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Abstract. A test was designed that apparently examined a student’s knowledge of assignment
and sequence before a first course in programming but in fact was designed to capture their rea-
soning strategies. An experiment found two distinct populations of students: one could build and
consistently apply a mental model of program execution; the other appeared either unable to build
a model or to apply one consistently. The first group performed very much better in their end-of-
course examination than the second in terms of success or failure. The test does not very accurately
predict levels of performance, but by combining the result of six replications of the experiment,
five in UK and one in Australia. we show that consistency does have a strong effect on success in
early learning of programming. Background programming experience, on the other hand, has little
or no effect.

1 Introduction

Programming is hard to learn. The search for predictors of programming ability has produced
no significant results. The problem is international and longstanding.

It is a commonplace that some students find programming extremely easy to learn whilst
others find it almost impossible. Dehnadi observed that some novices confronted by simple
programming exercises gave rational but incorrect answers. Their answers were mechanically
plausible: for example, in Java assigning the value of a variable from left to right rather than
right to left, or moving a value in an assignment rather than copying.

This suggested to us that some novices may have been equipped with some abilities before
the course started. In an experiment Dehnadi (2006) administered a test made up of questions
about assignment and sequence programs. The test was administered before the first week of an
introductory programming course, without giving any explanation of what the questions were
about. Almost all participants gave a full response. About half used a rational model which
they applied consistently to answer most or all of the questions. The other half did not seem to
use a recognisable model or appeared to use several models. The consistent subgroup had an
85% pass rate in the course examination, and the rest a 36% pass rate.

There were some deficiencies in that experiment, and much of the research community was
sceptical of his result, particularly when two experiments (Caspersen et al., 2007; Wray, 2007)
appeared to refute it, and a review of several others (Bornat et al., 2008) concluded that the test
does not predict very much of the variance in levels of performance in the course examination.
The first ‘refutation’ was an experiment conducted under what seem to be unusual conditions,
and the second showed only that the test was not psychometric, in that it is ineffective in a
population of programmers. The review did not distinguish clearly between evidence for the
presence of an effect and measurements of its strength.

This paper provides evidence for the claim that consistency affects performance, by a meta-
analysis of six replications of an improved version of the experiment. It shows that consistency
is not simply the result of background programming experience, and that by contrast such
experience has little or no effect on success.

2 Previous Work

The search for predictors of success in learning to program has turned up very little. Cross
(1970), Mayer and Stalnaker (1968) and Wolfe (1971) tried to use occupational aptitude tests



to predict successful candidates for employment in the software industry. McCoy and Burton
(1988) said good mathematical ability was a success factor in beginners’ programming. Wilson
and Shrock (2001) found three predictive factors: comfort level, mathematical skill, and attribu-
tion to luck for success or failure. Tukiainen and Mönkkönen (2002) evaluated a programming
aptitude test devised by Huoman (1986), and found that an initial correlation between test
scores and success disappeared when programming background was taken into account. Beise
et al. (2003) found that neither sex nor age is a good predictor of success in the first program-
ming class. Rountree et al. (2004) reveal that the students most likely to succeed are those
who are expecting to get an ‘A’ grade and are willing to say so. In a multi-national project
Lister et al. (2004), Fincher et al. (2005) and Raadt et al. (2005) opined that incapability of
students in entry-level programming is due to lack of general problem-solving ability. Simon
et al. (2006a), Tolhurst et al. (2006) and Simon et al. (2006b) followed up the project and came
to similar conclusions. Bennedsen and Caspersen (2006) found no correlation between cognitive
development and results in a model-based introductory programming course; and they found,
in a three-year longitudinal study (Bennedssen and Caspersen, 2008), that general abstraction
ability was not a predictor for success in learning computer science.

