
A comparison between Student and Professional Pair
Programmers

Laura Plonka1

Institut für Informatik, Freie Universität Berlin
plonka@inf.fu-berlin.de

Abstract. Most pair programming studies are conducted with student pair programmers. This
might be due to the fact that it is easier for the researcher to record students. But often it is desirable
to get information about professional pair programmers. Could we extrapolate the results from
student studies to the professionals? In this paper I present a comparison of student and professional
pair programming sessions in order to reveal differences and similarities. The analysis focuses on
the speech contributions and the driver distributions of the pairs. We show that professional pairs
are balanced regarding speech distribution within the pairs, whereas some student pairs are very
unbalanced. For the driver distributions, no typical pattern could be found for both groups.

1 Introduction

Pair Programming (PP) is a software engineering practice in which two people share one com-
puter, taking turns in their use of keyboard and mouse and cooperate closely throughout the
session. Supporters of PP claim a number of benefits from using this practice compared to solo
programming, for example, knowledge transfer among the development team, increasing quality
of code, higher concentration of the programmers or decreased error rate.

In order to analyze the benefits and the process itself, PP has been the subject of many
empirical investigations in the last few years [2, 3, 8–10, 14–17]. Often it is desirable to learn
about the PP process in the professional development world in order to understand how PP
works in the real world and furthermore for example, in order to provide information about how
the professional pair programmers can improve their own PP process.

But most of the studies or experiments have been conducted with student pair programmers
as participants due to easier recording possibilities [16, 15]. Unfortunately student PP sessions
usually differ at least in some aspects from professional PP sessions: The scope of the task in
student settings is predefined by the researcher and normally not a real world or very complex
task, because the students have a limited timeframe to solve the problem. The advantage of
a predefined task is that the researcher can comprehend and evaluate the solution process of
the students. In contrast, in the professional settings most researchers observe programmers in
their daily development tasks with their daily work setting, whereas the students often work
in an artificial setting. The latter conditions allow a better comparability and repeatability but
do not represent the real world setting. Finally, the experience of programming as well as the
experience of PP of professional programmers is usually higher.

Studies with student sessions are often considered to be of limited value, because the extrap-
olation of the results of an academic setting to a professional setting is not always possible [5].
It is apparent that the external circumstances, for example, task, experience of student and
professional PP sessions are different, but does the PP process itself differ between student and
professional sessions? Due to the fact that there are many studies with student pair program-
mers and that recording students is easier than recording professionals, it would be useful to
know if we can extrapolate the results of the analysis of student PP sessions to professionals. In
order to find out about the limitations of such an extrapolation, our research questions are: Are
there differences in the behavior between students and professionals in the PP context? Could
we perhaps find a filter in order to distinguish between student pairs who act more similar to
professionals than others?

In order to answer these questions, I have compared undergraduate students with profes-
sional pair programmers in a quantitative analysis. As possible indicators I have chosen speech
contributions and driver distributions within the sessions. Furthermore, I analyze exemplary
parts of the session in greater detail in order to interpret the quantitative data.

I will first outline related works (section 2) on the driver-observer behavior and the commu-
nication patterns in student as well as in professional settings. Thereafter the paper describes
the nature and origin of our raw data (section 3) and explains the steps of the analysis (sec-
tion 4). Then I present the results (section 5) and finally close with our conclusions (section 6)
and outlook (section 7).

2 Related Work

In the following section I summarize studies of PP in commercial and academic environments.

2.1 Studies in an Academic Setting

There are many studies investigating student pair programmers, most of the time in a quanti-
tative manner in order to analyse the benefits [16, 6, 9, 11, 10]. We will not discuss these studies
here, because I focus only on the studies conducted with students which investigate the driver
behavior or the communication process.

Cao and Xu [3] investigate the activity patterns of PP for different pair constellations in
a qualitative manner. They divided the programmers into low, medium, and high competence
level programmers. In their analysis they have investigated the differences between various pair
constellations. The high-high pairs enjoyed the PP experience more than the other pairs and had
the highest interaction frequency, the medium-medium pair exchanged a very limited amount
of knowledge, and in the high-low pair the interaction frequency was the lowest and the more
expertised programmer took a distinct leader role.

In [7], Hfer focuses on the distribution of mouse and keyboard control of 9 student pairs.
Therefore the control of the mouse or keyboard was defined by the time when a programmer had
a hand on one of those devices including the time without any input activity. Hfer detects that
the pairs have changed the control frequently, but the pairs did not share the control equally.

