

PPIG, Lancaster 2008 www.ppig.org

Observing Open Source Programmers’ Information Seeking

Khaironi Yatim Sharif

Department of Computer Science

University Of Limerick

khaironiyatim.sharif@u.lie

Jim Buckley

Department of Computer Science

University Of Limerick

jim.buckley@u.lie

Keywords: POP-II.B Maintenance, Program Comprehension, Problem Comprehension

Abstract

Several authors have proposed information seeking as an appropriate perspective for studying

software maintenance, and have characterized information seeking empirically in commercial

software evolution settings. This paper addresses the parallel issue of information seeking in Open

Source software evolution. Open Source software evolution exacerbates information-seeking

problems, as team members are typically delocalized from the other members of their team.

This paper employs an analysis schema from our previous study (Sharif et.al 2008), generated through

open-coding, to characterize information seeking in Open-Source, programmers’ mailing-lists, the

medium they predominantly use for communication. A preliminary study using this schema had

several interesting conclusions. Specifically, the analysis has shown that Open Source programmers

rely somewhat on documentation, that many of their information seeking activities are process

orientated and that their information seeking goals change over time.

1. Introduction

Software maintenance and evolution are considerable parts of the software development process. The

amount of software lifecycle effort consumed during this phase has been estimated to range between

60% and 80% of the entire lifecycle effort (Lientz et.al 1978, Mayrhauser et.al 1993, Pressman 2000,

Zayour et.al 2001).

Maintenance itself can be divided into two general stages: “Understanding the program and actually

performing the change” (Prechelt et.al 1998). The time invested by the programmer in order to

achieve an understanding before a successful modification can consume a considerable part of the

maintenance phase, with typical estimates of the effort consumed in studying the code ranging from

between 50% and 90% of the entire maintenance effort (De Lucia et. al 1996).

Information-seeking has been defined as the searching, recognition, retrieval and application of

meaningful content (Kingrey 2002). It has been recognized as a core subtask within this phase of

software maintenance (Curtis et.al 1988, Seaman 2002, Singer 1998, Sim 1998). Sim (1998), for

example, refers to maintenance programmers as task-oriented information seekers, focusing

specifically on getting the answers they need to complete a task using a variety of information

sources.

Within this research area O’Brien (2005) and Vaclav (2005) have studied the information-seeking

processes of programmers during the maintenance of commercial software systems. In complimentary

research, Singer (1998) and Seaman (2002), have studied the information sources that programmers

use when seeking information. However, there have also been several empirical studies that aim to

inform on the types of information sought by programmers in the context of software comprehension

(Singer et.al 1998, Ko et.al 2007, Letovsky 1986, Pennington 1987, Good 1999, Wiedenback et.al

1991, O’Shea 2006). These studies focus on the information that programmers’ need and the

information that they find difficult to obtain during software maintenance, thus potentially informing

the design of software tools.

PPIG, Lancaster 2008 www.ppig.org

Several of these studies focus their efforts on small programs or on student programmers (Letovsky

1986, Pennington 1987, Good 1999). Others (Seaman 2002, O’Brien et.al 2005, Ko et.al 2007) report

on commercial software development in collocated teams. The work reported on here extends this

research by focusing on delocalized Open Source (OS) development, in the tradition of O’Shea

(2006), where the developer mailing lists of OS projects are analyzed to inform on the programmer’s

comprehension efforts. However, in contrast to O’Shea(2006), this work does not focus on the

information available to programmers in programs alone (Pennington 1987). Instead it places no

restrictions on the information source, using open coding as the basis from which to characterize all

the information programmers seek from other programmers via mailing lists. The resulting schema is

presented in section 2F

1
F.

Subsequent content-analysis of two OS mailing lists with this provisional schema has resulted in

several surprising findings. Specifically, in some mailing lists there seems to be an emphasis on

system documentation, a finding which seems to contradict previous studies in the area (Singer 1998,

Seaman 2002, Sousa et.al 1998) where documentation was largely perceived as untrustworthy.