Johnson-Laird’s notion of ‘mental model’ (Wason and Johnson-Laird, 1968) lies behind
this study, and much other research on programming learning. Kessler and Anderson (1986)
and Mayer (1981) all stressed the significance of mental models. du Boulay (1986) catalogued
the difficulties that novices experienced and classified them according to mental models. Fix
et al. (1993) differentiated mental models of novices and experts. Perkins and Simmons (1988)
described novice learners’ according to their problem-solving strategies as “stoppers”, and
“movers”. Mayer (1992) described existing knowledge as a “cognitive framework” and how
new information is connected to existing knowledge. Dyck and Mayer (1985) emphasised the
necessity for a clear understanding of the underlying virtual machine in novice’s learning pro-
cess. Putnam et al. (1986) studied the impact of novices’ misconceptions of the capabilities of
computers. van Someren (1990) found that mechanical understanding of the way the language
implementations is the key to success.

Our research is based on the observation of mental models of rational misconceptions.
Spohrer and Soloway (1986) used novices’ mistakes and misconceptions to hypothesise what
they were thinking as they programmed. They found that just a few types of bug cover
almost all those that occur in novices’ programs. They hypothesised that a “programming
goals/subgoals/plans” theory is used widely by novices to break down the complexities of pro-
gram applications. In (Soloway and Spohrer, 1989) they studied novices’ errors and explained
how their background knowledge interfered with their learning process and caused many of their
misconceptions.

Shneidermann (1985) investigated different uses of variables and addressed issues such as
assignment statements, the difference between a variable and the value stored in it, printing,
using, changing, and comparing the value stored in a variable. He distinguished counting from
summing from other uses of a variable.

Samurcay (1985) looked at different ways that variables are assigned values: assignment of
a constant value (a=3); assignment of a calculated value (a=3*b); duplication (a=b); and accu-
mulation (x=x+1). He described how each of these techniques can be used within two different
contexts: external - where variables are inputs to or outputs of the program, under control of the
program user; and internal - where variables are necessary only for the solution of the problem
and are controlled by the programmer. He claimed that internal variables are harder for novices
to process by illustrating three uses of variables in loops: update; test; and initialisation. Novices
found more difficulties with initialisation than updating or testing.

du Boulay (1986) identified misconceptions about variables. He illustrated that the analogy
of a box or drawer with a label on it may lead learners to build a mental model that a variable
can hold more than one value at a time; when a variable is used to hold a running total, the



fact that learners forget to initialise the total to zero comes from the fact that a box which,
even when empty, contains something. Comparing a variable to a box triggers learners’ minds
to their existing mental model of boxes, rather than building a correct model of variable. He
also noted students’ misconceptions when assigning one variable to another: for example x=y
may be viewed as linking the second variable to the first, and therefore a change in x results in
a change in y. Novices may not understand that a value stays in a variable until it is explicitly
changed, the contents of memory are erased or the machine is switched off. He concluded that
novices with a lack of mechanical understanding build a inappropriate mental model.

Perkins et al. (1986) explained that novices have misconceptions about the names of vari-
ables, even though they know in principle that the choice of variable names is theirs. Having
a weak mental model of the virtual machine, students can have the notion that a computer
program knows that the highest input values should go into variables with names like largest.
They noted that people commonly fail to notice inconsistencies in their mental models, and
often when inconsistencies are brought to their attention cannot notice their importance.

Kessler and Anderson (1986) studied students’ errors in learning recursion and iteration.
They observed that students who had poor mental models of the mechanical processes of re-
cursion and iteration in programming adapted poor learning strategies. They emphasised that
novices’ appropriate mental models of such techniques should be developed prior to engaging
them in any implementation task.

Mayer (1981) believed that experts are able to think semantically and demonstrates four
areas of differences between them and novices in computer programming: semantic knowledge,
syntactic knowledge, ability in task management; and having an effective mental model of the
virtual machine. Novices are at the beginning of their mental model development; syntactic
knowledge is hard for them because it’s difficult to catch grammatical mistakes; they are in-
experienced in problem decomposition; and lack of strategic knowledge forces them to lean
on low-level plans during problem solving. Mayer describes existing knowledge as a “cognitive
framework”, and “meaningful learning” as a process by which new information is connected to
existing knowledge. In (Mayer, 1992) he stated that people who know how their programs work
do better than those who do not, and mental models are crucial to learning and understanding
programming.

