
Towards understanding Source and
Configuration Management tools as a method of
introducing learners to the culture of software

development.

Aidan Delaney

University of Brighton a.j.delaney@brighton.ac.uk

Abstract. Despite the lingering stereotype, computer science and pro-
gramming has long abandoned the development model consisting of a
lone programmer writing code into the early hours of the morning. There
may be aspects of this heroism in a product development cycle, partic-
ularly when close to a release date, however to bring a software product
to market requires collaboration within a team of programmers. Devel-
oping software products, as opposed to simply programming, is a social
process. We believe that learners gain a greater understanding of the
software development process through social interaction with other de-
velopers. Such beliefs are consistent with the General Genetic Law of
Cultural Development proposed by Lev S. Vygotsky. We consider Free
and Open Source software development to be a readily available reposi-
tory of differing development processes to use in introducing learners to
the social side of software development. The contribution of this paper
is to introduce and expand upon a vocabulary for discussing Source and
Configuration Management tools in a Vygotskyian context.

1 Introduction

Free and Open Source Software (FOSS) is a social movement [1]. It involves
thousands of developers collaborating over the Internet to produce software as
an end product. Some of the more well known products are Mozilla Firefox [2],
OpenOffice.org [3] and the Linux kernel [4]. Each of these products has a code-
base of several million lines. As such, FOSS developers face the same issues as
other developers who are working on large codebases. The similarity between
FOSS development processes and non-FOSS development processes has been
noted in [5, 6] with the similarities to eXtreme Programming [7] best practices
particularly highlighted [8]. The FOSS development projects, over 100, 000 on
sourceforge.net and over 3, 000 on savannah.gnu.org alone, represent a large fount
of cultural information regarding software development.

There is a body of literature describing best practices in programming [9–11,
7]. This literature was derived from practice and can be considered a codification
of aspects of the culture of software development. This culture has “been careful
to avoid proposing a theory of software development” (Ward Cunningham in the

In P. Romero, J. Good, E. Acosta Chaparro & S. Bryant (Eds). Proc. PPIG 18 Pages 114 - 121

18th Workshop of the Psychology of Programming Interest Group, University of Sussex, September 2006 www.ppig.org



introduction to [10]) and is therefore independent of the underlying waterfall,
incremental or agile software development model. Eric S. Raymond describes it
as “hacker culture” [9]. It is our long-term goal to impart these best practices
to students through the medium of FOSS culture.

Source and Configuration Management (SCM) tools are well understood in
FOSS development and constitute one of the more important best practices in
software development. In contrast SCM tools are poorly understood with respect
to educational theory. We show why it is reasonable to provide a characterisation
of SCM tools with respect to pedagogical theory. We characterise the source and
configuration management tools used in FOSS development and present them in
the context of Vygotskyian pedagogical theory. Finally, we use this relationship
between FOSS, software development best practices, and educational theory to
inform our teaching.

2 The Pedagogical Theory of Vygotsky

Vygotskyian theory neatly incorporates tools and culture into a pedagogy for de-
veloping scientific concepts. The theories of Vygotsky and the neo-Vygotskyian
developments are well explained in [12–14]. The core of Vygotsky is the Zone of
Proximal Development (ZPD) and the General Genetic Law of Cultural Devel-
opment (genetic law).

Allen [15] provides both a succinct definition of ZPD as “the distance between
understood knowledge as provided by instruction, and active knowledge as owned
by individuals” and an example of what can be achieved when tool construction
is founded on pedagogical dogma. The role of the ZPD in teaching has also been
developed into the concept of scaffolding [8].

We are most concerned with the genetic law which states that learners inter-
nalise scientific concepts through inter-personal relationships [13]. Put simply;
knowledge can be transmitted through engagement with culture. Such trans-
missions are mediated, meaning that learners “by the aid of extrinsic stimuli...
control their [own] behaviour from the outside” [16]. There are three types of
mediator

– signs and symbols,
– individual activities, and
– social relations.

FOSS development is a natural fit to the Vygotskyian model of a mediator as it
consists of signs such as SCM tools; social interaction on mailing lists and online
chat; and the individual activity of programming. The genetic law states that
aspects of cultural development appear initially in social or interpsychological
interactions and are internalised as intrapsychological interactions.

Mediators are either human, those developers we collaborate with which in
an educational context also includes the lecturer and lab assistants, or symbolic.