Likewise the findings suggest a process orientation in developer’s information seeking, again

contradicting the source-code emphasis suggested in other works (Singer 1998, Sousa et.al 1998). In

addition, several characteristics of developer’s information seeking seem related to the time sampling

of the mailing list. The results of applying the schema are presented in section 4 of this paper with the

empirical study described in section 3.

2. A Preliminary Schema for OS Programmers’ Information Seeking

The developed schema is presented in Figure 1. This schema was developed by the author through

open coding (Krippendorff 2004) analysis of the questions contained in 2 mailing lists: specifically

the Java Bean Scripting Framework (BSF) and the Java Development Tool (JDT). The BSF

developers’ mailing list used for this purpose was captured from January to August 2007 (as August

was the last month of the mailing list at the time of analysis). The JDT mailing list was captured for

all of 2003, the first year of that archive. These captures resulted in a data set of 288 email

communications from which 98 questions were extracted.

 The open coding was carried out without the aid of a coding manual, the coder effectively creating

the categories through organizing the data, “breaking it into manageable units, synthesizing it,

searching for patterns, (and) discovering what is important” (Singer 1998) . Similar occurrences were

grouped together and given the same conceptual label if appropriately close (Krippendorff 2004). This

analysis was performed iteratively, each iteration marked by a discussion review with an independent

researcher in the field. (Readers interested in the detail of forming this schema are invited to review

Sharif (2008)).

Subsequently, a schema was distilled where every question identified in programmers’ emails had one

attribute from each of the following categories ; i) Question Strategy, ii) Information Focus and iii)

(pre-existing) Knowledge Strength.

1
 It is intended that this schema will be iterative refined in the tradition of grounded theory (Pandit

1996), until it becomes saturated (Howit 2008). This is in line with Basili’s assertion that knowledge should be

evolved through ‘modeling, experimenting, learning and remodeling’ (Basili 1996)

PPIG, Lancaster 2008 www.ppig.org

Figure 1 . Preliminary Schema for OS Programmer’s Information-seeking (Sharif et.al 2008)

2.1. Information Focus

Information focus refers to the external representation that the programmer refers to in their search for

information. There were 9 information foci identified. Table 1 contains a definition for each of these.

Please note that all of examples presented in Table 1 are taken from the data-set captured.

Information

Focus

Definition and Example

System

Documentation
Questions referring to the documentation: Example: “Is there any Apache official

guidelines on this?”

Changes Questions that refer to changes that programmer has made. . Example: “Here is a patch

for the changes I had to do…. Please look into it, I may have broken many exception

handling policies here”.

Tool /

Technology
Questions that refer to technology or tools. Example: “Can we use JIRA for bug

reporting for this issue instead….”

Legality /

Protocol
Questions about the protocol to follow. Example : “ Did you got the approval to

contribute your work to BSF? ”

Support

Required
Questions that ask another programmer to take on responsibility or tasks. Example:

“There are 2 non-filed open issues….. Are there any taker? ”

System

Implementation
Questions that aim to understand the code. Example : “(Given a situation..)I have no

idea why this is happening. Please help me solve this problem“

System Design Question referring to the system’s design. Example : ”Is jdt.core.jdom built on top of

jdt.core.dom? Can you get to the underlying jdom model?”

File

Configuration
Question about configuration management. Example : “ What is the distribution

directory in the src zip/tgz? ”

Person Question about the person in-charge for some task. Example : “Who is the team / person

in charge for documentation?”

Table 1 . Information Focus (Sharif et.al 2008)

 Sought

Information

Hypothesis Based

Question

Straight Question

Knowledge Strength

What
How

Why

Who

Where

Permission

Relationship

Question
Strategy System Doc.

Changes
Tool / Technology

Legality / Protocol

Support Required
System Impl.

System Design

File Configuration
Person

Information
Focus

PPIG, Lancaster 2008 www.ppig.org

2.2 Question Strategy

Question strategy refers to the type of information sought by the programmers. 7 question strategies

were derived by open coding of OS programmers’ email communication. The strategies are presented

in Table 2.