3 Initial experiment

Dehnadi’s experience of teaching led him to believe that novices bring patterns of reasoning to
the study of programming: some of them appear to use rational mechanisms, distinct from those
taught in the course, to explain program behaviour. He designed a test (Dehnadi, 2006) to see
what would happen when students were confronted with programming problems before they
had been given any explanation of the mechanisms actually involved in program execution. His
questions each gave a program fragment in Java, declaring two or three variables and executing

1.  Read the following statements and 

tick the box next to the correct answer 

in the next column.   

   
int a = 10; 

int b = 20; 

 
a = b; 

The new values of a and b are: 

 

! a = 30    b = 0 

! a = 30    b = 20 

! a = 20    b = 0 

! a = 20    b = 20 

! a = 10    b = 10 

! a = 0     b = 10 

Any other values for a and b: 

 

           a  =                     b =                        

Use this column for your 

rough notes please   

 

Fig. 1. The first question in the test, a single assignment



one, two or three variable-to-variable assignment instructions, as illustrated in figure 1. The
student was asked to predict the effect of the program on its variables and to choose their
answer/s from a multiple-choice list of the alternative answers. There was no explanation of the
meaning of the questions or the equality “=” sign that Java uses to indicate assignment. Except
for the word “int” and the semicolons in the first column, the formulae employed would have
looked like school algebra, but when the question asked about the “new values” of variables it
hinted that the program produces a change.

Dehnadi had a prior notion of the ways that a novice might understand the programs,
and prepared a list of recognised mental models. The models of assignment that he expected
subjects to use were M1-M8 and M11 from table 2. Questions with more than one assignment
required a model of composition of assignments as well as a model of single assignment. The
three recognised models of sequential composition are shown in table 3.

The test was administered to 30 students on a further-education programming course at
Barnet College and 31 students in the first-year programming course at Middlesex University.
Two dropped out before the examination. No information was recorded about earlier education,
programming experience, age or sex. It was believed that few had any previous contact with
programming and that all had enough school mathematics to make the equality sign familiar.

Despite the lack of explanation of the questions, most students gave a more or less full
response. About half (the consistent group C) gave answers which corresponded to a single
mental model of assignment in most or all questions; about as many (the inconsistent group
I) gave answers which corresponded to different models in different questions or didn’t use
recognisable models; and a small number (the blank group B) answered few or no questions.

Table 1. Consistency (week 0) and second quiz pass/fail

Pass Fail Total

C 22 4 26

I 8 15 23

B 4 6 10

Total 34 25 59

χ2 = 13.944, df = 2, p < 0.001
highly significant

When the result of the test was correlated with the result of in-course examinations it
was found that in the later examination which examined technical skill more thoroughly, the
consistent (C) group had an 85% pass rate, but the others (I and B together) only 36% (table
1). This was a large effect, compared to earlier research on predictors, and a χ2 test showed that
it was significant. The overall pass rate was 58% so the test might be seen as a predictor, but the
false negative rate – the fraction of the I and B groups who managed to pass the examination
– was 36%, which was less convincing. Indeed when the data was re-analysed in (Bornat et al.,
2008), it was found that the test explained only about 26% of the variance in examination
results.

This experiment was over-hyped by Dehnadi and Bornat (2006), and perhaps as a result
attracted a good deal of critical attention.

3.1 Two apparent refutations and an analysis

An experiment at Aarhus University, Denmark by Caspersen et al. (2007) used Dehnadi’s test
but found no effect of consistency on success. Wray (2007) at the Royal School of Signals, UK
used Dehnadi’s test and found no effect of consistency on success but found a strong effect of
Baron-Cohen’s SQ and EQ measures (Baron-Cohen et al., 2001, 2003).



