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Abstract. The ideas presented in this paper concern computer science
education research within Jean Piaget’s theory genetic epistemology. Re-
sults from Piaget and collaborators investigations about the recursive
reasoning on the series of natural numbers are extended to learn about
entering students recursive reasoning on other inductively defined struc-
tures. In this paper the main aspects of that extension are described
using a selected example.

1 Introduction

Regarding the learning of the concept of recursion there exists a broad consensus
in computer science education community about three points:

1. the concept is considered powerful and essential in computer science studies;
2. the students experience the learning of this concept as difficult;
3. the main source of difficulty lies in the lack of day-to-day situations which

can help in understanding recursion.

Consequently, several proposals to help students understand recursion have been
presented and put into practice according to various teachers’ ideas arising from
their own experience in class, in most of the cases involving the use of some pro-
gramming language or computer tool. Students’ performance is mainly evaluated
by their responses to questions and tests.

Alternatively, we have observed that in many situations in day-to-day life,
people successfully use methods to solve problems or perform tasks such as
games, ordering of objects, different kinds of searches, etc. In them an action or
a sequence of actions is repeated over a sequence of ”smaller situations” until
a special situation is reached, which can be easily solved by a straight-forward
action. People’s descriptions include phrases like ”I do the same” and ”now I
know how to do”, referring to the cases where they use the same method and
they arrive at the easy-to-solve special situation respectively. The point relating
these descriptions to recursive formulations of the method is that when asked
to which entity ”the same is done” (meaning the same sequence of actions is
applied), people refer to the remaining part of an object which is another object
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of the same type. This correspondence between the method and the structure
of elements over which it is applied characterizes recursive formulations with re-
spect to formulations in which other variables are involved, for instance, iterative
ones.

These observations lead to formulate questions such as ”does there exist any
connection between the ’know how to’ revealed by people solving problems with
methods which can be represented recursively and the formal concept of recursive
algorithms? If it does, what is the nature of this connection and what is the role
of the instrumental knowledge in the learning process? How is this instrumental
knowledge generated and how can it be transformed into conceptual knowledge?
How can the algorithms that the students learn to use be taken into account
as subjects of study? Will the answer to these questions help in improving the
teaching-learning of recursion and how should this be done?” The motivation of
the research described in [7] – from which the example presented in this paper
is extracted – arises from the above observations and questions. The main goal
of the research is to develop an instructional proposal of recursive algorithms in
which the construction of the concept of recursion by the students is integrated
with the introduction of its formalization. The construction of the concept by
the students is investigated within the theory of Jean Piaget which explains both
the construction of knowledge and the evolution of cognitive instruments [2, 4],
accounting for the psychogenetic approach of the research.

1.1 The starting premise

Answering the above questions requires doing research in computer science ed-
ucation within the framework of educational related disciplines. The lack of this
type of research is pointed out as one of the problems of computer science ed-
ucation in [8]. The authors relate computer science education to education in
long-established scientific disciplines and observe that in contrast to these, there
is a lack of research on educational issues, such as pedagogy, psychology, episte-
mology. They review existing computer science education literature and catego-
rize some areas such as descriptions of courses, development of tools, computer
aided learning, expert/novices differences and empirical studies. They add that
the strong connection with educational-related disciplines constitutes the the-
oretical argumentation of the research as a mean of providing evidence of its
effectiveness. The authors find that works making references to epistemological
theories unfortunately just mention them in the introduction and rarely discuss
results within them, which prevent them from becoming academic contributions
to the field.