The sociocultural theory suggests that the style of human mediator can-
not be properly comprehended unless the role of available symbolic me-
diators is acknowledged. [14, pg. 28]

Delaney

PPIG 2006 University of Sussex 115 www.ppig.org



It is therefore appropriate to understand symbolic mediators such as SCM tools
before we consider the social relations involving human mediators.

3 Source and Configuration Management Tools

Source and Configuration Management tools are designed to allow software
source code to be easily shared and developed in a structured manner. Modern
SCM tools allow the same codebase to be developed by a small group of ge-
ographically concentrated developers as a large geographically dispersed team.
Furthermore they allow new developers easy access to to the source. Distributed
SCM tools such as Arch1, Cogito, Monotone and Darcs treat new developers as
equals to the existing project developers. This is opposed to centralised control
of a repository where only a vetted group of developers are granted parity in
the form of write access. Centralised SCM tools include the Concurrent Versions
System (cvs) and Subversion (svn).

For example two developers, Alice and Bob, are sharing a codebase. If they
work in a centralised fashion (see Fig. 1) they take a snapshot, or check-out,
code and metadata from a repository. If Alice changes the codebase to add a
feature or bugfix she then uploads her changes to the repository, a check-in. A
check-in involves comparing the code in the repository with her working copy
and determining the differences. The differences are computed using a delta-
function, the most simple being the standard UNIX diff command. Bob also
checks-out the code and modifies his working copy. During checkin Bob notices
that there is a conflict, between his changes and Alice’s changes. Bob will merge
the changes before continuing the checkin. The differing SCM tools vary greatly
in their strategy for merging.

If Alice and Bob were to use a decentralised method of managing the repos-
itory then Alice, rather than just checking out the current version of the code,
would mirror a copy of the code and all the change history associated with that
version. If Alice modifies the code, she checks her modification into her local mir-
ror of the repository. Similarly Bob, on modifying his code, checks his changes
into his local mirror. If both mirrors are publicly available, Alice can choose to
synchronise with Bobs changes. Alice could also choose to merge a subset of
Bob’s changes into her repository.

That there are two categories of tool is not a function of technology but devel-
opment culture as centralised SCM tools can simulate decentralised tools and
vice-versa [17]. The differences between the tools can be explained by the differ-
ences in development style preferred by their users. However, the tools are self
hosting meaning, for example, that bzr is the SCM tool for the bzr development
project; the users of the SCM tools (at least initially) are the developers of the
tools. Developers tweak their tools to operate in a manner which is intuitive
1 Arch is the original specification of an SCM tool from which many implementations

have been derived such as tla, baz, bzr and ArX.

Delaney

PPIG 2006 University of Sussex 116 www.ppig.org



Centralised Decentralised

Fig. 1. A graphical depiction of the typical cooperation of two developers using both a
centralised and a decentralised source and configuration management system. We use
the common mnemonics co and ci to denote check-out and check-in respectively.

to them. As such an SCM tool embodies or codifies the behavioural process of
development which is most intuitive to the community that produced it. Thus a
modification to the development process manifests itself in the resulting artifact.
The tool in turn feeds back into the development practice or communicates the
newer development process to other communities of developers.

4 SCM Tools as Psychological Tools

Signs are those psychological tools whose uses are “directed towards the mas-
tery or control of behavioural processes ... just as technical means are directed
towards the control of nature” [18] as cited in [13]. SCM tools are signs directed
toward the control of a developers concept of the software development process.
We illustrate this using three examples, the first considering a personal software
process style of development, the second considers how modern SCM tools en-
courage branching of the codebase and the third considering transmission of the
principle of orthogonality [10, 9].

We consider the case of two distributed SCM tools, both are implementations
of the GNU Arch specification. Though the tools share strong technical similar-
ities they differ in their culture of dealing with ChangeLog entries. Users of tla
are encouraged to “write the log message as you go along. In other words, take
notes as you hack.” [19]. The tool supports this using “wierd, often problematic
filenames featuring leading “++”” [20]. In contrast bzr, supports a convention
that is more recognisable to users of CVS and Subversion in which the user is en-
couraged to write the log file entry at the end of the iteration. One tool prefers a
personal software process style of development whereas the other promotes back-
wards compatibility and a low barrier to entry for new users. These tools are
cultural artifacts and psychological tools; they propagate a specific development

Delaney

PPIG 2006 University of Sussex 117 www.ppig.org



practices which inform development culture. The cultural practices encoded in
the tools are transmitted to new users.