2.2 Studies in a Professional Setting

Bryant compares the interaction behavior in a professional setting depending on driver and
observer roles, subtask and PP experience within professional pair programmers. In [2], Bryant
studies the difference of interaction type and frequency in novice versus expert pair program-
mers in a professional environment. She found out that more expert pair programmers have
a lower interaction frequency compared to novice pair programmers, especially the number of
suggestions per session is less. Furthermore, she analyzed the interaction behavior while each
programmer has the control of keyboard and mouse, with the result that the more experi-
enced pair programmers seem to have a defined set of behavior independent of who is driving,
whereas the behavior of the less experienced pair programmers seems to be driver-dependent.
In another evaluation of professional pair programmers, she coded the contribution to the con-
versation (if the contribution added new information to the task) of each programmer, and
generic subtasks [1]. Both programmers contribute almost the same amount of contributions to
all subtasks, and driver and observer verbalize almost the same amount (the driver verbalizes
slightly more). Moreover, in [12], Bryant studies the abstraction level of driver and observer.
She states that the pair programmers did not discuss in general on different levels of abstraction
according to their roles.

Those studies compare the interaction behavior in a professional environment dependent
on driver and observer roles, subtask and PP experience, but there is no comparison between

students and professional pair programmers. Chong [4] conducted ethnographic observations
with two development teams. She investigated the programmer interaction in dependency on
the roles of driver/observer and the expertise of the programmers. She states that apart from
typing there is no division of labor between the driver and observer. In pairs with the same
level of expertise both seem to contribute at almost the same rates and with the same level of
abstraction. But the keyboard control seems to influence the decision making to an advantage
for the driver. In pairs with different expertise, the programmer with more expertise dominates
the interaction.

3 Data Capturing

In this section I describe our recording setup and the data capture in the student as well as
the professional setting. In order to compare student and professional pair programmers the
recordings took place on the one hand in the typical setting for students and on the other hand
in a company for the recordings of the professional developers.

3.1 Recording Setup

During the PP session, I have recorded the following data equally for student and professional
pair programmers:

1. A stereo audio recording captured verbal communication between the participants,
2. a video of the programmers captured who is driver and observer,
3. a full-resolution screen recording captured almost all computer activities of the programmers

on a fairly fine-grained level.

All data have been recorded with Camtasia Studio [13] into a single, fully synchronized
video file in which the video image of the camera (recorded with a Logitech 5000 webcam) is
superimposed semi-transparently onto a corner of the video of the screen so that all information
is visible at once. For the stereo audio recording an external soundcard (Tascam USL122) in
combination with two professional wireless microphones (audioTechnica 700 Series Professional
UHF Wireless Systems) has been used.

In order to get as much background information as possible (e.g. PP experience, program-
ming experience) about the participants, all pair programmers filled in questionnaires before
and after the session.

3.2 Recordings of Student Sessions

The student recordings took place as part of an a exercise of a software engineering course for
undergraduate students. The participation was voluntary and the students had chosen their
partners for the PP session on their own. Ten programmers (nine men and one woman) partic-
ipated in the recording. Each of the five pairs was recorded once. The recording of the session
started with the handover of the exercise. All pairs worked on the same task. The task was a
small algorithmic problem. The pairs had no time limit for the task. All pairs solved the task
within an average work time of 1 hour. Eight of the student programmers had previous PP
experience (maximum of two years). The average programming experience of the students is
three years (refer to table 3.3).

In addition to the recordings the pairs filled in in questionnaires before and after the session.

3.3 Recordings of Professional Sessions

Furthermore, I recorded six professional pair programming sessions within one week in a com-
pany in the geographic information system industry. The development team (consisting of seven
developer and the head of development) uses an adapted agile process, in which PP is applied
regulary. In general the developers choose the partner for the PP sessions on their own. Some
pairs prefer to use one mouse and one keyboard, other pairs prefer to use two mouses and two
keyboards.

For the recorded PP session I limited the duration of the session to two hours. But in order to
record the pairs in their accustomed professional settings and get data from the real world, I did
not make any constraints about the task, the pair constellation or the setting of PP (one mouse
and keyboard or two mouses and keyboards). Therefore the pairs worked on their daily tasks
in the preferred PP setting and with a partner chosen on their own. All developers participated
in the recordings.