Question Strategy Definition and Example

What Questions which ask what source code or software tool elements do. When

referring to source code, these questions represent the bottom-up program

comprehension strategy employed by programmers (Letovsky 1986)

Example: “What is the .rep file?”

How Questions which attempt to identify how some goal of the system is achieved,

how some software tool feature is employed or how to proceed.

Example: “Does anyone know how I can fix this?

Why Asking about the purpose / explanation of a system behaviour or design. This

also represents bottom-up program comprehension by programmers (Letovsky

1986). Example:”I am getting an exception being thrown when trying to create

new java class and I was wondering if anyone could shed any light on why?”

Who Asking for the relevant persons for their task.

Example: “Are there any takers?”

Where Asking about the location for software artefacts, tool etc. Example:”Where I

can find the sources for plug in so I can create a patch?”

Permission Permission to do something. This strategy is normally related with Legality /

Protocol. It seeks permission to do something.

 Example:”BTW, can we use JIRA for bug reporting for this project instead ...”

Relationship Relationship between 2 or more things. It differs from other questions in that it

directs itself at relationships between entities rather than at entities themselves.

Example:”What is the dependence between PackageFragementRoot and

PackageFragment?”

Table 2 . Question Strategy (Sharif 2008)

2.3 Knowledge Strength

Knowledge strength refers to the pre-existing knowledge implied by the programmer in phrasing their

question. There are 2 such types of question phrasing, presented in Table 3.

Knowledge

Strength

Definition and Example

Hypothesis

Based

Question

Questions that are asked with an idea as to their answer already in mind. That is, the question

comes with a suggestion for the answer. This type of question is asked to validate, to confirm

or to correct the provisional answer. Example: ”I see there’s a JIRA issue now, and my

changes would’ve been needed anyway, so I hope you’re ok?”

Straight

Question

A straight question is a question that is asked without a proposed answer in mind. The person

who asks this type of question knows little about the information that he/she asked for and is

looking for a related information source. Example : ”Is there any news on access to the JSR-

223 TCK? Or any idea how long it might take to get access?”

Table 3 . Knowledge Strength (Sharif 2008)

PPIG, Lancaster 2008 www.ppig.org

3. The Empirical Study

This study described in this paper is a study based on the schema presented in section 2, which

examined the information sought by OS programmers during software evolution of the Java

Development Tool (JDT) project and the Java Bean Scripting Framework (BSF). The JDT is an OS

project concerned with enabling Eclipse for Java development. The JDT programmers’ mailing list

(Hhttp://dev.eclipse.org/mhonarc/lists/jdt-dev/maillist.htmlH) was captured for the period of 3 years from

January 2002 to December 2004. The BSF is an OS project concerned with allowing Java applications

to contain embedded languages, through an API to scripting engines. The BSF programmers’ mailing

list (Hhttp://jakarta.apache.org/site/mail2.htmlH) were captured from January to August 2007. The

resultant data set consisted of 469 emails, and from this data-set 237 questions asked by the

programmers were manually extracted. Content analysis was then applied to this dataset.

3.1 Content Analysis

The content analysis method has been widely employed in many disciplines including anthropology,

ethnography, history, linguistics, literature, political science and psychology. Krippendorff (2004)

provided perhaps the most widely accepted definition of content analysis:

Content analysis is a research technique for making replicable

and valid inferences from texts (or other meaningful matter) to

the contexts of their use (Krippendorff 2004)

In this study, content analysis was performed on questions contained in programmers’ mailing lists,

using the derived schema, in order to assess the information seeking of programmers as the OS

software systems evolved.

The medium of email list communication, was described by Mockus et al.(2002), as the primary

means of communication for OS projects ‘where programmers work in arbitrary locations, rarely or

never meet face to face, and coordinate their activity almost exclusively by means of email and

bulletin boards’. Hence this is an entirely naturalistic communication medium for these programmers

and thus has highly ecologically validity. Also, the mailing list medium can be viewed as containing a

substantial proportion of the information passed between programmers of globally distributed

projects, making mailing lists a rich source of data.

