
 

 

A Longitudinal study of Depth of Inheritance and its effects on programmer 

maintenance effort 
 

 
 

Adrian Creegan 

Department of Computer Science and 

Information Systems, 

University of Limerick, 

Castletroy, Limerick,  

Ireland 

adrian.creegan@ul.ie 

Chris Exton 

Department of Computer Science and 

Information Systems, 

University of Limerick, 

Castletroy, Limerick,  

Ireland. 

chris.exton@ul.ie 

Abstract 

Inheritance is a defining feature of the object oriented paradigm.  Amongst other things, it enables the 

programmer to establish conceptual relations between domain objects, and promotes the partitioning 

of systems to increase reuse and dynamic extension.  That notwithstanding, it has received some 

criticism especially in relation to the burden of comprehension it imposes on maintainers.  As a 

result, measurements of this code feature have been incorporated into several established metrics as 

contributing to the level of predicted effort.  

The question of its negative impact on maintenance effort is not a new one, indeed it has been 

revisited several times over the past 15 years.  However, there is little hard empirical evidence 

quantifying its effects.  Much of the previous research arrives at inconclusive and in some cases 

contradictory findings.   While some of these previous studies have a strong empirical foundation, the 

maintenance tasks investigated have by and large been confined to small and somewhat idealised 

source code bases.  Furthermore, many of these studies were performed in laboratory settings 

employing students as experimental subjects.  They may not therefore be representative of typical 

maintenance scenarios.   

This paper attempts to re-examine this subject.  It is hoped, that the methodology employed will 

enable its findings to be more extensible to production situations.  To this end, a large open source 

project was chosen as a subject for study.   Data was extracted from this project using repository 

mining techniques by means of several custom tools which are discussed.  These tools established the 

inheritance hierarchies of the source code and captured their evolution over a time frame of six years.  

The resulting data was then statistically analysed.  Special attention was paid to establishing the 

presence of large scale restructuring operations.  Such operations have been predicted as a strategy to 

cope with accumulating conceptual discrepancies in maintained software. 

The study found that while such a signature was present, it was most likely due to seasonal effects.  

The depth of inheritance of associated code could not be correlated with this signature to any 

significant degree.  A functional relationship between the number of file revisions and their 

distribution within the repository was also observed.  This along with the previous results is 

presented and discussed. 

 
Keywords:  POP-II.B. maintenance; POP-II.B. programming comprehension; POP-III.C. procedural / object-

oriented; POP-V.B. longitudinal studies. 

1. Introduction 

THE importance of the maintenance phase in the software development life cycle model is well 

recognised.  Related activities have been estimated to account for as much as 90 percent of the total 



 

lifecycle cost (Erlikh 2000).  As Lehman (1980) observed when formulating his laws of software 

evolution, maintenance is both necessary and unavoidable in order for systems to remain useful. 

Understanding factors that impact this phase of the software life-cycle is of critical importance. 

Fundamental to the Object Oriented development paradigm is the notion of object inheritance and 

hierarchical decomposition and partitioning of features.  According to Meyer (1988), inheritance 

provides the support necessary to exploit the conceptual relations between classes of domain objects 

(c.f. page 217).  It affords the reuse, encapsulation, and dynamic binding of source code.  However, 

this construct is not without its drawbacks and concern has been voiced on occasion over the burden 

it imposes upon comprehension tasks.  Particular attention has been paid to the coupling it introduces 

between bodies of source code that are conceptually related but may be physically dispersed 

throughout the code base.  In some circumstances, a full understanding of such code may only be 

arrived at by means of navigating the whole inheritance hierarchy.  When this is not done, as 

previously research would suggest is often the case, the maintainer may be oblivious to behaviour 

defined elsewhere in the class hierarchy, and its consequences to the code under their immediate 

consideration. 

Soloway et al. (1988) considered similar problems in procedural code bases and identified that they 

can be source of error in maintenance operations.  He referred to them as Delocalized Plans and 

argued that in the presence of delocalization, maintainers may be tempted to draw incorrect 

inferences on merely what is locally apparent.  These conclusions may differ significantly from those 

drawn if the maintainer elected to navigate the various conceptual dependencies.  As Von 

Mayrhauser (1995) observed, navigation of such plans is clearly not consistent with the purely 

opportunistic behaviour observed in the majority of programmers.  While Soloway‟s research was 

based on procedural code, the implications for the object oriented domain have been examined by 

Wilde and Huite (1992), and studied in terms of inspection impact by Dunsmore et al. (2000). 

