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Abstract 
A comprehensive understanding of students' common difficulties in understanding synchronization 
and concurrency is a prerequisite for developing tools and educational materials to alleviate these 
difficulties. In this paper we briefly present a study through which we identified students’ 
misconceptions about concurrency and synchronization, categorized their misunderstandings into a 
misconception pyramid, and built subject profiles through which we were able to discover the nature 
and frequency of the misconceptions exhibited by the students in this study. Based on these findings, 
we developed metrics to capture the breadth and severity of individual subject's misconceptions. We 
describe these metrics and show how they correlate with other measurements of understanding of 
concurrency and synchronization. 

1. Introduction 
As early as 1986, researchers worried that "the complexity of (concurrent) programming--all those 
processes active at once, all those bits zinging around in every direction--is simply too great for the 
average programmer to bear" [Gelertner1986]. Today, it is generally agreed that multi-threaded 
programs are difficult to design and comprehend, and that concurrency and synchronization concepts 
are difficult for students to master [1, 2, 3]. We believe that the development and use of appropriate 
external representations has the potential to help students better comprehend the dynamic and non-
deterministic nature of these programs. However, to properly design and evaluate such 
representations, we must develop a detailed understanding of what aspects of these concepts students 
find difficult and what misconceptions they harbor. Prior work by our group [4, 9] and by others [3, 7, 
10, 11] provides some insight.  

We conducted a new study that sought to obtain detailed information about the reasoning processes 
that students engage in when dealing with concurrent software. We analyzed student responses, 
identified misconceptions, and then categorized these into a “misconception pyramid.” We then 
constructed per-subject profiles that captured the nature and frequency of misconceptions exhibited by 
each student, and developed metrics that we believe capture the breadth and severity of 
misconceptions held by a particular subject. In this paper, we briefly describe our study, our analysis, 
and the misconception pyramid and define the metrics for breadth and severity of misconceptions.  
We present the most common misconceptions in the sample group and explore the correlation of our 
proposed metrics with other measures of comprehension of concurrency and synchronization 
concepts. Finally, we propose new diagrams to aid in the comprehension of concurrent program 
executions, and future studies to further evaluate and refine this work. 

2. Related Work 
In the early 1990s, Resnick[7] recognized that realizing the potential benefit of concurrent 
programming would depend on the ability of people to effectively learn, use and understand 
concurrent programming constructs and languages. He developed a concurrent extension to Logo 
(MultiLogo) and conducted an experiment with a group of elementary school students who used 
MultiLogo to control simple robots built from LEGO bricks. He then evaluated their work and found 
three types of bugs: problem-decomposition bugs, synchronization bugs, and object-oriented bugs. 



   

 

While he believed that object-oriented bugs might have been due to aspects of Multi-Logo, he 
suggested that difficulties inherent to thinking about concurrency were at the root of the problem-
decomposition and synchronization bugs.  
 
Kolikant performed empirical studies of students learning about concurrency [3]. Her results show 
that students develop pattern-based techniques to solve synchronization problems and then have 
trouble in solving non-familiar synchronization problems, perhaps as a result of their reliance on those 
pattern-based approaches. She found that student misconceptions were often the source of their 
difficulties, writing “we were able to uncover reasonable, yet faulty connections that many students 
had made ... these connections were the source of their difficulties.”  
 
Fleming, et al. [9] performed a think-aloud study of students in a graduate-level computer science 
class to study the strategies that students apply in corrective maintenance of concurrent software. He 
collected think-aloud and action protocols, and annotated the protocols for certain behaviors and 
maintenance strategies. He looked at whether study participants performed diagnostic executions of 
the program and whether they engaged in failure trace modeling (modeling how the system transits 
among various internal states, at least one of which is a clear error state, up to the point of failure).  
He found two key attributes of the most successful participants: they detected a violation of a 
concurrent-programming idiom and they constructed detailed behavioral models of execution 
scenarios. 

Xie, et al. [4] performed an instructor survey and observational study and identified a core set of 
difficulties that students encounter in learning about concurrency. Common problems he identified 
included: 1) Thread inter-leavings are difficult for students to comprehend.; 2) Students often forget 
that context switches can happen when the thread is in a monitor or critical section and have trouble 
correctly applying that knowledge when they do remember; and 3) Students have trouble reasoning 
about why the implementations of synchronization primitives lead to correct synchronization 
behavior.  

Recently, Armoni and Ben-Ari [11] performed an in-depth survey of the concurrency-related concept 
of non-determinism, how it is defined and used, and how it has been taught.  They present a taxonomy 
of the ways that non-determinism can be defined and used,  the categories of which are domain, 
nature, implementation, consistency, execution and semantics.  Their survey of educational materials 
and practices on this topic leads them to the conclusion that “the treatment of non-determinism is 
generally fragmentary and unsystematic,” and they go on to suggest various strategies for teaching 
non-determinism in the CS curriculum. 

Lu, et al. [10] studied real-world concurrency bugs rather than student behavior or reasoning. They 
looked at four open-source applications and randomly selected 105 real world concurrency bugs. 
They found that one-third of the non-deadlock bugs involved violations of the programmer’s intended 
order of operation, and that another one-third of the non-deadlock concurrency bugs involved multiple 
variables. In examining the bug-tracking records, they also found that many of the fixes to the bugs 
they studied were not correct at the first try, providing further support for the idea that reasoning 
about concurrent executions is difficult.  