3.2 The Study

Initial investigations (Sharif 2008) showed that many of the questions in programmers’ emails were

asked without explicit indicators like question marks or explicit signalling words such as ‘what,

where…’ As a result, the questions in the mailing list had to be extracted manually. 469 emails were

analyzed in this fashion and 237 questions were extracted. Later, all of the questions were individually

isolated in a spreadsheet, ready for analysis. The first author carried out a detailed analysis of this

data, categorizing each question asked by the programmers with the aid of the current schema (Sharif

2008).

PPIG, Lancaster 2008 www.ppig.org

4. Result and Data Analysis

The result of the study is presented in Table 4. (the number in brackets in the heading shows the

number of question identified in a particular project for each year)

 JDT JDT JDT BSF

Question Strategy 2002 (39) 2003 (99) 2004 (66) 2007 (33)

What 8 (20%) 22 (22%) 22 (33%) 15 (45%)

How 18 (46%) 41 (41%) 22 (33%) 7 (21%)

Why 2 (5%) 5 (5%) 5 (8%) 3 (9%)

Who 3 (8%) 7 (7%) 2 (3%) 3 (9%)

Where 7 (18%) 17 (17%) 14 (21%) 1 (3%)

Permission 1 (2%) 5 (5%) 1 (2%) 4 (12%)

Relationship 0 (0%) 2 (2%) 0 (0%) 0 (0%)

Table 4 . Content Analysis Result, Question Strategy Category.

 JDT JDT JDT BSF

Information Focus 2002 (39) 2003 (99) 2004 (66) 2007 (33)

System Doc. 5 (13%) 11 (11%) 7 (11%) 6 (18%)

Changes 1 (3%) 3 (3%) 3 (4 %) 5 (15%)

Tool / Technology 20 (51%) 34 (34%) 11 (17%) 5 (15%)

Legality / Protocol 1 (3%) 7 (7%) 3 (4 %) 5 (15%)

Support Required 1 (3%) 1 (1%) 0 (0%) 4 (12%)

System Impl. 6 (15%) 31 (31%) 31 (47%) 4 (12%)

System Design 1 (3%) 3 (3%) 9 (14%) 2 (6%)

File Configuration 4 (10%) 8 (8%) 2 (3 %) 1 (3%)

Person 0 (0%) 1 (1%) 0 (0%) 1 (3%)

Table 5 . Content Analysis Result, Information Focus Category.

 JDT JDT JDT BSF

Knowledge Strength 2002(39) 2003 (99) 2004 (66) 2007 (33)

Hypothesis Based Question 5 (13%) 29 (29%) 11 (17%) 12 (36%)

Straight Question 34 (87%) 70 (71%) 55 (83%) 21 (64%)

Table 6 . Content Analysis Result, Knowledge Strength Category.

Table 4, 5 and 6 show the result of this content analysis on the JDT mailing list for 3 years, and BSF

for 9 months of one year. The BSF mailing list started in 2001, so column 4 reports on a mature stage

in this product’s evolution. The novel findings from this study are presented in following sections.

4.1 Information Focus

In line with other research (Singer 1998, Sousa et.al 1998), much of the programmers’ information

seeking was directed at the implementation of the system. For 2 of the 3 years reported on for JDT,

this was the 2nd biggest information focus and, in the 3rd year it was the biggest. More surprising, was

the programmers’ focus on the tools and technology they used. In this instance however, interest in

the tools and technology fell over the 3 years, suggesting that programmers were familiarizing

themselves with their environment and becoming more comfortable with it as time went on.

However, the most surprising finding was in regard to programmers’ System Documentation requests.

This was the third most frequently sought information focus in the first 2 years and the 4
th
 in the final

year of the analysis for the JDT. In the 2002 archive 12% of the requests were for documentation. The

PPIG, Lancaster 2008 www.ppig.org

trend was maintained in the following year when 11% of the requests were for documentation and

often these requests seemed important: for example: “Could anyone please tell me if Eclipse Platform

is J2EE compliant, where could I get some more documentation on it. This piece of information is

really critical for me”.