Taking into account these observations, our investigations about the learn-
ing of the concept of recursion [7] are incorporated into a theoretical framework
based on Jean Piaget’s theory genetic epistemology, especially Piaget and col-
laborators works regarding the formation of recurrence reasoning [3]. In that
work, the psychogenesis of reasoning over the series of natural numbers is deeply
investigated and results are presented. Piaget and collaborators have confirmed



the existence of a general mental structure whose elements are terms, transfor-
mations and a form of reasoning on both (terms and transformations), which
is the source of reasoning by recurrence. This form of reasoning evolves from
generalizations of iterative inferences to higher levels of reasoning by recurrence.
That means that it is the same structure1 that becomes more flexible and effi-
cient and is enriched in its evolution from childhood to adult age. For instance,
the group of numbers does not arise from imposing on the numbers of child-
hood thought a group structure corresponding to adolescence thought. That
is, they are not the numbers that hold one structure or another, but a mental
structure corresponding to the numbers of childhood thought that is transformed
(terms, operations and reasoning) into a higher one (group structure of numbers)
corresponding to adolescence thought. Piaget distinguishes in the evolution of
reasoning by recurrence on the series of natural numbers, several stages from
childhood to adolescence in which the numbers become ”any thing, subspecie
iterationis”, that is to say, the numbers are abstracted to elements generated
by iteration. The evolution of the implication from an isolated relation between
terms to the same relation inserted in a whole structure, plays a relevant role in
this construction. Piaget points out that this constitutes the dawn of reasoning
by recurrence.

Referring to an experiment by which the subjects have to construct two
collections of pearls and answer some questions (have the collections the same
number of pearls? etc), the authors point out that once the subject establishes
a coordination between the succession of his/her actions and their result, a local
synthesis specific to these actions is stated between the order of the succession
of actions S1S

′
1, S2S

′
2, etc and the growth of the collections C1, C

′
1, C2, C

′
2, etc.,

extending the construction of the number with an aspect of inferring by recur-
rence, where the most important generalization is not the passage from 1 to n,
but from n to n + 1.
This shows that reasoning by recurrence is from its beginning indissolubly con-
nected to the construction of the series of natural numbers and constitutes its
aspect of inference, long before the elaboration of higher forms of reasoning by
recurrence. The formalization of that construction is given by Peano’s axioms.
In our work the above result is extended to reasoning on other structures – iso-
morphic to the structure of natural numbers – whose formalization is given by
the inductive definitions in [1].

The starting point of the research is therefore the following premise:

the source of thinking which permits the design of recursive solutions for
problems lies in elemental forms of reasoning arising from students’ com-
prehension of the relations between the elements to which their actions
are applied when attempting to solve instances of problems.

1 The term structure is used in two senses: psychogenetically it means mental struc-
tures, that is to say, the structures of thought that allow the subject to understand
a concept, and mathematically it means structure of elements and their operations,
as usual.



The methodology of research includes conducting students interviews to learn
about the evolution of students’ thinking. The students are encouraged to for-
malize their solutions in mathematics.

The paper is organized as follows: Section 2 addresses the following topics:
the problem posed in the selected example, the basic questions used in the in-
terviews, the guidelines of the analysis of students responses, some excerpts of
the interviews and a summary of the activity of formalizing students solutions.
In Section 3 some related works are described. Sections 4 and 5 present some
conclusions and further work respectively.

2 The example

One of the problems posed to the students in the interviews is an instance
of the problem of calculating over an inductively constructed structure using
a recursively defined algorithm, according to the way by which the elements
are generated in the sense of [1]. Most of the problems in which operations
over inductively defined data types have to be determined admit relatively easy
recursive solutions in this way.

An inductive definition of a set of words is presented to the students and
they are encouraged to find a way of calculating a value, as described below.
The definition is presented to the students as follows:
Suppose that the inhabitants of an unknown planet have a language such that
words are formed just using ”a” and ”b”, according to the following rules:

1. ab is a word.
2. If * is a word then a*a is a word.
3. If * is a word then b*b is a word.
4. Only the words obtained by application of the above rules a determined

number of times are words of the language.

The rules indicate that each word is either defined in terms of the previous
one, or it is an initial given word. In this sense, it is an inductive definition
analogous in its construction to the series of natural numbers. In the interviews,
the students are required to develop a method to count the number of a’s in any
word. It is expected that the students solve the problem developing a recursive
algorithm accordingly to the way the words are generated by the rules and that
they correctly describe it in Spanish. It is also expected that the application of
the algorithm to a particular case helps in the design of the final solution. 13
students aged between 16 and 18 and selected from different groups both from
the last year of high school and the first year of the University have participated
in the whole activity.