For this paper I have analysed four pairs. In two sessions not all sources described above
could be recorded due to recording problems of the microphones. Those pairs are not analysed
yet. In the following description of the sessions and the experiences of the programmers, I will
focus only on the four analysed pairs.

Six programmers (two women and four men) participated in the four sessions. Two pairs
consisted of one woman one man, the other two pairs consited of two men. All four pairs had
different pair constellations. Two of the four pairs worked with two mouse and two keyboards
while pair programming. The average professional programming experience of the programmer
is nine years (refer to table 3.3) and the average pair programming experience (PP experience
as professional plus PP experience in education) is ten years and six month.

In addition to the recordings, the pairs filled in in questionnaires before and after the session.
Moreover, an interview with each pair was conducted one day after the recording of the pair.

Table 1. Overview of the students and professional programmers background.

Background information Students Professionals

Average programming experience (in years) 3 9 (as professionals)

Total duration of analyzed sessions 6h 28min 6h 11min

Task small algorithm daily work

Sessions 6 4

Pairs using two mouses/keyboards 0 2

4 Analysis

For a quantitative comparison of professionals with student pair programmers it is necessary to
evaluate as many pairs as possible. This is why I have chosen the speech contribution (the time
of talking of each programmer) and the driver distribution as possible indicators for differences
between student and professional pair programmers and have sped up the analysis through an
automated analysis of the speech contributions (described in section 4.2). Unfortunately the
coding of the driver needs to be performed manually on the video data, which is very time-
consuming and limits the number of sessions.

The analysis process has two steps: First, a quantitative analysis was conducted, and second,
in order to interpret the quantitative data, I use exemplary sessions or part of the sessions for
a selective analysis. The whole analysis process is shown in figure 1.

Fig. 1. The steps of the analysis; The first step is the quantitative analysis of the input data, the evaluation
provides a statistical overview and a visualization. The second step starts with an analysis of exemplary selected
data as video or background information (questionnaire/interview), which are analyzed, visualized if possible,
and evaluated.

4.1 Coding

In order to get an overview and conduct a statistical evaluation of the driver distribution and
communication behavior (in general and according to the roles of driver and observer) in the first
step, I have coded all sessions with the following codes grouped into tracks (for visualization):

– Speech-Track : with the codes P1/P2.talks (programmer 1 talks, programmer 2 talks, respec-
tively),

– Driver-Track : with the codes P1.isDriver/P2.isDriver.

The speech codes are necessary in order to determine the speech contributions of each
programmer (the time each programmer is talking). All verbal contributions of the programmers
are coded without considering semantic information. For the coding of the speech contributions
I have used the automated speech analysis tool WhoTalks (refer to section 4.2). The driver
codes are used for the analysis of driver and observer distributions. isDriver is coded when
the mouse or the keyboard is used (key pressed or mouse moved) by one of the programmers.
We have identified the movement of the mouse or keyboard input through the screen capture,
and the current driver through the webcam video. In the sessions in which two mouses and
keyboards were used, the observer and driver often changed roles for just one key press or a
short mouse movement. Those situations are not considered as driver-observer changes due to
the time-consuming analysis.

The results of the quantitative analysis are two different types of statistics: The first type
offers an overview of the overall duration of the codes as a percentage of the whole duration of
the PP session, sorted by tracks (e.g. the speech distribution in the results of the quantitative
analysis (overall statistics) in figure 1). The second type of statistic combines the driver codes
with the speech codes: It calculates the percentage of the speech units overlapping with driver
codes (refer to figure 1: results of the quantitative analysis, the speech distributions while speaker
1 is driver). Furthermore, I visualize the data in order to get an overview of the chronological
development of the speech contributions as shown in figure 1.

In a second step I selected different exemplary parts of the video data, the visualization or
other background information depending on the results of the quantitative analysis and took a
closer look at those data in order to understand the quantitative results. The findings of this
step are helpful to interpret the quantitative data and provide further insights into the process
of PP.

4.2 Tool Support during the Analysis

We used WhoTalks for speeding up the analysis process. WhoTalks is an analysis tool for
video and audio data which was developed in our group for combined qualitative and quanti-
tative studies with the main focus on the communication behavior in the PP research context.
WhoTalks allows automated quantitative evaluation of the communication process, a manual
coding process, statistical evaluation, and visualization of the data (refer to figure 2).