In the Aarhus experiment 124 subjects (87%) were assessed as C, 18 (13%) as notC, and
the average failure rate in the course was 4%. The high proportion of consistent subjects and
the low failure rate makes this experiment very different from all but one of the experiments
included in our meta-analysis below, and the very low failure rate may have constrained statis-
tical analysis. The researchers were unable to correlate the test with success/failure statistics,
and their decision to look for correlations with graded data would in any case have weakened
any signs of the effect of consistency. Despite the difficulties of dealing with such a population,
our meta-analysis includes an experiment at the University of York which on the face of it has
an intake similar to that in the Aarhus experiment.

Wray’s experiment refutes the regrettable claim by Dehnadi and Bornat (2006) that Deh-
nadi’s test divides novices into programming sheep and non-programming goats. The test should
not be considered psychometric since a normal programming course attempts to train novices
to pass it. Wray used the test five months after the course ended. It could not be expected to
deliver a meaningful result in those circumstances.

An analysis by Bornat et al. (2008) looked individually at the initial experiment and some of
the experiments discussed below and concluded that the test is not a good predictor of perfor-
mance, explaining only about a quarter of the variance of examination results: that is, consistent
subjects don’t all do better than all inconsistent subjects, and the overlap is considerable. The
false negative rate in the experiments, which might have been caused by faulty positioning of
a pass mark, is instead a sign of a deficiency in the test. Once again the claim about sheep
and goats is resoundingly rejected. This analysis shows that the effect is not overwhelming, and
indeed not strong enough to be used as an admissions test, but it does not disprove its existence.

4 Improved experimental protocol

In response to criticism of the initial experiment some improvements were made to the test.
Most importantly, the judgement of consistency was made explicit and repeatable. The number
of models of assignment recognised was expanded to the eleven shown in table 2. Answers
to single-assignment questions still correspond to a single tick in all cases except M10, which
requires a student to tick all answers which make all variables equal – the fourth and fifth answer
in figure 1, for example. The models of composition were made explicit as shown in table 3:
note that model S2 generates multiple ticks in all multiple-assignment questions. Answer sheets
were produced, illustrated in figure 4, which identified the mental models apparently used in
particular answers or patterns of answers; in particular this exposed ambiguity in some answers
to multiple-assignment questions.

Questions about background were added to the questionnaire. We asked about age and sex,
about previous programming experience (yes/no and if yes, what languages used) and previous
programming course attendance (yes/no). A mark sheet was produced, shown in figure 3, which
exposed the assessment of consistency. A marking protocol was developed to resolve ambiguities
in multiple-assignment responses: essentially, we mark ambiguous responses across each row and
look for the column which maximises the number of marks. We note that this makes consistency
easier to achieve and, if anything, may dilute its effect on success.

These improved materials were used in all of the experiments analysed below.

5 New experiments

To evaluate more reliably the claim that consistency has a noticeable effect on success in learning
to program, the improved experiment was repeated several times by collaborating experimenters:
at the University of Newcastle, Australia; twice at Middlesex University, UK; at the University
of Sheffield, UK; at the University of York, UK; at the University of Westminster, UK; at Banff
and Buchan college, UK and at OSZ TIEM Berlin, Germany. The data for the first six of these
experiments has been provided to us and is analysed here.



Question Answers/s Model/s

a = 10 b = 0 M1+S1
a = 20 b = 10 (M1+S3)/(M2+S3)/(M3+S3)/

5. (M4+S3)
a = 10 b = 10 M2+S1

int a = 10; a = 0 b = 20 M3+S1
int b = 20; a = 20 b = 20 M4+S1

a = 40 b = 30 M5+S1
a = b; a = 30 b = 30 (M5+S3)/(M6+S3)/(M7+S3)/
b = a; (M8+S3)

a = 30 b = 0 M6+S1
a = 30 b = 50 M7+S1
a = 0 b = 30 M8+S1
a = 10 b = 20 (M9+S1)/(M11+S1)/