2.1 The questions

According to the premise stated in subsection 1.1, the forms of reasoning allow-
ing to derive recursive computations arise from the construction of the concept



of the structure of the language by similar mechanisms that for the case of natu-
ral numbers. In such construction the evolution of the relationships between the
initial word ”ab” and any word, and between any word and the next one plays
a fundamental role. Those relationships are denoted ab → wn and wn−1 → wn

respectively. The possibility of defining recursive algorithms on the elements gen-
erated by the rules, arises from the construction of the inverses of those relations,
that is to say, wn → wn−1 (any word to the previous one) and wn → ab (any
word to the initial one) from which the inductive and the base cases of the def-
inition can be respectively derived. The questions attempt to help the students
in understanding those relations and consequently designing a solution to the
problem. The lists of questions described below were previously designed and
during the interviews other questions were added, according to the responses
of the students. Comments not included in the questions are indicated between
parentheses.

Q1: Write some words of the language.
Q2: Can you determine of these sequences which are words of the language

and which are not? (Several sequences are presented)
Q3: Why is this one a word and this one is not?
Q4: How did you form this word?
Q5: Let’s see this word of the language, which rule did you use to form it?
Q6: And this other one?

Induced by questions Q1 to Q6, students focus on the generation of any word
from the initial element ”ab”, that is, on the relationship ab→ wn, where ”ab”
plays the role of the natural number 1 in the construction of the series of natural
numbers. In the following list of questions, the expression ”the little symbol”
refers to the symbol * of the rules, that represents the previous word of a word.

Q7: In this word, which would the little symbol be? And in this one?
Q8: Could the little symbol be like this?

(Writing a sequence that does not belong to the language).
Q9: Why not or why yes?
Q10: Then, what does the little symbol have to be?
Q11: A student said that rules 2 and 3 say that a word is formed from a

word formed before. Do you agree?
Q12: Then in order to know if a sequence of a’s and b’s is a word, what can

we watch?

The goal of the questions Q7 to Q12 is to cause students’ thinking advance
towards the relationship between any word to the next one, that is to say,
wn−1 → wn. This generates the most important generalization giving rise to
the understanding of the implication of the inductive definition.

Questions Q13 to Q18 are aimed at generating the relationships wn → wn−1

(any word to the previous one) and wn → ab (any word to the initial one).
Observe for instance that questions Q17 and Q18 are aimed at making students’
thought to interact between his/her definition of the method and its application



to a particular case. The coordination of both defining and applying the method
leads to an equilibrium in which the need of the base case to complete the
definition is understood, as the excerpts from the interviews included below
show.
Q13: How many a’s does this word have?
Q14: And the little symbol? And here? (The complete word).
Q15: In any word, if we know how many a’s the little symbol has,

can we determine how many a’s the word has?
Q16: How? Write it down please.
Q17: Determine the a’s of ababaaaabbbabbbbaaaabababa by using

only what you have written.
Q18: What is missing in what you wrote so as to be able to use it until the

end?

2.2 Analyzing students responses

The students are required to write down all their work, while responding to the
questions from the interview. The goal of analyzing students’ responses is to
observe how the students solve the problem of counting the number of a’s of any
word. The observation is guided by the identification of levels in the evolution of
students’ thinking while constructing the concept of the relationships described
above. The levels are denoted as follows: ab → wn (level 1), wn−1 → wn (level
2), wn → ab (level 3a) and wn → wn−1 (level 3b).

Faced to the question ”with which rule did you form this word?”, eight stu-
dents answer ”with the first, the third, the second ...” thinking of the relation
between ”ab” and the current word, that is ab → wn, (level 1). The relevant
question to identify the hard evolution to the next level is ”which is the little
symbol in this word?” Ten students answer that it is ”ab”, revealing confusion
in differentiating between the initial element and the previous element of any
word. In the development of the interview, all students succeed in differentiating
those elements and in recognizing the little symbol as a representation of the
previous word in the cases of words generated by rules 2 and 3. This means that
the relationship wn−1 → wn of level 2 has been constructed.