Project organisation is often encoded into SCM tools. In the case of Arch
and svn, Arch imposes an explicit repository organisation whereas svn supports
a specific way of working where the repository organisation is adopted by con-
vention. The Arch developers view an SCM tool as a librarian for source code.
From this point of view there is merit in users learning a revision naming schema,
similar to the way users of a library learn to use the Dewey decimal system. Sub-
version imposes no such naming schema. It does, however, have a documented
suggested schema for the organisation of a repository. Such repository naming
schemas support ease of branching the codebase. Developers are encouraged to
conceive of project progression along multiple parallel tracks rather than as a
simple linear progression.

A trait of hacker culture is orthogonality, an insistence that a unit-testing
framework be separate from, but complementary to, a language or paradigm.
Thus a learner can study Java and JUnit in isolation. SCM encourages main-
tenance of orthogonality within the project development life-cycle. Iterations of
project development are associated with a specific theme such as optimising a
certain function or fixing a certain bug. Separation of these concerns can help to
lower the cognitive load on a learner as they are encouraged not to attempt opti-
mising a routine and fixing a bug within the same iteration. As such SCM tools
mediate transmission of the cultural value of orthogonality to new developers.

Unlike introducing the use of an IDE or a unit test framework into a curricu-
lum, SCM changes perspective from viewing software as a collection of source
files to viewing software as a snapshot of a development process. Viewing soft-
ware development over the longer term allows the staged introduction of other
practices such as unit testing. It allows learners to see the long-term conse-
quences of introducing a quick fix into code instead of undertaking refactoring.
Other best practices such as automated testing and continuous integration can
be easily introduced in a single quick iteration. Table 1 shows examples from
FOSS projects of best practices that were introduced within a single iteration.

5 Curriculum Development

We have modified our level two software engineering course using SCM to provide
structure for the introduction of orthogonal concepts. Such concepts include unit
testing, automated building and software patterns. This course is a double-length
module, spanning the entire academic year, in which students develop a codebase
in accordance with the theory delivered through lectures.

The course is divided into a number of short iterations (see Fig. 2). Each iter-
ation is assessed formatively during the weekly two hour lab slot. Three sessions
are chosen during the year. In these sessions students are invited to summatively
assess their own work. We moderate their assessment using short ten minute in-
terviews. Students are not informed in advance of which labs are summative and

Delaney

PPIG 2006 University of Sussex 118 www.ppig.org



Staged introduction of Example

unit testing The author of tinymail added support for unit testing using
the gunit framework in revision 143. The following revision
added more tests.

automated building The author of mono-tools added support in revision 18369
for the GNU autoconf build system, deprecating the more
ad-hoc Makefile based build system.

continuous integration An installation of buildbot at
http://build.fluendo.com:8080/ continuously builds the
latest gstreamer code pulled from their Subversion reposi-
tory.

refactoring The author of tinymail has dedicated several iterations such
as revision 25 to the sole purpose of refactoring.

Table 1. Examples of the implementation of software best practices are taken from
arbitrary FOSS projects.

which are formative. We do not believe that our approach violates the principle
of truth in sentencing [21] as students are aware, at all stages, of the work we
have expected them to have completed to date.

S
ou

rc
e

&
C

on
fi
gu

ra
ti
on

M
an

ag
em

en
t

U
n
it

T
es

ti
n
g

A
u
to

m
at

ed
B

u
il
d
in

g

D
ev

el
op

m
en

t

D
ev

el
op

m
en

t

D
ev

el
op

m
en

t
. . .

-
Iterations

Fig. 2. Development practices are front-loaded onto our second year software develop-
ment module. It is intended that students use these practices when they approach the
development iterations.

Of the four topics covered we address SCM initially. Unit testing and automated
building are covered before the development iterations commence, though we do
not believe that there is an inherent advantage in covering unit testing before
automated building or vice-versa. Each development iteration entails lectures
which address a single software pattern [22] or small group of related patterns.
Common patterns covered include

– Iterator,
– Factory Method,
– Adaptor,

Delaney

PPIG 2006 University of Sussex 119 www.ppig.org



– Composite,
– Decorator,
– Façade,
– Observer

We discuss patterns in lectures according to the needs of the project students
are undertaking. For example, were the project to develop a Java SWING GUI
we would cover the Iterator and Observer pattern during the first development
iteration.