This is at odds with previous studies that suggest software document is not the preferred reference

material for programmers (Singer 1998, Seaman 2002, Sousa et.al 1998). It is possible that OS

programmers rely much more on documentation than these other programmers based on their

delocalization. As they cannot rely on informal communication with their team, they are more likely

to need reference material in hand while doing their job. In addition, it is also possible that due to

delocalization, OS programmers may be motivated to produce better documentation and therefore

they perhaps can trust on documentation more than in the traditional case. Further study will be done

to investigate if this is a widespread phenomenon.

4.2 Process Oriented

Our previous findings (Sharif 2008) suggest a largely process-orientation nature to open-source

programmers’ information-seeking (albeit based on a much smaller data-set). The data showed in

Table 4 however portrays a slightly different picture. In the ‘Information Strategy’ dimension, ‘who’

questions and ‘permission’ questions directly reflect a process-oriented nature, while many of the

‘how’ questions also reflect this aspect of software development. Even disregarding the proportion of

relevant ‘how’ questions, nearly 8% of questions are explicitly processes based. Likewise, looking at

the relevant ‘Information Focus’ questions (person, protocol), nearly 10% were process oriented.

While these results do not imply the same degree of process-oriented information seeking as was

suggested in our original findings, this category of information seeking is still significant for OS

programmers and deserving of further study, given that most studies to date have not concentrated on

this area.

4.3 Development Size (location and team-based)

Several of the previous empirical studies that also aim to inform on the information types sought by

programmers in the context of software comprehension (Pennington 1987, Good 1999,Wiedenback

et.al 1991, O’Shea 2006) derive from a theoretical analysis of the information available in programs,

originally carried out by Pennington (1987). In one typical example of this work, O’Shea (2006,

2004) did content analysis on one OS mailing list based on Pennington’s schema and her resultant

schema was heavily reflective of the original. Indeed, only late in O’Shea’s work did she identify new

information types independent of Pennington’s. For example, she identified a ‘location’ information

type where programmers discussed the locations of fixes and functionalities in the code (O’Shea

2007).This category wasn’t present in Pennington’s initial analysis, probably because Pennington only

considered individual programmers studying small code pieces (Penington 1987). In such a scenario,

location wasn’t an issue. This suggests that Pennington’s schema should be expanded to consider

context specific factors like larger systems and team-based development. Indeed, our findings

mirrored O’Shea (2007), in that we identified 39 questions which were location oriented (‘where’

questions). This represented approximately 14% of all the questions asked suggesting that this is a

significant information seeking issue for OS programmers maintaining large systems.

The ‘who’ questions identified in the dataset above refer to the team-based nature of the development,

requesting information on the member(s) of the team who (for example) implemented a specific part

of the system. Likewise the ‘Permission’ questions asked others (inside or outside the team) for

PPIG, Lancaster 2008 www.ppig.org

permission to take some course of action. While these questions were present, they accounted for

approximately only 7% of the questions asked.

Our study shows a big number of Where questions asked in the JDT mailing list (refer to Table 4). .

This is in line with the works in the concept-location area (Vaclav et.al 2005). However these were

not as obvious in BSF mailing list. This might be because the BSF mailing list represented a mature

stage of development where the team knew the location of the resources they required.

4.4 Changes over time

There are several trends that can be identified over time for the JDT (from Table 4, 5 and 6):

• Various information seeking issues decrease over time.

Tool/Technology questions decreased over time. A possible reason for this is that both OS

programmers become more familiar with the tools they use over the lifetime of their projects and so

have fewer information requests in this area. Similar reasoning can be applied to the decrease in the

request for documentation over the lifetime of the project.

Another information seeking issue that decreased over time is ‘how’ questions. ‘How’ questions

reflect reasoning about how a goal is achieved, or how to proceed. The decrease in ‘how to proceed’

questions is to be expected. However, it would be surprising if reasoning about how a goal is achieved

in the system decreases over time, as this reflects top-down comprehension (Letovsky 1986), a

strategy associated with programmers who are increasingly familiar with their application domain

(O’Brien et.al 2004). Further work will sub-categorize these ‘how’ questions to see if a masking effect

is in place.