Dvorak (1994) proposed that class hierarchy depth factors in the comprehension of object oriented 

code.  He suggested that deep inheritance features impact negatively upon the efficiency of the 

software maintenance phase.  Furthermore, he predicted that this effect might be observable in the 

change history of the application‟s code base.  In his opinion, sections of the source code would 

evolve in a manner whereby its conceptual consistency would erode over time.  These discrepancies 

will accumulate until a certain critical mass is achieved.  At this juncture, maintenance staff will be 

compelled to undertake large scale restructuring in order to restore the conceptual integrity of the 

application‟s design.   According to Dvorak, these operations would manifest themselves as a 

cyclical component signature to the source code modification history.  Moreover, he suggested that 

this effect should be more pronounced in classes at deeper levels in the inheritance hierarchy due to 
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Figure 1Hierarchy evolution with re-structuring (after Dvorak) 



 

the higher likelihood of delocalisation.  At least two other studies (Daly et al. 1995)(Prechelet et al. 

1998) have examined the impact of class inheritance depth on maintenance effort.  Both studies were 

laboratory based and both reached contradicting conclusions. 

2. Research Goal 

There is to some degree an accepted wisdom that depth of inheritance impacts negatively on code 

maintenance.  Its inclusion as a component of several popular object oriented code metrics would 

seem to support this notion (Chidamber et al. 1994)(Fiorvanti et al. 2001)(Li et al. 1993).  

Contemporary theories of human cognition, as substantiated by observed programmer behaviour, lend 

further support to this belief.  That notwithstanding, hard empirical evidence quantifying its impact 

on code maintenance with a degree of confidence is difficult to come by.   

A few of the studies conducted to date have arrived at contradictory findings with the work of Daly et 

al. (1995) and Prechelet et al. (1998) being conspicuous in this regard.  In these and other cases 

conclusions have been drawn from observations of students in laboratory conditions.  In the author‟s 

opinion has diminished their external validity. 

There are some notable exceptions.  Fioravanti and Nesi (2001), performed a study that correlated 

maintenance effort to object oriented statistics, however the application they studied was quite small.  

There is also the study by Li and Henry (1993) which established a positive correlation of 

maintenance effort to inheritance but its individual contribution was not quantified; it was reported as 

an aggregate figure comprising inheritance depth and several other metrics.   

It is the intention of this and a number of follow up papers to re-examine the issue of depth of 

inheritance and attempt to quantify its impact on the maintenance phase in a manner that is 

realistically extensible to production scenarios.  This study will concentrate on quantifying overall 

repository change rates at the file level and establishing a firm foundation for further work.  It will 

also examine the code committal signatures for evidence of cognitive dissonance as predicted by 

Dvorak. 

3. Research Method 

The methodology employed by the authors may be summarised as follows.  A large, enduring, open 

source software application was identified to in order provide data.  The Software Configuration 

Management (SCM) system for this project was then mined for check-in histories of its constituent 

files using a custom tool CVS-Analyzer.  A second custom tool Code-Analyzer then operated over all 

files indexed by the first tool re-constructing and parsing each check-in variant.  Information from 

each parse including class extension and implementation details, methods, fields and statement 

counts was then extracted and indexed against the revision history.  A final custom tool Code-Linker 

then operated over the data set generated by the first two tools providing a longitudinally aware 

linkage of the various extension class references.  All three custom tools recorded their outputs in a 

relational database.  Finally, the results from the three custom tools were analysed for statistical 

correlations. 

3.1 Source Data 

All source code data for the analysis was extracted from the Eclipse Programmer‟s Workbench.  

Eclipse is a popular open source application with large community of users worldwide.  It boasts 

more than 1000 optional add-ons, supporting multiple languages, tools, and software development 

methodologies.   The project was initially founded by IBM in November 2001 in association with a 

consortium of software vendors. 

In February 2004, the Eclipse foundation was founded.  Chartered as a not-for-profit organisation it 

was established as an independent body from both IBM, and the consortium which at this stage had 



 

grown to over 80 members.  The foundation is charged with driving the platform‟s development, and 

maintaining an open, vendor independent community around the project. 

