
Dynamic view 0.00 0.00 0.00 0.00
Comprehension hypothesis 0.18 0.15 0.22 0.63
Debugging Hypothesis 0.50 0.56 0.41 1.02

Table 4.Mean frequencies of debugging events (per minute) for Groups 3 and 4 by modality.

5 Discussion

This section discusses to what degree the results of the detailed analysis described in this
paper can explain the results of our previous study [9]. In this study it was found that,
in general, the higher the degree of interactivity with the SDE, the better the debugging
performance. However, this relationship was not linear for those participants with the
highest level of skill working with graphical visualisations. The graphical condition
seemed to promote a more efficient use of the available visualisations and was therefore
associated with a relatively low level of interaction.

The results of the analysis described in this paper, which took the same data and
skill groups, suggested that varying degrees of interactivity can be explained in terms of
the debugging strategies participants were deploying. Participants displaying a single-
stepping behaviour would interact much more with the visualisations (and therefore
with the SDE) than those that were, say, browsing the code or hand-simulating it. Par-
ticipants of Group 3 were the ones with the highest frequency of single-stepping, and

Romero, du Boulay, Cox, Lutz and Bryant

PPIG 2005 Sussex University www.ppig.org

this can explain why this group was also the one with the highest degree of interactivity
with the SDE in terms of switches of visual attention between the representations.

The results of this study regarding the difference between graphical and textual con-
ditions need to be considered with caution due to the low numbers of participants taken
into account for this comparison. However results suggest that the relative low level
of interactivity for the graphical condition of Group 4 could be explained by the low
frequency of single-stepping performed in this condition. Participants in this condition
also exhibited a high frequency of homing-in behaviours and produced a high number
of debugging hypotheses. This difference in behaviour might be related to the different
support given by the visualisations in each modality condition. Textual representations
seemed to be more difficult to decode and interpret than graphical ones. They required
participants to devote more time to understand the dynamic aspects of the program, as
they had to identify relevant elements of the visualisation and then combine these ele-
ments into meaningful structures. Graphical representations, on the other hand, seemed
to enable a faster, more direct understanding of these structures and allowed partici-
pants to move on to construct hypotheses about the program error and to verify these
hypotheses against the program code. A comparison between Figures 2 and 3 illustrates
this difference. Both figures encode the same information. However by grouping certain
elements in boxes, Figure 3 helps to identify meaningful structures in the visualisation
(in this case the objects of the program execution). Participants working in the textual
condition, on the other hand, had to perform this grouping and then keep a reference
to these meaningful structures in working memory. These processing overheads can be
crucial when dealing with dynamic representations, as participants also had to detect
patterns of change through time in the visualisations. This meant that participants in
the textual condition probably tried to keep a reference to the meaningful structures
of a series of visualisations. Cognitive overload might have caused these participants
to view the same execution episode several times. These results seem to confirm the
view that diagrams, unlike propositional representations, exploit perceptual processes
by grouping relevant information together and therefore make the search and recogni-
tion of information easier [15].

Other studies have also highlighted differences in representation switching patterns
between participants with different levels of skill. In [16] and [17], for example, it was
reported that poor performers switched more frequently than successful ones in ana-
lytical reasoning tasks. However, there are several differences between those studies
and the one reported here. Although analytical reasoning as a cognitive task might be
remarkably similar to program comprehension, the analytical reasoning studies encour-
aged participants to build their own representations. Therefore, switching representa-
tions represented ‘a strategic decision by the subject to abandon the current external
representation and construct a new one’ [17]. In the present study, representations were
complementary (and pre-constructed) rather than alternative, therefore, switching did
not necessarily represent discarding one representation for another, but more likely
complementing the information of one with another. The reason for switching in the
present study had more to do with cross checking between visualisations and possi-
bly with an inefficient use of the visualisations, rather than with giving up on specific
representations.