• What’ questions have grown over time.

This is a genuinely surprising finding, especially given that ‘what’ questions, as described in the

above schema, represent bottom-up comprehension of the system and ignorance of the facilities in

software tools. Given that other information issues seem to become less prevalent as programmers

become more familiar with the system, it is surprising that this type of question increases. Further

qualitative analysis will be carried out to address this phenomenon.

5. Limitation

There is validity threat issue on the evidence strength discussed in this paper. This paper looks at

questions posted on two open source programmers’ mailing lists consisting of over 400 emails

containing 237 questions. Even though this is a large number, the data is split by year leading to four

groups (with 33-99 questions in each) and each group is analyzed in three dimensions with 2-9

categories. Thus, the number of data points in each category varies from 0 to 70, with 80% of all

categories having less than 10 questions. As a consequence, the discussion is based on considerably

weak evidence. Further investigation with larger data set to provide more evidence for each category

will be done.

6. Conclusion

This study applied an analysis schema for open-source programmers’ information seeking to

questions taken from OS projects to investigate preliminary findings in (Sharif 2008). Specifically, the

preliminary findings are the high request rate for documentation, the process-oriented nature of the

requests and further issues that related to large system and team-based development. Evidence in this

study showed that OS programmers do rely on documentation that they are process oriented (albeit to

a lesser degree than was originally reported) and that location and team based issues are an important

part of their information seeking. In addition, a number of interesting findings over time became

apparent.

PPIG, Lancaster 2008 www.ppig.org

Our future work concerns refining the schema, and carrying out further analysis with this refined

schema. Specifically, we intend to probe our novel findings with respect to larger datasets, and to

identify the difficult information seeking issues for OS programmers.

5. Acknowledgements

We would like to thank the Malaysian Government and Lero (supported by Science Foundation

Ireland grant number 03/CE2/I303_1).

5. References

AJ Ko, R. D., G Venolia (2007). Information Needs in Collocated Software Development Teams.

Paper presented at the 29th International Conference on Software Engineering (ICSE'07).

A. Mockus, R. T. F., and J. D. Herbsleb. . (2002). Two case studies of open source software

development: Apache and Mozilla. ACM Transactions on Software Engineering and

Methodology, 11(3), 309-346.

Basili, (1996)"The Role of Experimentation in Software Engineering : Past, Present and Future," in

Keynote Address : International Conference on Software Engineering.

Curtis, B., Herb Krasner, and Neil Iscoe. (1988). A field study of the software design process for large

systems. Communications of the ACM, 31(11), 1268-1287.

Cynthia L. Corritore , S. W. (1991). What Do Novices Learn During Program Comprehension?

International Journal of Human-Computer Interaction, 3.

De Lucia, A., Fasolino, A. R. & Munro, M. (1996). Understanding function behaviors through

program slicing. Paper presented at the International Workshop on Program Comprehension

(IWPC’96).

Dennis Howit, D.C (2008), Introduction to Research Methods in Psychology, 2 ed. Essex, England:

Pearson Education Limited

Good, J. (1999). Programming Paradigms, Information Types and Graphical Representations :

Empirical Investigations of Novice Pogram Comprehension. Unpublished PhD Thesis, The

University of Edinburgh, Edinburgh , UK.

Khaironi Yatim Sharif , Jim Buckley (2008). Developing Schema for Open Source Programmers’

Information-Seeking. Paper presented at the International Symposium on Information

Technology 2008 (ITSIM '08).

Kingrey, K. P. (2002). Concepts of Information Seeking and Their Presence in the Practical Library

Literature. Library Philosophy & Practice, 4(2).

Krippendorff, K. (2004). Content analysis: An introduction to its methodology: Sage Publications.

Letovsky, S. (1986). Cognitive Process in Program Comprehension. Paper presented at the First

Workshop on Empirical Studies of Programmers.