The rational for choosing this project for study may be summarised as: 

1. It is a popular and widely used application.  The code is fit for purpose and functional.  

The application has undergone continual refinement in order to enjoy this popularity over 

a 6 year period. 

2. The application has been in the public domain for 6 years at the time of writing and as a 

result there is a considerable body of data available for analysis. 

3. As the application prior to donation was proprietary to IBM and its associates, it 

constitutes a plausible candidate of a body of work developed to commercial production 

standards. 

Since its release, Eclipse has been maintained by developers from both IBM, and the open source 

community.  Many of the application‟s contributors were not involved in its initial development; and 

the project constitutes a useful instrument for investigating programmer comprehension of unfamiliar 

code.  The Eclipse platform is written in the Java programming language. 

The complete version history of the source code was downloaded from source code repository onto a 

local hard disk.  The Eclipse web site conveniently provides the full repository as a single file which 

is updated regularly to reflect the current code base.  The file, in zip format, inflates as a file system 

on a local disk; all major sub-systems and add-ons are represented as separate sub-directories.  The 

repository snapshot as employed by the author consumes some 8 Giga Bytes of disk storage inflated.  

3.2 Development of Analytical tools 

CVS-Analyzer is a custom tool written to operate over the internal repository files.  The tool was 

configured to iterate over all Java files in the inflated Eclipse repository and extracted metadata on 

the revision history for each file under SCM.  Eclipse uses the open source CVS Concurrent 

Versioning System.  While CVS has been largely superseded by newer open source SCM systems 

(such as Subversion), its simplified storage model is amenable to large scale data mining operations.  

CVS uses the native file system as its backing storage and its topology is hierarchical.  A project 

comprises of a root entity off which modules, each represented by a corresponding sub-directory, 

extend.  Modules in turn can exhibit finer grain structure which is captured by sub-directories and the 

de-composition repeats ad-infinitum. 

Each project file within an application is represented by a corresponding storage file.  All versions of 

a given project file are encoded within its associated storage file using the GNU RCS Revision 

Control System format.  This scheme stores the latest version of the file as a current image; previous 

versions are recovered by successively applying changes as specified in the file‟s log and generated 

when the code was previously checked in.  This operation logically „undoes‟ the previous check-ins 

until the desired revision is recovered.  Care must be exercised when designing code to perform this 

operation as errors accumulate. 

Code-Analyzer is a custom tool designed to extract this information for each revision within a storage 

file. The extracted data from the parsing operation is logged against the source code‟s corresponding 

file and revision records in the analysis database.  The Eclipse Platform is implemented exclusively 

in Java.  In order to extract the type structure from the source files some consideration was given to 

the approach of building multiple versions of the application and employing the Java reflection API.  

This method was rejected due to concerns over the reliability of the build process and the time it 

would take. 

Instead the authors elected to construct a Java lexical analyser and Parser to extract the required 

information.  Though not a trivial task itself, this undertaking is greatly simplified by the use of open 

source lexical analyser toolsets.   One such toolset, ANTLR 3, was utilised in the project.  

Development was further simplified by the availability of a wide selection of contributed grammars; 



 

one of which was used as a starting point when constructing the tool‟s parsing logic.  The ANTLR 

toolset can be configured to generate classes in both Java and C# programming languages from the 

supplied grammar definition.  These classes are then linked to the application specific source code to 

form the data input component of the resulting application.  Integration and adaptation of these 

generated classes with application specific code is simplified by the library‟s extensive use of factory 

patterns and program to interface methodology. 

The application was constructed to identify the following features in a supplied source file: 

 All import clauses thereby allowing it to capture the context in which type references should 

be interpreted. 

 All package clauses in order to capture the context in which any class definitions should be 

interpreted. 

 All class definition clauses, including those for inner classes and interfaces are captured; this 

information is considered of primary importance to the analysis.  Care is taken to ensure that 

Generic class definitions are handled appropriately.  In the tool, such class definitions are 

flagged as Generic but no attempt is made to establish type reference linkages on the 

generic‟s type arguments.  Type annotations are not captured. 

 All interface definition clauses, including those for inner interfaces are captured; this 

information is considered of secondary importance to the analysis.  The tool currently logs 

the interface‟s identifier; it does not de-compose the interface into its members, capture any 

generic attributes or capture any inner class or inner interface definitions.  It was felt that this 

would not significantly influence the analysis though if needs be the tool can be configured 

to capture such data with minimal modification. 