It supports our first step in the coding process by the automated analysis of the current
speaker and the duration of the contribution (speech unit) from the stereo audio-file. Therefore
WhoTalks seperates the stereo-audio track in two mono audio-channels and thereby it can
distinguish the speaker, because each speaker belongs to one mono audio-channel. In each
mono audio-channel the start of a speech unit is recognized when a user-defined number of
consecutive samples of a specific channel are above a user-defined threshold, and the end when
the same number of consecutive samples are below the same threshold. The threshold should
be adapted to the volumes of the two speakers’ voices. All calculated speech units are shown
on the timeline below the visualization of the audio data (figure 2). The driver track was coded
with WhoTalks, too. All annotations are visualized on the timeline. This visualization gives an
overview and allows an easy recognition of interesting patterns and starting points for our second

Fig. 2. Screenshot of WhoTalks: The left pane lists the tracknames, the center pane shows the visualization
window with the timeline, speech units, and annotations. The video is played in a separate, resizable window.
The right pane shows the statistical evaluation, and the bottom pane allows setting of the speech parameters.

analysis step. Furthermore, WhoTalks provides two types of statistical evaluation (described in
section 4.1) of the coded data, which I have used for the quantitative comparison between the
students and the professionals.

5 Results and Discussion

This section describes the results of the quantitative analysis and the findings from the selective
coding step. Due to the fact that only ten pairs were analyzed, the quantitative analysis does
not look for statistical significance. The student sessions are represented by S1 to S6 and the
professional sessions by Pro1 to Pro4. The pairs S6, Pro3 and Pro4 are mixed pairs (one woman
one men) the others are male teams.

5.1 Speech Contributions

First I have analyzed the speech contributions of the programmers. Figure 3 gives an overview
of the speech contributions of each programmer in percent of the whole session duration: All
programmers, except S5 and S6, contribute almost the same amount of speech during the
sessions. Moreover, except for S5 and S6, the distribution of speech contributions within the
sessions are almost balanced between the programmers. Sessions S5 and S6 have one programmer
who contributes far more than the average amount of speech, and the distribution within these
pairs is very unbalanced. In S5 the developer P1 has the higher amount of speech. Investigating
the video of S5, the developer P1 verbalizes a large part of computer activities and propose the
next actions.

Fig. 3. Speech contributions as a percentage of the whole session duration.

Figure 4 shows an extract of 7 minutes and 30 seconds of the speech units of a balanced
pair, Pro4, and an unbalanced pair, S6. It gives a good impression of the difference in the
communication behavior: In Pro4 a lot of phases can be seen in which either nobody talks or
the programmers have a dialog. In pair S6 the programmers conduct a dialog, too, but there are
situations in which P1 (the programmer with more speech contributions) holds monologs which
are sometimes answered with short comments of his/her partner and there is no phase longer
then 10 seconds (except during the reading of the task) in which nobody talks. The evaluation
of the visualization of S6 and Pro4 results in a different structure of the communication process.

Fig. 4. An extract of 7 min 30 sec of the visualization of the pair Pro4 and pair S6: Pro4 conducts a dialog (the
speaker often changes), P1 of pair S6 holds a monolog with short comments of his/her partner.

We propose the hypothesis that a monolog structure and an unbalanced distribution of
speech contributions during a pair programming session do not occur in normal professional

pair programming sessions but probably in novice-expert situations (e.g. teaching a newbie).
We evaluated the background information from the questionnaire of the programmers in pair
S6 to investigate if the pair is a newbie-expert constellation, but they estimated themselves on
almost the same programming level with different experience in programming (programmer 1:
2 years, programmer 2: 5,5 years). Furthermore, they had programmed in this constellation for
half a year and described themselves as very well attuned.

5.2 Driver Distributions

Figure 5 shows the driver distribution during all sessions. Neither within the professional data
nor the student data a pattern or regularity can be identified. In both types pairs appear with
a balanced as well as unbalanced distribution of the driver role. But it is remarkable that
the student pairs S3 and S4 do not change the roles, and the pairs S5 and S6, who are very
unbalanced according to the speech contributions, are also unbalanced considering the driver
distribution.

Fig. 5. Driver distributions during the whole session.

We used the video material in order to understand the behavior of pairs S3 and S4 and
found out that these pairs had decided at the beginning of the session who will be the driver,
with the motivation that in one case one of the programmers typed more quickly than the other
and in the other case one of the programmers admitted that he had not been programming
for a while. For the professional programmers I have analyzed data from the interview which I
had conducted one day after the recording: Both pairs, Pro4 (unbalanced) and Pro2 (balanced),
were content with their role distributions. In the constellation Pro1 (unbalanced), P2 was not
satisfied with his driver part and would like to involve himself/herself more in the driver process.