(M11+S3)
a = 20 b = 20 (M10+S1)/(M2+S2)/(M4+S2)
a = 10 b = 10
a = 0 b = 10 (M1+S2)/M3+S2)
a = 20 b = 0
a = 30 b = 20 (M5+S2)/(M7+S2)
a = 10 b = 30
a = 0 b = 30 (M6+S2)/(M8+S2)
a = 30 b = 0
a = 10 b = 20 (M11+S2)
a = 10 b = 20

Fig. 2. Sample answer sheet

Participant 

code 

Age Sex Time to do 

test 

Prior programming A-Level/s  Prior programming 

courses 

Course result 

 

 

 

       

 

Assignment 
No 

effect 

Equal 

sign 

Swap 

values 

Assign-to-left Assign-to-right 
Add-Assign-to-

left 

Add-Assign-to-

right 
Questions 

Lose-

value 

(M1) 

/Ss / I 

Keep-

value 

(M2) 

/Ss / I 

Lose-

value 

(M3) 

/Ss / I 

Keep-

value 

(M4) 

/Ss / I 

Keep-

value 

(M5) 

/Ss / I 

Lose-

value 

(M6) 

/Ss / I 

Keep-

value 

(M7) 

/Ss / I 

Lose-

value 

(M8) 

/Ss / I 

Values 

don't 

change     

(M9) 

/ S  

Assign 

means 

equal 

(M10) 

/ S  

 

Swap 

values 

(M11) 

/Ss / I 

Remarks (including participants’ 

working notes) 

1             

2             

3             

4             

5             

6             

7             

8             

9             

10             

11             

12             

C0            

C1     

C2   

C3  

 

 

 

Additional notes: 

 

s.dehnadi@mdx.ac.uk    r.bornat@mdx.ac.uk     Simon@newcastle.edu.au 

Fig. 3. The marksheet



The pass rates in the experiments and overall are shown in table 4. The pass rate in Middlesex
2 is exceptionally low, in Sheffield high and in York exceptionally high. There is a gradient in UK
universities in the prior achievement levels of admitted students: Middlesex and Westminster
are towards the lower end, Sheffield and York towards the higher. Differences in pass rates may
reflect this. Note that Middlesex 1 and Middlesex 2 were successive in-course examinations of
the same cohort.

We first divide the population according to whether they reported prior programming experi-
ence, and alternatively according to reported prior programming course attendance. In addition,
based on reports of programming languages used, we classify programming experience as rele-
vant to the test or not (essentially, whether or not subjects had been exposed to mechanisms
of assignment and sequence similar to those used in the course they were about to take). Ta-
ble 5 shows the effects of these background factors on success (the small number who did not
reply in each case are ignored). There were few strong differences in the figures. Some of these
results were more significant than others: we don’t comment on that at this point, but rely on
meta-analysis. Effects of age and sex are not analysed here: there were very small numbers of
women in the experiments, too small to analyse with the tools we have available; and the very
small age spread in the populations, typically two or three years, showed almost no differences
in the experiments in which we analysed it.

To begin to look at the effect of consistency measured in the test on success in the course
examination, we looked at the success rates of consistent subjects against the rest. As part of the
improved experimental protocol, we were able to recognise levels of consistency: subjects who use
a single model throughout are consistent; those who use two related models are also consistent
but less so. By combining neighbouring columns in the marksheet of figure 3 we identified
consistency levels C0 (one model), C1 (two related models), C2 (four related models) and C3
(any assignment model). In practice C0 was always large and the others, except in Middlesex
2, very small. Nevertheless we analyse the effect of consistency in two ways: C0/notC0 and
C0-C3/notC. Table 6 gives the results.