 All field definition clauses, including the field name, and type classifier; generic classifiers are 

captured but their associated type arguments were not. 

 All method definition clauses, including those for constructors are captured.  The message 

signature is captured including any generic classifiers which are flagged; generic type 

arguments for such classifiers are not.  Anonymous class definitions within methods are not 

tracked; neither is any information regarding exception declarations. 

 All extends clauses are captured and references to the generalized type recorded.  This 

provides the basic information used to determine the depth of inheritance in the class 

hierarchy. 

 All implements clauses are captured.  The associated type list is captured but no attempt is 

made to establish type linkages. 

 All comments within the file are stored to database as a single text field at the file revision 

level.  Capturing such text per method is problematic and was not pursued for two reasons: 

1. ANTLR is usually configured to code comment data onto a separate token stream.  This 

improves the efficiency of the main parse. 

2. Comments associated with a method are not always guaranteed to be within the method 

body (e.g. they may be in the method header). 

 The number of class-statements for each class was measured as distinct from the class‟ total 

lines of code (in new line characters) or semi-colon counts.  Class statement counts were 

aggregated onto those of contained inner classes. 

 The number of method-statements for each method was measured as distinct from the 

method‟s total lines of code (in new line characters) or semi-colon counts. 

All results were logged to relational database under the previously discussed database schema. 



 

The last tool applied to the data extraction was the Code-Linker tool.  The tools discussed previously 

capture the static structure of the source code but are confined to file boundaries and record the state 

at an arbitrary point in time (i.e. the time the author decided to commit the code).  The Code-Linker 

tool scans the static analysis stored in the relational database and associates linkages between the 

various type definitions and, if necessary, across the file boundaries.  The tool was written in C#. 

The Code-Linker was designed to preserve correct inter-type relationships in the time dimension; a 

specific version of a specialising class must be analysed in terms of the correct version of its super 

class.  This was considered desirable since it is a prerequisite to cross-sectional (between classifiers) 

and longitudinal (within classifier) statistical analysis.  It is, however, unreliable to assume that 

associated classes are committed together.  It is also unsafe to suppose that super classes and sub-

classes are committed consistently in a certain relative order.  It was therefore considered more 

accurate to establish the inter-class inheritance relationships at an application label vis-à-vis file 

revision level; the rational being that the code base has a higher likelihood of self consistency.  This 

was considered reasonable since conceptually a labelling operation collapses the state of the code 

base as a whole to a single identity; which is then used as a specifier when this state is to be 

recovered in toto at some future point.  It is worth noting that the specific time a label is applied is not 

captured within the CVS backing data and needs to be inferred from the commit times of that label‟s 

associated file revisions. 

The tool is designed to scan the repository on a label by label basis.  All file revisions active for a 

given label and their contained type definitions are processed together.  Cross linkages are 

determined between the various types with particular attention paid to any inheritance relationships.  

The results are stored in the database against the type definitions captured previously. The depth of 

inheritance of the type is also computed at this point.  Any failed linkages are flagged for manual 

analysis and intervention.  At this point, the relational database has a statically analysed type 

structure that is fully type referenced and available for analysis. 

3.3 Data Analysis Method 

A preliminary analysis of the data was confined for the purposes of this paper to examining the 

overall evolution of the repository and gross inheritance code characteristics.  The reader is referred 

to a number of follow up papers for a more detailed examination of depth of inheritance effects. 

The analysis performed here examined the check-in committal at the file level.  The statistical 

distribution of file revisions was determined and analysed in order to establish whether the 

repository‟s overall evolutionary characteristics were well behaved over time and predictable.  This 

analysis also provided a simple mechanism for identifying possible candidate files displaying 

cognitive dissonance.  It was expected that such files would exhibit supra variability above that of the 

general body of source code. 

A simple linear regression model was fitted to this distribution and repeated for several points in time 

in the project‟s history.  Covariance and significance tests were then applied so as to 1) establish 

correlation with the model, 2) determine the descriptive capability of the model, and 3) establish the 

statistical likelihood that any candidate dissonant files are not due to random effects.  A cursory 

examination of the distribution of classes according to depth of inheritance along with their change 

rates was also conducted. 