On the other hand, faced to the question of how the number of a’s of any
word can be determined, all the students succeed in formulating a solution to
the problem in Spanish, following the way the words are generated by the rules
2 and 3. This means that the inverse of wn−1 → wn has been constructed – that
is wn → wn−1 – and that students’ thinking has evolved to level 3b.

Finally, when required to apply their algorithm to a particular case, the
students discover the essence of recursion and experience the need of defining
the clause for the base case constructing the relationship wn → ab (level 3a).

Excerpts of the interviews are included below to show the development of
students’ responses in detail. The analysis of students’ responses interspersed
with the series of questions (indicated in italics) illustrates the identification of
the levels.



2.3 Excerpts from students interviews

In the following, excerpts from two of the interviews are included (Andrés and
Gimena). The unnumbered questions were spontaneously posed during the in-
terviews. Here R indicates a student’s response and comments not included in
the questions are indicated between parentheses.

Answering questions Q1 to Q4 generates a list of sequences of a’s and b’s,
some written by the student, some presented by the interviewer; some are words
of the language, (for instance ”aabaababaa”), others are not, (for instance ”baababb-
bab”). The excerpts below refer to sequences in that list.
Andrés
Q5: Let’s see this word of the language, which rule did you use to form it?
R: With the 1st and with the 3rd rule.
Q: This one ?
R: With the 1st, the 3rd and the 2nd.
level 1
Q7: In this one, which would the little symbol be? (The same for several words
follows).
The student marks using a circle the part of the sequence corresponding to the
previous word. He does it quickly and correctly for all the words.
Q8: Could the little symbol be like this?
The interviewer points to a sequence that is not a word.
R: No.
Q: Why not?
R: Because it does not follow the rules (immediate).
Q11: A student said that rules 2 and 3 say that a word is formed from a word
formed before. Do you agree?
R: Yes.
Q: And that previous word, what would it be, then?
R: ”ab”, the rule number 1.
level 1
Q: Are you sure ...?
R: Oh no, it could be the mixture of the 3 rules.
Intermediate from level 1 to level 2.
Observe that despite marking correctly the previous word before, the student
confuses ”previous” and ”initial word”.
Q: What was this? (The interviewer points to a sequence that the student has
already marked using a circle).
R: ...
Q: I made you a question and you marked this sequence (for example ”ababba”)
with a circle, what was the question? Do you remember?
R: What was the * there? (He means in the whole sequence, for example ”babab-
bab”).
Q: So this is ... (pointing to ”ababba”)
R: The * (of ”bababbab”).
Q: So, according to what we said of what the student said, which is the previous



word so as to form this one? (pointing to ”bababbab”)
R: The little symbol.
Q: Then in each word, what is *?
R: The previous word.
level 2.
Next series of questions reveals how slow and difficult is the passage from level
1 to level 2, Andrés goes back to level 1.
Q12: Then in order to know if a sequence of a’s and b’s is a word, what can we
watch?
R: If it obeys the 1st rule and then the others.
Q: With respect to the *?
R: It has to follow the rules.
He does not relate * to the current word (saying something like ”it has to be
formed from applying a rule to *”), level 2 is weakly constructed.
Q: What is * in this word?
R: ”ab”.
Back to level 1.
Next he is again induced to think about the relationship between two consecutive
words.
Q: No, what was the *? Remember.
R: The base word.
He means ”ab”, level 1.
Q: No, it was this here, (pointing to correct previous answers about *) here, this,
here, this, what was *?
R: ... the previous word to the last application (of the rules).
level 2.
Q: What is it that you do?
R: I’m coming backwards.
Q: Watching what?
R: The little symbol in the words.
Level 2 seems to be consolidated, which causes that in the next part about the
method of counting the number of a’s, Andrés easily discovers the algorithm.
Q13: How many a’s does this word have?
R: (He answers several particular cases well).
Q15: In any word, if we know how many a’s the little symbol has
can we determine how many a’s the word has?
R: No, because depending on the little symbol I applied rule 2 or rule 3.
Q: And can you determine the numbers of a’s in every case?
R: ... yes.
Q: How? Write it down.
He perfectly writes the cases of the algorithm for rules 2 and 3, attaining level
3b.
Q17: Determine the a’s of ababaaaabbbabbbbaaaabababa by using only what
you have written.
R: I mark the little symbol and has one, two ...