We suggest that there exists a class of problems which particularly suit this
mode of teaching. Problems that involve a common communication protocol or
developing a common library help to encourage communication and collaboration
amongst students. For example, we have defined a simple chat protocol. All
students are required to, independently, implement a graphical client for the
chat protocol. Resolving ambiguities in interpretation of the chat specification
and incompatibilities amongst clients requires students to debate the issues.

6 Conclusion

We do not claim that source and configuration management is, in itself, a con-
ceptual threshold [23] or an example of computational thinking [24]. However, it
does display aspects of conceptual thresholds such as transformation and inte-
gration and of computational thinking such as conceptualisation and ideas, not
artifacts. By introducing SCM into a curriculum, software development is not
reduced to the action of programming but is seen as a complex social operation.
It allows learners to conceptualise the whole development life-cycle in small in-
crements regardless of whether the engineering team (is supposed to) use the
waterfall model, an incremental model or an agile model. SCM is an idea which
is implemented in various ways in artifacts which facilitate learners to easily
adopt best practices of software development. Understanding of the idea allows
learners to adapt to each artifact. Though SCM does not promote communica-
tion in “our daily lives” [24] it solves communication issues in the daily lives of
software developers.

We use SCM as a tool to introduce students to the social context of the soft-
ware development process. We believe that we now have a good comprehension
of SCM as a psychological tool and can develop our studies to investigate the
effectiveness of introducing SCM as the core practice on our level two software
engineering course.

References

1. Asiri, S.: Open source software. SIGCAS Comput. Soc. 33 (2003) 2
2. : The mozilla project homepage. (www.mozilla.org)
3. : The openoffice.org homepage. (www.openoffice.org)
4. : The linux kernel project homepage. (www.kernel.org)

Delaney

PPIG 2006 University of Sussex 120 www.ppig.org



5. Cusumano, M.A.: Reflections on free and open software. Communications of the
ACM 47 (2004)

6. Hubbard, J.: Open source to the core. Queue 2 (2004) 24–31
7. Beck, K.: Extreme programming explained : embrace change. Addison-Wesley

(2000)
8. Linder, S.P., Abbot, D., Fromberger, M.J.: An instructional scaffolding approach

to teaching software design. In: CCSC 2006: Consortium for Computing Sciences
in Colleges. (2006)

9. Raymond, E.S.: The Art of UNIX Programming. Addison-Wesley (2003)
10. Hunt, A., Thomas, D.: The Pragmatic Programmer from journeyman to master.

Addison-Wesley (2000)
11. Kernighan, B.W., Plauger, P.J.: The Elements of Programming Style. 2 edn.

Mcgraw-Hill (1978)
12. Daniels, H.: Vygotsky and Pedagogy. Routledge (2001)
13. Daniels, H., ed.: An Introduction to Vygotsky. Routledge (1996)
14. Kozulin, A., Gindis, B., Ageyev, V.S., Miller, S.M., eds.: Vygotsky’s Educational

Theory in Cultural Context. Cambridge University Press (2003)
15. Allen, K.: Online learning: constructivism and conversation as an approach to

learning. Innovations in Education and Teaching International 42 (2005)
16. Vygotsky, L.S.: Mind in Society: The development of Higher Psychological Pro-

cesses. Harvard University Press (1978)
17. Wheeler, D.: Comments on open source software / free software (oss/fs) software

configuration management (scm) systems. http://www.dwheeler.com/essays/

scm.html (2005)
18. Vygotsky, L.S.: The instrumental method in psychology. In Wertsch, J.V., ed.:

The Concept of Activity in Soviet Psychology. M E Sharpe Inc. (1981)
19. Lord, T. (www.gnu.org/software/gnu-arch/tutorial/Checking_

002din-Changes.html)
20. Moen, R. (http://linuxmafia.com/faq/Apps/scm.html)
21. Lister, R.: Objectives and objective assessment in cs1. In: SIGCSE ’01: Proceedings

of the thirty-second SIGCSE technical symposium on Computer Science Education,
New York, NY, USA, ACM Press (2001) 292–296

22. Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design Patterns: Elements of
Reusable Object-Oriented Software. Addison-Wesley (1995)

23. McCartney, R., Sanders, K.: What are the threshold concepts in computer sci-
ence? In: Proceedings of the Koli Calling 2005 Conference on Computer Science
Education. (2005)

24. Wing, J.M.: Viewpoint: Computational thinking. Communications of the ACM
49 (2006)

Delaney

PPIG 2006 University of Sussex 121 www.ppig.org