4. Results 

Table 1 summarises the gross statistics captured from the data extraction phase.  The „Total Eclipse 

Derived Type Revs‟ is the gross figure of type revisions that were specialised from a class within the 

Eclipse code base.  Only those classes derived from eclipse project classes were considered as 

candidates for the analysis.  To include external libraries would immediately pose the question as to 

what inheritance depth should be assigned to the external references.  It was also felt that enforcing 

closure on the input data would improve the likelihood of exposing potential dissonance effects. 



 

The „Total Revisions Net of Test Classes‟ is the number of type revisions that have a namespace 

starting with „org.eclipse‟.  This eliminates a large number of automated unit tests that are likely to be 

written by code generators and therefore contribute nothing to the analysis.  The last three figures 

summarise the number of individual classifier instances within the code base vis-à-vis the number of 

revisions of the classifiers which are conveyed in the preceding totals.  An individual classifier is 

identified by the combination of its fully qualified name and the path to the source file relative to the 

project root.   

The final figure „Nbr Specialisations Considered‟ is a subset of all Eclipse specialisations that are 

unambiguously linked to their super classes.  The code linkage operation assigns a degree of certainty 

to the super class linkage based upon the number of candidate types available matching the classes 

extends specification.  This disambiguation is arrived at according to a variety of criteria based on 

file‟s location, package, fully qualified domain name and location within the source code file system.  

In a minority of cases, the number of available candidates exceeds 1.  This can happen for a variety of 

reasons that include partitioning and promotion of incubation source code, and the relocation of class 

definitions within the file system.  To improve the quality of the analysis, the input data set was 

confined to those classes that had only one eligible candidate identified in the type linking operation. 

The version of the repository operated upon was that archived by Eclipse staff on 2007-14-10.  The 

content of the repository was obtained as a distribution file from the Eclipse web site.  It comprised a 

zip compressed archive of all revisions of all Eclipse related projects up to that date.  The file inflated 

on the local hard-drive consumed some 8 GBytes of disk space. 

Gross Statistic Value 

Total Files 73562 

Total Check-ins (File Revisions) 581930 

First Recorded Check-in 2001-04-28 15:41:01 

Last Recorded Check-in 2007-10-12 23:00:49 

Total Distinct Labels Applied 9098 

Total Labelled File Revisions 12900172 

Number of Distinct Classes 87698 

Total Type Revisions 717590 

Total Eclipse Derived Type Revs 422194 

Total Revisions Net of Test Classes 421822 

Total Root Type Revisions 199813 

Total Specialised Type  Revisions 222009 

Nbr Root Types 30239 

Nbr Specialised Types 26428 

Nbr Specialisations Considered 24973 

Table 1 - Gross Repository Statistics 



 

Analysis took approximately 8 days on two servers the largest of which was a Dual Core 64bit 

processor running at 3.2 GHz.  This machine was configured with a RAID 5 high speed disk 

subsystem and a total of 4 GBytes of system memory.  The database holding the extracted data 

consumed approximately 3 GBytes of disk space. 

5. Analysis 

5.1 Analysis of General Repository Evolution 

The plot in Figure 2 demonstrates the distribution of file revisions over the projects lifetime. In 

evidence is a strong negative correlation that is approximately linear in the log domain for both the 

number of revisions experienced by a file and the number of files exhibiting those revisions.  This 

analysis was repeated at previous instances in the project‟s history and the relationship was found to 

hold over time.  The results of this analysis are shown in Table 2.  

A simple linear regression model was fitted in an attempt to describe the file distribution.  It 

considered the log of the number of revisions for a group of files being a dependant variable which is 

a function of the log of the number of files in the group and the total repository age (in days).  The 

first of the two coefficients captures the distribution relationship at an instance in time, the second 

capturing the change in this relationship over the project‟s lifetime.  The results of the model are 

shown below. 

 

Figure 2 - File Revision Distribution 

 



 

The adjusted R
2
 figure is calculated to be 0.9319 which indicates that 93% of the total data variance 

is accounted for by the model.  The F-statistic is 4095 on 2 parameters with 596 degrees of freedom.  

Since the critical value for the F-distribution at the p = 0.01 level is only F(2, 596) = 4.61and 

considerably less than the computed value of 4095, it would suggest that the model is highly 

significant.  Moreover, the critical value of the t-distribution at the 0.01 level with 596 degrees of 

freedom is 2.33; we can therefore conclude that all parameters (including the intercept term) 

contribute significantly. 