Romero, du Boulay, Cox, Lutz and Bryant

PPIG 2005 Sussex University www.ppig.org

The main behavioural difference between groups of low and high levels of debug-
ging accuracy lay in the strategy they deployed. Low debugging accuracy groups pri-
marily performed a mixture of program understanding and comprehension, a forward
reasoning debugging strategy discussed in Section 2. In the former case they were con-
cerned with trying to interpret the program code and rarely attempted to decode the
visualisations. This behaviour is understandable, as the code is the main representa-
tion of the program and serious problems in its understanding would very likely make
any error finding activities unsuccessful. Higher levels of debugging accuracy were
associated with a more frequent use of the available visualisations. The main way to
perform these activities was by trying to spot manifestations of the error in the avail-
able representations and then attempting to identify the place in the code responsible
for these manifestations. Sometimes gaps in their programming knowledge prevented
participants from identifying the faulty code segment, and this section has already dis-
cussed the way in which properties of the available visualisations could make the task
of spotting error manifestations in the available visualisations more or less difficult.

Analysing the results of this study together with those of a previous one that focused
only on representation usage ([9]), it can be said that in general, debugging success was
associated with following a debugging strategy which included viewing the execution
of the program in steps. Participants who exhibited this behaviour interacted frequently
with the program visualisations to complement the information in the program’s code.
On the other hand, poor debugging accuracy was associated with browsing the program
code without referring to any of the other representations, trying to debug the program
while building a representation of it. This behaviour was associated with a low fre-
quency of interaction with the program visualisations. Additionally, participants with
high levels of debugging accuracy displayed different behaviours when working with
textual and graphical representations. The graphical modality was associated with a
more efficient use of the visualisations. Therefore, participants working under this con-
dition needed to interact less frequently with the visualisations to obtain information
relevant for finding the error in the code.

These differences in debugging behaviour suggest different learning needs. Accord-
ing to the results of this study, students with a low level of programming skill might not
benefit from learning activities which involve the need for coordinating several repre-
sentations; it might be better for this group of programmers to work primarily with one
representation with the aim of familiarising them with its formalisms and improving
their decoding skills. Students with a higher level of skill, on the other hand, might ben-
efit from learning tasks involving other representations in addition to the program code,
especially if explicit instruction about the format of these additional representations and
the relationship between them is given.

The main results of this study suggest that, at least for the experimental conditions
considered, graphical representations enabled a more direct understanding of the rel-
evant structures in the problem space. However this does not mean that diagrams are
superior to textual representations for every situation, or that they will provide a good
level of support in all cases. One of the main issues to consider is scalability. Programs,
even for small projects, very often involve dozens of objects. Presenting all of them on

Romero, du Boulay, Cox, Lutz and Bryant

PPIG 2005 Sussex University www.ppig.org

the screen can create layout difficulties for the designer of such a tool and probably
cognitive overload problems for its users.

6 Conclusions

This paper has reported a study investigating the use of dynamic multiple external repre-
sentations for program debugging by programming students exhibiting various levels of
debugging accuracy. Representation usage was measured via a debugging environment
complemented with functionality to track participants’ visual attention and to record
interaction with the system as well as their verbalisations. An analysis that took into
account these three sources of information found that programmers with a low level of
debugging accuracy have difficulties in interpreting the information in the program code
and therefore resort to program debugging strategies that focus mainly on the program
code when performing debugging tasks. Programmers with a higher level of accuracy,
on the other hand, deploy a backward reasoning strategy which tries to identify manifes-
tations of the error in the visualisations provided and also attempts to locate the places in
the code responsible for these manifestations. Graphical visualisations seem to promote
a more efficient use of the available visualisations for this group of programmers.

These results suggest that programmers of different levels of skill have different
educational needs regarding representation coordination. Those of low skill levels may
benefit from learning activities aimed to master the syntax and semantics of one repre-
sentation at a time (particularly of the program code). Those of higher skill levels, on
the other hand, may benefit from activities requiring the coordination of the program
code and additional program visualisations, as well as from receiving explicit instruc-
tion about their format and interrelationships.

Acknowledgments

This work was supported by the EPSRC grant GR/N64199 and the Nuffield Founda-
tion grant URB/01703/G. The support for Richard Cox of the Leverhulme Foundation
(Leverhulme Trust Fellowship G/2/RFG/2001/0117) and the British Academy is grate-
fully acknowledged. The authors wish to thank Stephen Grant for his hard work both
in refining the coding categories of the detailed analysis of representation usage and in
the coding tasks of this analysis.