The evaluation of only the driver distribution reveals no differences between professionals
and students and no patterns within the two groups. We conclude that the driver distribution
depends more on the personalities and characters of the programmers.

5.3 Combining Speech Contribution and Driver Distribution

The result of the quantitative analysis of the speech contributions overlapping with the driver
codes is presented in figure 6. It shows for each pair the speech contribution of each programmer,
while P1 and P2 is driving. Due to the fact that the pairs S3 and S4 do not change driver and
observer roles, the pairs are not included in the further investigation.

Fig. 6. Combining speech contribution and driver distribution.

The speech contributions of all professional pairs and two student pairs remain balanced
independent of who is driver or observer. In the student pairs S5 and S6 (very unbalanced
considering the driver distribution and the speech distributions), the programmer P1, who has a
higher speech contribution and driver contribution talks twice as much as the partner, irrelevant
of who is currently driving. For all balanced pairs it can be noticed that the programmer who
is driving also talks slightly more than the observer, thus participating more actively in the
communication. This is in accordance with findings presented in [1].

Further investigations of the video data of pair S5 revealed the communication pattern of
those situations: While P1 is driving, he verbalizes all of his activities. While observing, he
proposes the next actions, dictates word by word what to write or verbalizes the activity of the
driver.

5.4 Limitations

The obvious limitation of this study is the small number of sessions and the origin of the data
(four professional sessions of a single company and six sudent pair performing a single algo-
rithmic task) which have been analyzed. In addition, the tasks of the professional programmers

were different, because they did their daily work task. The task might influence the process and
the communication behavior. Moreover, the professionals used their preferred PP settings (two
mouses, two keyboards or one mouse, one keyboard), because I tried not to influence their work
settings with our study. In comparison to that all student pairs worked with one mouse and
one keyboard. This could also be a factor which influences the PP process and the results of
the study. Furthermore, only two quantitative aspects (driver distribution, speech contribution)
of potential differences between students and professionals are used for the comparison of the
whole sessions, and only single sessions or parts of sessions have been used for a deeper analysis.
There are more, in particular qualitative, aspects which need to be evaluated, e.g. a semantic
analysis of the communication, in order to understand the differences in detail.

6 Conclusion

We have compared student and professional pair programming sessions considering the aspects
of speech contributions and driver distributions in a quantitative manner. In future work this
may help to extrapolate findings from the analysis of student PP sessions to professional PP
sessions. This is desirable because student sessions can be recorded more easily. Regarding the
speech distribution of professional and student pair programmers, both groups seem not to
differ in general. But there are student pairs where one of the programmers talks more than the
average, thus displaying a very unbalanced distribution of speech among the programmers even
if they estimated themselves to be on the same programming level. The unbalanced distributions
are a result of a monolog structure which sometimes occurs in student pairs. We expect such
a structure to occur in professional pairs only in an expert-newbie constellation. Therefore I
suggest that the evaluation of speech distributions can act as a filter to sort out student pairs
who do not act like professionals according to their interaction behavior.

The results of the analysis of the driver distribution show that there are no patterns within
the two groups. Therefore there seem to be no differences between the driver distribution of
students or professional pair programmers. In addition, I found out that student programmers
who dominate the communication significantly have also significantly higher driving parts then
their partner. This could be an indicator for a leader role in the pair, which has often been
detected during PP analysis (e.g. [3]). Furthermore, I found no indicator that a satisfied pair
needs to have a balanced driver distribution.

The combination of driver distribution and speech contribution indicates that the speech
contribution of professional pair programmers remains balanced irrelevant of who is currently
driving. The same pattern was detected in two student sessions. In two other student pairs (S5,
S6: very unbalanced considering the driver distribution and the speech distributions) the ’leader’
student seems to dominate the communication irrelevant of who is driving. While the ’leader’
is observing, he proposes the next actions, dictates word by word or verbalizes the activity.
We do not expect that a behavior like dictating exactly what to write might occur in balanced
professional settings.

As a conclusion I state that it does not seem possible to extrapolate the results from student
pairs to professionals in general. Comparability seems to depend on the aspect of the study and
furthermore on choosing an adequate student pair. The quantitative analysis has shown that one
possible filter could be the speech distribution and the speech contributions during the driving
times of each programmer in order to select student pairs with more similarity to professional
programmers. Self-estimated pair programming experience and quality of cooperation cannot
be used as a filter.