 

The resulting model may be re-formulated as shown in Formula 1.  The parameters a, b and c 

correspond to the above log.nbr_files, age and intercept coefficients respectively. 

A brief analysis of the model‟s residuals was also conducted and is shown in Figure 4.  The plots 

illustrates that there is some variance from the model‟s theoretical predictions.  Several leverage 

points, or outliers are in evidence and these significantly influence the model.  Three of these are 

associated with the distribution of files having only one revision in each epoch.  A case for removing 

these from the analysis could be made by employing the rational that they are baselines, not revisions. 

lm(formula = log.nbr_rev ~ log.nbr_files + age) 

 

Residuals: 

Min   1Q Median 3Q        Max 

-1.519179 -0.129190   0.007871   0.143578   1.224110  

                       

Coefficients : 

 Estimate Std. Error t value Pr(>|t|) 

Intercept 4.73 3.57 x10
-2

 132.64 <2x10
-16 

*** 

log.nbr_files -0.45 5.12 x10
-3

 -87.34 <2x10
-16 

*** 

Age 3.72x10
-4

 1.79 x10
-5

 20.77 <2x10
-16 

*** 

 

Signif. codes:  0 „***‟ 0.001 „**‟ 0.01 „*‟ 0.05 „.‟ 0.1 „ ‟ 1  

Residual standard error: 0.2816 on 596 degrees of freedom 

Multiple R-squared: 0.9322,     Adjusted R-squared: 0.9319  

F-statistic:  4095 on 2 and 596 DF,  p-value: < 2.2e-16 

 

Table 2 – Revision Distribution Model Coefficients 
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Formula 1 – Model of Revision Distribution 



 

 

Figure 3 - Evolution of File Revision Distribution 

 

Figure 4 - File Revision Model Residuals 



 

The remainder of variability arises from that region having 50 or more file revisions.  This constitutes 

some 1.5% of all files in the code base.  This region contributes to the fan-out characteristics visible 

in the top left plot.  Typically, this type of observation can indicate heteroscedasticity or a difference 

in the variance of the model‟s error terms.  One of the more common manifestations of this 

phenomenon is when the magnitude of the error term‟s variance is related to its associated dependant 

variable or one of the independent variables.  In this instance, it is taken to be further evidence that an 

additional perturbing influence is present on the higher variability files. 

5.2 Analysis of File Revisions 

The time series for file check-ins for the Eclipse project is shown in Figure 5. The series shown is 

measured in days from 2001-04-28 and is plotted against the base 10 logarithm of the number of 

check-ins for the day in question.  A LOWESS locally weighted polynomial regression for the data 

has been computed and is shown on the graph as a solid line.  Also plotted is a LOWESS regression 

of the maximum depth of inheritance of the associated check-in.  The diagram plots this function as a 

linear relationship to the y-axis. 

A cyclical component to the time series of the number of files checked-in is evident from the plot.  Its 

period of approximately 300 days would strongly suggest that the component is seasonally based and 

not necessarily due to code related factors.  This however has not been fully investigated.  Also in 

evidence is a slightly reduced rate of files committed in recent years though the affect is marginal.  

The code also appears to exhibit higher maximum depth of inheritance for more recent committals. 

 

 

Figure 5 - Time Series of File Check-ins 



 

Caution is advised when drawing conclusions from this last observation.  It is important to appreciate 

that max inheritance depth graphed is the result of a polynomial smoothing of a rather crude 

aggregate statistic.  This value is the local maximum of the depth of inheritance as limited to the 

source code committed at that point in time.  It does not provide any insight into the distribution of 

inheritance depths in the committed code.  Nor does it necessarily accurately reflect the state of the 

repository as a whole.  A statistical analysis addressing these shortcomings will be presented in a 

following paper. 

For the present, a statistical correlation was computed between the two smoothing functions and is 

presented in the table below.  Both indicate that the relationship between their variance is positively 

correlated but low. 

6. Discussion 

Apparent from the initial analysis is that the code base as a whole is evolving in a deterministic 

fashion.  One might conclude therefore that findings arrived at for a specific period in the project 

lifetime can be extended to the project as a whole.  The clear relationship between the distribution of 

file revisions across the project was something of a surprise.  It would be interesting to confirm if this 

effect is present in other source repositories.  Such a relationship could comprise a useful estimator of 

the level of future change. 