In each experiment we found the same thing: consistent subjects did better than the rest.
The effect was weakest in the Middlesex 1, Westminster and York experiments. At York, as
at Aarhus, most subjects scored consistently in the test (99 out of 105 in York, 124 out of
142 in Aarhus). There were so few non-consistent subjects at York that we could put little
weight on that particular result, but we can, as we should, include it in the meta-analysis. At
Middlesex, where we have access to the examination materials, we know that Middlesex 1 was a
non-technical first in-course quiz, largely bookwork, whereas Middlesex 2 was a more technical
second quiz. Middlesex 2 separated students more radically and showed a stronger effect of
consistency, with far fewer passes in the non-consistent groups. It may be that the effect of
consistency is generally weaker in non-technical examinations. We believe that this matter is

Table 2. Anticipated mental models of a=b

Model Description Effect

M1 right to left move a←b ; b←0

M2 right to left copy a←b

M3 left to right move a→b ; 0→a

M4 left to right copy a→b

M5 right to left move and add a←a+b ; b←0

M6 right to left copy and add a←a+b

M7 left to right move and add a+b→b ; 0→a

M8 left to right copy and add a+b→b

M9 no change

M10 equality a=b

M11 swap a�b



Table 3. Anticipated mental models of a=b; b=a

Model Description

S1
a=b; b=a

Conventional sequential execution

S2
a=b || b=a

Independent assignments, independently reported

S3
a,b=b,a

Simultaneous multiple assignment, ignoring effect upon source

Table 4. Success rates

NewC Mdx1 Mdx2 Shef West York Overall

Population 71 92 72 58 110 105 508
Success 66% 63% 47% 79% 70% 90% 70%

Table 5. Effect of programming background on success in separate experiments

NewC Mdx1 Mdx2 Shef West York Overall
pop succ pop succ pop succ pop succ pop succ pop succ pop succ

Prior
experience

yes 46 63% 45 56% 33 52% 14 93% 65 75% 91 92% 294 74%
no 19 68% 44 70% 36 44% 44 75% 36 61% 14 71% 193 65%

Relevant
experience

yes 33 61% 29 76% 21 62% 7 86% 21 71% 58 95% 169 78%
no 32 69% 50 68% 48 42% 51 78% 80 69% 47 83% 308 68%

Prior course
yes 30 63% 64 64% 51 51% 14 93% 61 74% 34 88% 254 69%
no 32 69% 23 65% 17 47% 47 81% 30 70% 71 90% 220 76%

Table 6. Effect of consistency on success in separate experiments

NewC Mdx1 Mdx2 Shef West York Overall
pop succ pop succ pop succ pop succ pop succ pop succ pop succ

C0 44 80% 35 77% 28 79% 43 91% 62 77% 99 92% 311 84%
notC0 27 44% 57 54% 44 27% 15 47% 48 60% 6 50% 197 48%

C0-C3 52 79% 56 70% 42 64% 45 91% 80 75% 103 90% 378 80%
notC 19 32% 36 53% 30 23% 13 38% 30 57% 2 50% 130 42%



Table 7. Effect of consistency on success in subgroups in separate experiments

NewC Mdx1 Mdx2 Shef West York Overall
pop succ pop succ pop succ pop succ pop succ pop succ pop succ

Correct
model

CM2 23 87% 11 100% 9 89% 11 73% 8 75% 87 92% 149 89%
notCM2 48 56% 81 58% 63 41% 47 81% 102 70% 18 78% 359 62%

Incorrect
model

C0 21 71% 24 67% 19 74% 32 97% 54 78% 12 92% 162 80%
notC0 27 44% 57 54% 44 27% 15 47% 48 60% 6 50% 197 48%

With prior
experience

C0 33 79% 12 75% 16 88% 14 93% 40 85% 88 92% 203 87%
notC0 13 23% 33 48% 17 18% 0 25 60% 3 100% 91 44%

No prior
experience

C0 13 85% 23 78% 12 66% 29 90% 16 62% 11 91% 104 80%
notC0 6 33% 21 62% 24 33% 15 47% 20 60% 3 0% 89 47%

With relevant
experience

C0 24 79% 16 94% 10 100% 7 86% 15 80% 57 95% 129 90%
notC0 9 11% 13 54% 11 27% 0 7 50% 1 100% 40 38%

No relevant
experience

C0 15 80% 19 63% 18 67% 36 92% 41 76% 42 88% 171 80%
notC0 17 59% 40 55% 30 27% 15 47% 39 63% 5 40% 146 50%