(Observe that the student attempts to count one by one the a’s in the sequence).
Q: Without counting, always applying what you wrote.
In the following lies the essence of recursion.
R: ... Oh! Sure, the ones of the little symbol + 2 ... I mark the little symbol
again and it will have the same number because it is rule 3, I mark the little
symbol again and now the rule I applied that was rule 2. So, it will be 2 +, is
this way OK?
Q: Yes, yes.
R: And now I mark again and the rule applied was number 3 so that it remains
like this, as it is, and then I applied rule 2 so it will be 2 + and here I applied
rule 2, so 2 +, then rule 3 so, nothing and there is the first.
Q: And how many a’s does it have?
R: 1, always + 1 (he sums up).
Q18: What is missing in what you wrote so as to be able to use it until the end?
R: ... rule 1.
He completes his algorithm with the base case, attaining level 3a.
Gimena
(The interviewer points to a word constructed by the student, say ”bababbab”).
Q: If this word is formed making use of the rules, and in the rules the little sym-
bol * appears, this means that in your word the * is something. Do you agree?
R: Yes.
Q: Well, which is * in this word?
R: ”ab”.
level 1.
Q: Are you sure?
R: I could not tell, I don’t know.
Q: I want you to make sure. How could you be sure?
R: Good question ...
Q: This word, with which rule did you form it? (always referring to ”bababbab”).
R: With the 3rd and also with the 1st , knowing that ”ab” is a word.
level 1.
Q: What was the last rule you applied?
R: The 3rd.
Q: If the 3rd rule was the last one you applied and you tell me that ”ab” is the
little symbol, put ”ab” and apply the 3rd rule. (She does it, obtaining the word
”babb”).
Q: Is it the same?
R: No, it is not the same.
Q: So, applying the 3rd rule when ”ab” is the little symbol, we obtain this word.
Then, which is the little symbol here? (pointing to ”bababbab”).
R: The little symbol would be all this. (She does it correctly, marking ”ababba”
with a circle).
level 2.
Q: In this one? (pointing to another word).
R: (She does it right for several words).



Level 2 seems to be consolidated, which causes that in the next part about the
method of counting the number of a’s, Gimena easily discovers the algorithm.
Q13: How many a’s does this word have?
R: (She answers several particular cases well).
Q15: Knowing the number of a’s of the little symbol, can you determine the
number of a’s of any word?
R: No, I cannot determine the number of a’s because I do not know if that word
finishes with ”a”.
Q: Which is the relation between the number of a’s of the whole word and *?
R: Oh! It can be +2 or -2.
Q: (We review particular cases, to induce the student to become aware that the
number of a’s is actually the same or increased by 2).
R: Oh! + 2 or the total number of a’s. It could be that the number of a’s of the
word is the same number of a’s as there are in *.
Q: What does it depend on, that is one thing or another?
R: It depends on the rules.
Q: Write it down for any word in which the * has any number of a’s.
She perfectly writes the cases of the algorithm for rules 2 and 3, attaining level
3b.
Q17: I give you the word ababaaaabbbabbbbaaaabababa and ask you that using
what you wrote, work out the number of a’s.
R: We count the ones from the little symbol.
Q: Very good, come on.
R: One, two, ...
Q: NO, NO, using what you wrote.
R: I can’t.
Q: Why not? Count the a’s from the little symbol using what you wrote.
In the following lies the essence of recursion.
R: Oh! (Thinking) Yes, again, we do it with *, yes, yes, yes, I understand now,
in this case, if I cross this out, I get it this word, then it will be + 2.
Q: Write it. (She put 2 +, following the previous one).
R: Then I do it again and I get 2 + , I do it again and I get 2 + and now I start
to do the same again and I get to the first.
Q: And then?
R: I cannot decompose ”ab” any more.
Now, she discovers that her algorithm is incomplete.
Q: But how many a’s does it have?
R: One.
Q: So, what do we do now?
R: + 1.
Q18: What is missing in what you wrote so as to be able to use it until the end?
She completes her algorithm with the base case, attaining level 3a.