This distribution can be described by a linear function in the log/log domain and accounts for 93% of 

the revision variance within the project.  Particularly intriguing is the group of files towards the y 

axis in Figure 2 and Figure 2 having 60 or more revisions.  These files comprise approximately 1.5% 

of the total source files and do not conform as readily to the linear model as the remaining code.  A 

tantalising possibility is that the code in these classes has a higher level of cognitive dissonance 

though this has not been investigated further. 

An investigation of the check-in history of files suggests that cyclical effects similar to that predicted 

by Dvorak are in evidence.  However upon further analysis, the period of the cycles would indicate 

that this characteristic is most likely the result of seasonal effects.  Furthermore, this cyclical 

signature could not be strongly correlated with class inheritance depths of the associated committals; 

though this analysis was confined to a rather crude maximum depth of inheritance metric. 

7. Threats to Validity 

The experimental design employed by this study was constructed so as to avoid laboratory scenarios 

and to observe software maintenance by professional developers.  Whilst the authors believe that they 

have achieved a high degree of ecological and external validity, they also concede that no experiment 

is perfect.   The author‟s have identified several potential threats to the validity of this study. 

This study is directed towards a single subject; the Eclipse source code base.  Limiting observations 

to one body of source code reduces both the effectiveness of conclusions drawn and their scope for 

external application.  For example, an observation of low inheritance predominance may lead to the 

conclusion that the effect is the result of strategies exercised by the independent programmer.  This 

supposition may be incorrect if some external agent (software quality assurance policy for example) 

Measure Value 

Spearman‟s Rho 0.131 (0.131) 

Kendall‟s Tau 0.095 (0.095) 

Table 2 – Lowess Correlation 



 

is discouraging its use.  The obvious mitigation to this threat is to confirm this study‟s findings in 

other code bases. 

A second threat results from the nature of the Eclipse‟s open source development methodology.  The 

extension of conclusions based on the analysis of an open source project to all other development 

paradigms may not be valid in general terms.  Indeed there is some evidence that growth patterns and 

code cloning in open source projects is atypical to proprietary source code evolution (Godfrey et al. 

2000)(Godfrey et al. 2001).  Conclusions should be qualified when applying these findings to other 

methodologies. 

The last threat identified concerns the internal experimental validity in relation to the nature of the 

custom tools used in the analysis.  Firstly, the tools were bespoke developed for the analysis and as 

such they are immature; as yet unidentified errors in their construction may influence the study‟s 

analysis and findings.  Secondly, the tools are required to make certain inferences in relation to code 

linkages.  This is an unavoidable consequence of the approach taken; the alternative being 

compilation, linkage and installation of every version of every project according to that project‟s 

build rules (which would be prohibitive).  Naming collisions can and do occur.  The author‟s have 

attempted to mitigate this threat by confining the analysis to those classes that have been fully 

disambiguated in terms of inheritance linkages.  The authors believe that this should eliminate any 

potential threats in this regard. 

8. Conclusion 

This paper presented a study on the evolutionary traits of the Eclipse open source project.  It 

concentrates on file revision traits and in particular whether a predicted cyclical effect is in evidence.  

Such an effect could signify readjustment instigated by a critical accumulation of cognitive 

dissonance within the source code.  No such effect was observed; any cyclical observations identified 

were considered most likely due to seasonal effects. 

A strong relationship governing the distribution of file revisions was found to be in evidence.  This 

relationship seems to be stable over time and may provide a predictive tool for estimating future code 

modification.  To the author‟s knowledge this has not been documented before and it is important to 

establish whether this effect is present in other code bases. 

This study was inspired by several prior works which have investigated the issue of inheritance 

impact on code maintenance.  The experimental design employed by this study was chosen with a 

view to reducing perceived weaknesses in the approaches of some of these previous studies.  By 

employing repository mining techniques on a large well managed project, the authors hope to achieve 

a high degree of external and ecological validity to these conclusions. 

While the question of whether class inheritance depth affects maintenance effort is an old one it is 

still relevant.  Indeed, the ascendance of development methodologies favouring lightweight processes 

and self documenting code suggest that this is true more so today than when the question was first 

considered some 15 years ago.  It is hoped that this body of work goes some way in furthering this 

debate. 
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