With prior
course

C0 21 76% 24 79% 22 77% 10 80% 35 77% 65 94% 177 84%
notC0 9 33% 40 55% 29 31% 1 0% 26 69% 6 50% 111 50%

No prior
course

C0 15 93% 11 73% 7 86% 33 94% 14 93% 34 88% 114 89%
notC0 17 47% 12 58% 10 20% 14 50% 16 50% 0 69 46%

Table 8. Overall effect of programming background on success

pop succ χ2 df p Significance

Prior experience
yes 294 74%

21.02 12 0.05 < p < 0.10 weak
no 193 65%

Relevant experience
yes 169 78%

18.26 12 0.10 < p < 0.20 very weak
no 308 68%

Prior course
yes 254 69%

4.67 12 0.95 < p < 0.98 none
no 220 76%

worth further investigation, and we return to it in our conclusion. In Newcastle, Middlesex 2
and Sheffield we find that consistent subjects do about twice as well as the rest.

Because the mark sheet identified not only consistency but also the particular model(s) used,
we can recognise those subjects who apparently have already learned, before the course begins,
the mechanisms of assignment and sequence that are going to be taught. In Java these models
are M2 for assignment and S1 for sequence, and we called the group that consistently used
these models in the test the CM2 group. Almost all of them (131 out of 149) reported prior
programming experience. It would seem that most of the York intake could already program:
87 out of 105 were CM2. To see whether the effect of consistency was simply the effect of prior
learning of programming, we looked at the population divided by CM2/notCM2 (correct model),
and we looked again at subjects outside the CM2 group (incorrect model) divided by C0/notC0.
Then we looked at each of the subgroups defined by the background questions analysed in table
5. This gives eight population divisions, shown in table 7.

In the first row of this table the CM2 group does generally better than the rest in every
experiment but one – the exception is Sheffield, in which 5 out of 11 had no reported program-
ming background, making this the only experiment in which a substantial proportion of the
CM2 group appeared to guess the correct models. In the rest of the table in every single case
the consistent group does better than the others, usually by a considerable margin.



Table 9. Overall effect of consistency on success

pop succ χ2 df p Significance

C0 311 84%
49.84 12 p < 0.001 very high

notC0 197 48%

C0-3 378 80%
44.51 10 p < 0.001 very high

notC 130 42%

Table 10. Overall effect of consistency on success in filtered subgroups

pop succ χ2 df p Significance

Correct model
CM2 149 89%

34.75 12 p < 0.001 very high
notCM2 359 62%

Incorrect model
C0 162 80%

40.27 12 p < 0.001 very high
notC0 197 48%

With prior experience
C0 203 87%

31.65 10 p < 0.001 very high
notC0 91 44%

No prior experience
C0 104 80%

35.45 12 p < 0.001 very high
notC0 89 47%

With relevant experience
C0 129 90%

31.60 10 p < 0.001 very high
notC0 40 38%

No relevant experience
C0 171 80%

35.82 12 p < 0.001 very high
notC0 146 50%

With prior course
C0 177 84%

35.98 12 p < 0.001 very high
notC0 111 50%

No prior course
C0 114 89%

38.35 10 p < 0.001 very high
notC0 69 46%

6 Meta-analysis

The Winer procedure of meta-analysis (Winer et al., 1971) was used to examine the overall
effect of consistency and/or programming background on success. The procedure combines p
values from χ2 analysis of separate experiments – the probability of obtaining the effect by
accident – to give an overall p value. Because this is a meta-analysis of several experiments, our
threshold significance value is set at a conservative 0.01 (1%).

Table 8 summarises the overall effects of programming background on success, showing the
size of the effect, the χ2 value and significance. None of the programming background factors had
a large or a significant effect. The weak effect of prior programming experience and prior relevant
experience was driven by and overall 61% of candidates with prior programming experience, a
third of which came from the York experiment. Attending a programming course was shown to
have no significant effect on success, both overall and in each individual experiment.