Lientz, B. P., Swanson, E. B. & Tompkins, G. E. . (1978). Characteristics of application software

maintenance. Communications of the ACM, 21(6), 466-471.

Michael P. O'Brien,Jim Buckley, Norah Power. (2006). Empirically Refining a Model of

Programmers' Information Seeking Behaviour During Software Maintenance. Paper

presented at the 18th Annual Psychology of Programming Interest Group (PPIG) Workshop,,

Brighton, UK.

Michael P. O'Brien, J. B. (2005). Modelling the Information-Seeking Behaviour of Programmers - An

Empirical Approach. Paper presented at the 13th International Workshop on Program

Comprehension (IWPC'05).

PPIG, Lancaster 2008 www.ppig.org

Michael P. O'Brien , J. B., Teresa M. Shaft (2004). Expectation-based, inference-based, and bottom-

up software comprehension. Journal of Software Maintenance and Evolution: Research and

Practice, 16(6), 20.

O'Shea,P.A. , C. Exton. (2004). The Application of Content Analysis to Programmer Mailing Lists as

a Requirements Method for a Software Visualisation Tool. Paper presented at the

International Workshop on Software Technology and Engineering Practice (STEP'04).

 O'Shea, P.A ,Location' Information Type, Personal Correspondence, 2007.

O'Shea, P. A. (2006). An Investigation of Views and Abstractions Employed by Software Engineers

during Software Maintenance - An Empirically Founded set of Guidelines for Visualisation

Tools Supporting Comprehension. Unpublished PhD Thesis, Limerick Ireland.

Pandit, N.R (1996) ,The Creation of Theory:A Recent Application of the Grounded Theory Method,

in The Qualitative Report vol. 2

Pennington, N. (1987). Comprehension strategies in Programming. Paper presented at the Empirical

studies of programmers: second workshop.

Prechelt, L., Unger, B., Philippsen, M. & Tichy, W. (1998). Re-evaluating inheritance depth on the

maintainability of object-oriented software. International Journal of Empirical Software

Engineering, 1–16.

Pressman, R. S. (2000). Software Engineering: A Practitioner’s Approach (5 ed.). Shoppenhangers

Road, Maidenhead, Berkshire SL6 2QL, England.: McGraw-Hill Publishing Company.

Seaman, C. B. (2002). The Information Gathering Strategies of Software Maintainers. Paper

presented at the International Conference on Software Maintenance (ICSM02).

Sim, S. E. (1998). Supporting Multiple Program Comprehension Strategies During Software

Maintenance. Unpublished Masters Thesis, University of Toronto.

Singer, J. (1998). Work Practices of Software Maintenance Engineers. Paper presented at the

International Conference on Software Maintenance (ICSM '98), Washington, Federal District

of Columbia, USA.

Singer, J. L., T. (1998). Studying work practices to assist tool design in software engineering. Paper

presented at the 6th International Workshop on Program Comprehension (IWPC’98).

Singer, J. (1998, November 1998). Practices of Software Maintenance. Paper presented at the

International Conference on SoftwareMaintenance, Bethesda, MD.

Sousa, M. J. C., and Helena Mendes Moreira. (1998, November 1998). A Survey on the Software

Maintenance Process. Paper presented at the International Conference on Software

Maintenance, Bethesda, MD.

Vaclav Rajlich, Andrian Marcus, Joseph Buchta, Maksym Petrenko, Andrey Sergeyev. (2005). Static

Techniques for Concept Location in Object-Oriented Code. Paper presented at the 13th

International Workshop on Program Comprehension (IWPC’05).

Von Mayrhauser, A. & Vans, A. M. (1993). From code understanding needs to reverse engineering

tool capabilities. Paper presented at the Sixth International Conference on Computer-Aided

Software Engineering (CASE’93). 230-239.

Zayour, I. & Lethbridge, T. C. (2001). Adoption of reverse engineering tools: a cognitive perspective

and methodology. Paper presented at the 9th International Workshop on Program

Comprehension (IWPC’01).