7 Further Work

To determine the differences between professional and student pair programmers in greater
detail, it could be helpful to study the process qualitatively. Furthermore, students in different

educational stages, like graduated students or students solving more complex problems in bigger
software systems, should be compared with professional programmers. Another investigation
could focus on the behavior of the professional sand whether or not it was better for the success
of pair programming. If this is the case, the question emerges how I could train the students to
be better pair programmers.

8 Acknowledgements

The author would like to thank the participating students and the participating company: disy
Informationssysteme GmbH.

References

1. S. Bryant, P. Romero, and B. du Boulay. The Collaborative Nature of Pair Programming. The 7th Interna-
tional Conference on Extreme Programming and Agile Processes in Software Engineering, 2006.

2. Sallyann Bryant. Double trouble: Mixing qualitative and quantitative methods in the study of extreme
programmers. In VLHCC ’04: Proceedings of the 2004 IEEE Symposium on Visual Languages - Human
Centric Computing, pages 55–61, Washington, DC, USA, 2004. IEEE Computer Society.

3. L. Cao and P. Xu. Activity patterns of pair programming. In HICSS ’05: Proceedings of the Proceedings of
the 38th Annual Hawaii International Conference on System Sciences, Washington, DC, USA, 2005. IEEE
Computer Society.

4. J. Chong and T. Hurlbutt. The Social Dynamics of Pair Programming. Proceedings of the 29th International
Conference on Software Engineering, pages 354–363, 2007.

5. B. Curtis. By the Way, Did Anyone Study Any Real Programmers? Empirical Studies of Programmers,
pages 256–262, 1986.

6. Brian Hanks, Charlie McDowell, David Draper, and Milovan Krnjajic. Program quality with pair program-
ming in cs1. In ITiCSE ’04: Proceedings of the 9th annual SIGCSE conference on Innovation and technology
in computer science education, pages 176–180, New York, NY, USA, 2004. ACM Press.

7. Andreas Hfer. Video analysis of pair programming. In APOS ’08: Proceedings of the 2008 international
workshop on Scrutinizing agile practices or shoot-out at the agile corral, pages 37–41, New York, NY, USA,
2008. ACM.

8. Kim Man Lui and Keith C.C. Chan. When does a pair outperform two individuals? In Extreme Programming
and Agile Processes in Software Engineering, volume 2675 of Lecture Notes in Computer Science, pages 225–
233. Springer, 2003.

9. Charlie McDowell, Linda Werner, Heather Bullock, and Julian Fernald. The effects of pair programming on
performance in an introductory programming course. In Proceedings of the 33rd SIGCSE technical symposium
on Computer science education, pages 38–42. ACM Press, 2002.

10. Nachiappan Nagappan, Laurie Williams, Miriam Ferzli, Eric Wiebe, Kai Yang, Carol Miller, and Suzanne
Balik. Improving the cs1 experience with pair programming. In Proceedings of the 34th SIGCSE technical
symposium on Computer science education, pages 359–362, New York, NY, USA, 2003. ACM Press.

11. Nachiappan Nagappan, Laurie A. Williams, Eric Wiebe, Carol Miller, Suzanne Balik, Miriam Ferzli, and
Julie Petlick. Pair learning: With an eye toward future success. In XP/Agile Universe, volume 2753 of
Lecture Notes in Computer Science, pages 185–198. Springer, 2003.

12. P. Romero S. Bryant and B. du Boulay. Pair programming and the mysterious role of the navigator. Inter-
national Journal of Human-Computer Studies, in press.

13. TechSmith Corporation. Camtasia studio 4.0.1. http://www.techsmith.com.
14. Laurie Williams and Robert R. Kessler. Experimenting with industry’s ”pair-programming” model in the

computer science classroom. Journal of Software Engineering Education, december 2000.
15. Laurie Williams, Robert R. Kessler, Ward Cunningham, and Ron Jeffries. Strengthening the case for pair

programming. IEEE Software, 17(4):19–25, 2000.
16. Laurie Williams and Richard L. Upchurch. In support of student pair-programming. In SIGCSE ’01:

Proceedings of the thirty-second SIGCSE technical symposium on Computer Science Education, pages 327–
331, New York, NY, USA, 2001. ACM Press.

17. S. Xu and V. Rajlich. Dialog-based protocol: an empirical research method for cognitive activities in software
engineering. In International Symposium on Empirical Software Engineering, pages 383–392, 2005.