On the other hand, meta-analysis shows in table 9 a large and highly significant effect of
consistency on success in both the C0/notC0 and C/notC group arrangements. Despite the weak
effect in the first quiz at Middlesex and the Westminster experiment, especially in C/notC, none
of the experiments is driving the result: if we eliminate any one of them there is still strong
significance.

Table 10 summarises the overall effect of consistency on success in the eight population
divisions characterised by programming background factors. The overall result confirms the
result of the initial experiment by demonstrating a highly significant effect of consistency on
success in every slice. None of the experiments is driving the overall result: if we eliminate any
one we still find a large significant effect.

This analysis shows that consistency is not simply the effect of learning to program. The
CM2 group does do better than any other, as might be expected. But there are slightly more



individuals who are C0-consistent but not CM2, their success rate is almost as good, and they are
almost twice as likely to pass as those who are not consistent. We note that the CM2/notCM2
division (89%/62%) is a more effective predictor of success than prior programming experience
(74%/64%), even if we take the weakly significant effect of prior experience at face value, but
both give many more false negatives than either measure of consistency (C0/notC0 84%/48%,
C/notC 80%/42%). We can see these effects more starkly if we look at failure rates: the CM2
group, which has learnt one of the basics of imperative programming, has an 11% failure rate
against 38% for the others; programming background gives 26%/36%; consistency gives either
16%/52% or 20%/58%.

The size of the effect varies according to the population division but it is significant every-
where and it is never small. Programming background, or its absence, doesn’t eliminate the
effect of consistency.

7 Conclusion and future work

The test characterises two populations in introductory programming courses which perform
significantly differently. More than half of novices spontaneously build and consistently apply
a mental model of program execution; the rest are either unable to build a model or to apply
one consistently. The first group perform very much better in their end-of-course examination
than the second. Despite the tendency of institutions to rely on students’ prior programming
experience as a predictor of success, programming background has only a weak effect on novices’
success, and though effective prior learning of assignment and sequence has a stronger effect, it
is not as strong as consistency.

Our test is by no means perfect. We ask subjects (outside the CM2 group, almost all of whom
know the right answer) to both invent and consistently use a mental model of a mechanism they
have never encountered before: there may be an effect to be discovered in those who can use
but not invent such a model; there may be an effect to be discovered using non-programming
problems. The large proportion of false negatives – students judged inconsistent who nevertheless
succeed in the examination – is the greatest deficiency of our test instrument at present.

We haven’t interviewed our subjects to find out why they answered as they did in the test.
This is a deficiency in our research. It would be interesting to discover why inconsistent subjects,
in particular, made the choices that they did.

Our research has uncovered an effect, but has not begun to explain it. Consistent subjects
build a mental model, something that follows rules like a mechanical construct, and this is what
more or less what Baron-Cohen’s systematizers do. We speculate that we might be measuring
a similar trait by different instruments, and Wray’s results tend to support this. But there may
be different subgroups in the consistent group, with different reasons for being consistent, and
the number of false negatives in the inconsistent group suggests strongly that there could be
subgroups there too.

We would like to investigate the phenomenon of consistency and its effects in a longitudinal
study. More than half of university entrants to introductory programming courses display con-
sistency, but how early in life can we detect it? And how does it affect computer science study
in other introductory subjects, or later study?

Simon et al. (2006b) stated “We do not pretend that there is a linear relationship between
programming aptitude and mark in a first programming course, or that different first pro-
gramming courses are assessed comparably; but we have succumbed to the need for an easily
measured quantity.” We have followed in that tradition, using institutions’ own examinations to
assess programming skill. But the levels of achievement they measure vary considerably, and we
have seen signs that initial, necessarily non-technical, assessments of skill may be ineffective. We
are also aware that institutional pressures, for example to produce a particular pre-determined
success rate, may distort assessment. If we are to research reliably the connection between mea-



sures of programming aptitude and success in learning to program, it seems that we should
consider how to measure programming skill(s) in an institution-independent way.
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