When the students are required to write down their descriptions of the method
for counting the a’s of any word, special care to the way they refer to the method
is taken. For instance, they are required to begin with ”the number of a’s of any



word is” and to reflect about what has to be written after ”is”, because the
students tend to write ”2 + *” instead of ”2 + the number of a’s in *”, although
they correctly say that. All the students succeeded in deriving a complete recur-
sive formulation of their solution to the problem in natural language. These can
be synthesized as follows:

nr-of-a’s-of any word: if the rule is 2, it is 2 + nr-of-a’s-of *
if the rule is 3, it is nr-of-a’s-of *
if the rule is 1, it is 1

2.4 Formalizing students solutions

After the interviews instructional instances in the form of collective classes take
place. The goal of these instances is to encourage the students to discuss their
solutions, and to find and correct errors and to formulate mathematical defini-
tions of their informal descriptions. Every student gets his/her worksheet and
they have to try to represent their solutions mathematically. New questions are
posed to help the students in constructing a correspondence between their de-
scriptions and the mathematical language. For instance, to focus on the form
of the word according to the number of the rule, questions like ”how can you
represent the expression ’if the rule is ...’ using the word in the left hand side of
your description?” are posed. In this way students’ thinking is directed from the
definition of the algorithm to the inductive definition, reinforcing the idea stated
in the premise of subsection 1.1, regarding the fact that both the concept of the
inductive definition and the concept of the definition of the recursive algorithm
evolve as aspects of the same mental structure.

The need of describing the domain and codomain of the function as part of
its definition is naturally assumed by the students, and the language defined
by the inductive definition is called ”Set-of-words”. The mathematical function
definition described by the students is as follows:

nr-of-as : Set-of-words -> N
nr-of-as (word) = if word = ab then 1

else if word = a * a then 2 + nr-of-as (*)
else if word = b * b then nr-of-as (*)

This dialectic process allows the students to experience the correspondence be-
tween their construction of the algorithm and its formalization in mathematics.

The students that have participated in this activity were selected from groups
of several orientations (engineering, natural sciences and social and human sci-
ences). Therefore, no implementation in any programming language of the math-
ematical definitions is introduced in this activity.

3 Related Work

Several approaches to the learning of recursion have been found in the litera-
ture and are described in [7]. The most relevant aspects of that description are
presented in this section.



Some authors refer to the term ”mental model” used by cognitive psycholo-
gists to define cognitive representations of knowledge about particular situations
or phenomena. In general it can be said that cognitive psychology uses compu-
tational model to account for human cognitive behavior and most of the related
research is made in the field of artificial intelligence. In the case of the learning
of recursion, several authors refer to mental models to describe the knowledge
that students acquire when introduced to the concept, in most of the cases using
some programming language or environment. In most of the articles the authors
attempt to identify students’ difficulties in learning recursion from their solutions
or responses to posed problems and give explanations about the underlying mis-
conceptions in terms of mental models [23, 21, 19, 26, 22]. No reference has been
found to how the understanding represented by mental models is constructed.

Some authors investigate the learning of recursion with respect to the learn-
ing of mathematical induction [15, 14, 25], and other ones with respect to itera-
tive procedures [17, 24, 22, 23]. Other approaches are: emphasizing a declarative
approach [12, 11, 9, 29, 20], focusing on the impact that visual or graphical rep-
resentations are supposed to have on the learning of recursion [27, 13, 30] and
following a phenomenographic tradition of research [28].