References

1. Romero, P., Cox, R., du Boulay, B., Lutz, R.: A survey of representations employed in
object-oriented programming environments. Journal of Visual Languages and Computing
14 (2003) 387–419

2. Jeffries, R.: A comparison of the debugging behaviour of expert and novice programmers.
In: Proceedings of AERA annual meeting. (1982)

3. Katz, I., Anderson, J.R.: Debugging: an analysis of bug location strategies. Human-
Computer Interaction3 (1988) 359–399

Romero, du Boulay, Cox, Lutz and Bryant

PPIG 2005 Sussex University www.ppig.org

4. Vessey, I.: Toward a theory of computer program bugs: an empirical test. International
Journal of Man-Machine Studies30 (1989) 23–46

5. Gilmore, D.J.: Models of debugging. Acta psychologica78 (1991) 151–172
6. Ainsworth, S., Wood, D., Bibby, P.: Co-ordinating multiple representations in computer

based learning environments. In Brna, P., Paiva, A., Self, J., eds.: Proceedings of the 1996
European Conference on Artificial Intelligence on Education, Lisbon, Portugal (1996) 336–
342

7. Stenning, K., Oberlander, J.: A cognitive theory of graphical and linguistic reasoning: logic
and implementation. Cognitive Science19 (1995) 97–140

8. Romero, P., Cox, R., du Boulay, B., Lutz, R.: Visual attention and representation switching
during java program debugging: A study using the restricted focus viewer. In Hegarty, M.,
Meyer, B., Narayanan, N.H., eds.: Diagrammatic Representation and Inference. Second In-
ternational Conference, Diagrams 2002. Lecture Notes in Artificial Intelligence 2317. (2002)
221–235

9. Romero, P., du Boulay, B., Lutz, R., Cox, R.: The effects of graphical and textual visu-
alisations in multi-representational debugging environments. In Hosking, J., Cox, P., eds.:
2003 IEEE Symposium on Human Centric Computing Languages and Environments. IEEE
Computer Society, Auckland, New Zealand (2003) 236–238

10. Romero, P., Lutz, R., Cox, R., du Boulay, B.: Co-ordination of multiple external representa-
tions during java program debugging. In Wiedenbeck, S., Petre, M., eds.: 2002 IEEE Sym-
posia on Human Centric Computing Languages and Environments. IEEE press, Airlington,
Virginia, USA (2002) 207–214

11. Romero, P., du Boulay, B., Cox, R., Lutz, R., Bryant, S.: Dynamic rich-data capture and
analysis of debugging processes. In Dunican, E., Green, T., eds.: Proceedings of the 16th
annual workshop of the Psychology of Programming Interest Group. (2004) 140–150

12. Jansen, A.R., Blackwell, A.F., Marriott, K.: A tool for tracking visual attention: The re-
stricted focus viewer. Behavior Research Methods, Instruments, & Computers35 (2003)
57–69

13. Bednarik, R., Tukiainen, M.: Visual attention and representation switching in Java program
debugging: a study using eye-movement tracking. In Dunican, E., Green, T., eds.: Proceed-
ings of the 16th annual workshop of the Psychology of Programming Interest Group. (2004)
159–169

14. Wood, S., Cox, R., Cheng, P.: Designing for attention: Eight issues to consider. Computers
in Human Behavior22 (2006)

15. Larkin, J.H., Simon, H.A.: Why a diagram is (sometimes) worth ten thousand words. Cog-
nitive Science11 (1987) 65–100

16. Cox, R.: Representation interpretation versus representation construction: a controlled study
using switchERII. In du Boulay, B., Mizoguchi, R., eds.: Artificial intelligence in education:
knowledge and media in learning systems (Proceedings of the 8th. World Conference of the
Artificial Intelligence in Education Society, Amsterdam, IOS (1997) 434–444

17. Cox, R., Brna, P.: Supporting the use of external representations in problem solving: The
need for flexible learning environments. Journal of Artificial Intelligence in Education6
(1995) 239–302

Romero, du Boulay, Cox, Lutz and Bryant

PPIG 2005 Sussex University www.ppig.org