Other works consider pedagogical approaches in which the students are an
active part of the learning process and their discourse about phenomena is a
source of relevant information for the teacher [10, 16, 18]. The general perspective
of the research is often called constructivism and constructivist researchers often
point out that constructivism arises from Piaget’s ideas. However, (almost) none
reference to Piaget’s work appears in the bibliography.

One of the aspects that differentiates our work from the related works is the
level of importance assigned to a theoretical framework, in this case, Piaget’s
genetic epistemology which explains the way by which an individual comes to
know by constructing mental structures while he or she interacts with the world.
The theory also accounts for how this construction is made and the mechanisms,
instruments and processes involved in it are defined and precisely described in
Piaget’s and collaborators numerous works, both empirical and theoretical. On
the other hand, in our work students’ knowledge about recursion is investigated
without any formal introduction to the concept. In contrast, most of the related
works take as starting point what the students are supposed to have learning
in instruction, often using programming environments. Finally, our approach
relates the introduction of the concept of recursion with the concept of inductive
structures, supported both by the mathematical and the epistemological theory
[1, 3].

4 Conclusions

The example presented in this paper illustrates the application of a methodology
of research developed from principles of Jean Piaget’s theory genetic epistemol-
ogy. In this example, the design of recursive algorithms taking into account the
interaction between the students and the structure of the elements over which



the algorithm is to be applied is investigated. From the analysis of the responses
of the students evidence about the relevance of the construction of the concept
of the structure as the source of forms of thought that facilitate reasoning on
recursive methods arises. This claim is supported by two main results: on the one
hand, regarding the evolution of the concept of the structure of the language,
the most important passage is from the relationship between the initial word
”ab” and any word (ab → wn) to the relationship between any word and the
next one (wn−1 → wn). On the other hand, the students quite easily succeeded
in constructing the inverse relationships wn → wn−1 (any word to the previous
one) and wn → ab (any word to the initial one). Consequently they correctly
formulated the clauses for the inductive cases and the base case of the algorithm
respectively.

Failures and advances are detected in the construction of the involved rela-
tions related to the transformation of instrumental into conceptual knowledge
[2, 5]. This transformation takes place in a slow and hard process, which is (al-
most) never considered in traditional teaching of recursive algorithms as school
subject. This explains, in our opinion, the observation that despite the many
courses where students have been introduced to the concept, even advanced
students have difficulties dealing with recursion. Recursive algorithms are the
basis of many procedures that the students are taught to use – for instance,
arithmetic operations, Euclid’s algorithm to find the greatest common divisor
of two integers, Ruffini’s algorithm to perform the division of two polynomials,
etc – evidencing that courses in mathematics offered in high school or in the
first University years provide a suitable context where the careful construction
of definitions of recursive algorithms could be introduced [6].

Carefully introducing the construction of recursive definitions means that
any pedagogical approach should begin by considering what the students think
and how they reason when solving instances of problems, and how they them-
selves can achieve the formalization of their solutions. Research regarding these
issues within the framework of educational related disciplines is of the highest
importance, as the example presented in this paper shows.

5 Further work

The aspect of proving properties by induction is strongly related both to the
definition of inductive structures and to the definition of recursive algorithms.
In [3] the authors consider the development of reasoning by recurrence both for
the case of calculating some value and proving some property on the series of
natural numbers. Further work consists in stating problems such as ”how can
a property like ’for any word of Set-of-words, the number of a’s is odd’” be
proved, and observe the methods that students develop to find an answer. It
is expected that the students informally describe proofs by induction and that
they are capable of attaining its formalization.

The stage of implementing the mathematical definitions in a programming
language is not included in the activity described in this paper, partially due



to the heterogeneity of students’ interests. It is our concern to investigate how
computer science students work to obtain Haskell2 programs from mathemati-
cal definitions of recursive algorithms, in the manner of [6]. In that article the
solutions of some problems selected from a discrete mathematic course for high
school mathematics teachers are implemented in Haskell.

Finally, it would be interesting to consider aspects from approaches based on
other learning theories, particularly arising from social constructivism as those
presented in [16, 10, 18].
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