Each of the above studies attempts to gain insight into the question of what students and programmers 
find difficult in learning about and in managing concurrency and synchronization. Our study is most 
similar to that of Kolikant, in that we attempt to identify both the difficulties that students encounter 
and the reason for those difficulties. We get at this information by not only asking study participants 
to answer questions that evaluate their comprehension of the potential behaviors of a concurrent 
program execution, but by also asking them to explain their reasoning. It is in these explanations that 
we gain insight into their understanding of the meanings of concurrency-related terms, their mental 
models of the relationships among the objects and constructs by which concurrency and 
synchronization are achieved, and their comprehension of the consequences of thread activities and 
interactions. 



   

 

Another element of our work is the evaluation of diagrams designed to support comprehension of 
multi-threaded program executions. Related work describes concurrency-related aspects of UML 
diagrams, proposes variations on UML diagrams to better support concurrency, or evaluates UML 
diagrams or their variations. For example, Schader and Korthaus described features of UML that 
support the representation of concurrency [12]. Mehner and Wagner [13, 14] added shading 
conventions on activations to indicate when, and within which activation, threads are ready or 
running. Xie, et al. [4, 15] developed an extension to sequence diagrams that uses colored activations 
to indicate the state of each thread (i.e., running, blocking, or ready), among other features. Most 
recently, Fleming [16] proposes a variation on UML sequence diagrams in which hatching of the 
activation bar denotes thread state and object states denote the effects of operations on mutexes and 
condition variables. 

3. Experiment 
The overall goal of our experiment was to compare the use of different types of UML diagrams (UML 
2.0 sequence diagrams and UML 2.0 state diagrams) for different tasks related to the comprehension, 
implementation, and debugging of concurrent software. The participants were fifteen Computer 
Science students drawn from upper-level undergraduate classes and from graduate classes during the 
spring semester of 2010. Students were volunteers and were paid $50 for their time. The study 
materials included a demographic survey, six computer-based training modules, five pre-tests (one 
quiz for each of the first five training modules), and a post-test.  Part I of the post-test comprised 24 
comprehension questions that involved reasoning about what could happen next in a particular 
execution scenario. Part II questions involved identifying errors, evaluating and creating models and 
diagrams, and writing code.  

In this paper we provide a detailed analysis of participant explanations of their answers to Part I 
questions, in which they were asked to supply both a yes/no answer to whether a particular set of 
program events could occur next and in the stated order, and also to explain their reasoning. These 
explanations of student reasoning provided the basis for our identification of misconceptions. 
Questions in this part of the post-test were based on the “Single-lane Bridge” problem. The problem 
states that a bridge over a river is wide enough to permit only a single lane of traffic. That is, the 
bridge permits only one-way traffic at any one time. To simplify this problem, we define the cars that 
move from left to right as red cars and those that move from right to left as blue cars. To avoid a 
safety violation, only one kind of car is allowed to be on the bridge at a time. Cars exit the bridge in 
the order in which they entered and the leading car may exit the bridge at any time. We structure this 
system so that each colour of car is implemented as a thread, and the shared bridge object is 
implemented as a monitor with two associated condition variables okToEnter and okToExit. The 
basic functions for entering and exiting the bridge are redEnter(), redExit(), blueEnter() and 
blueExit(). We assume a C++ implementation using the pthreads library, in which explicit calls to 
lock() and unlock() are invoked on mutex locks. Then for each of the given scenarios, we asked 
whether a particular event sequence could happen next. 

4. Analysis 
Although Part I of the post-test consisted of objective questions, we initially found it difficult to 
evaluate the responses in a way that accurately reflected the students’ understanding of the system. 
Consider question 1.b, shown in Figure 1 and describing a scenario in which two threads, redCar1 
and redCar2, exist in the system. Thread redCar1 invokes the redEnter() method and has already 
returned when a context switch occurs and the redCar2 thread begins to run. One of the sub-
questions asks whether it is now possible for the redCar2 thread to invoke the redEnter() method and 
block on the monitor lock. The answer to this question should be NO. Only two threads exist in the 
system and redCar1 should have released the monitor lock before it returned from the redEnter() 
method. Thus, it is not possible for redCar2 to block on the monitor lock. 
 



   

 

1. Suppose that only two threads exist in the system: redCar1 and redCar2. Suppose further 
that redCar1 has invoked the redEnter() method, and has returned. A context switch occurs 
and the redCar2 thread starts to run. 

 
Could the following event sequence happen next?  Circle YES if the sequence is possible; 
otherwise, circle NO.  Then please provide a brief explanation of your reasoning. 

 
(b) redCar2 invokes redEnter(), then blocks on the monitor lock. 

YES  NO 

Figure 1 -- Question 1.b 

In answering this question, 9 out of 15 subjects chose the correct answer (NO). However, in looking 
closely at their explanations, we found that 7 of them thought that the monitor lock would only block 
blue car threads and regarded the monitor lock in the question as an okToEnter condition variable. 
One of them misunderstood the meaning of the term “block” as “own” or “has” and thought that 
redCar1 already owned the monitor lock since it was on the bridge and that redCar2 could thus not 
own the same lock. Another student, however, did not understand the question and thought that 
redCar2 should not “block” on the monitor lock but lock the monitor lock. Thus, by reading the 
explanations given by the students we found that actually none of the 9 students who gave the correct 
answer really understood the monitor lock and its mechanism.  

We also found that although each question was designed to test some specific misconceptions, a 
failure in one particular question might not actually stem from the misconception the question 
intended to examine. Instead, the failure might be rooted in some other misconceptions. We found 
further that some misconceptions could cause general failures in reasoning about many different 
scenarios. Consider questions 4.d and 4.e as an example (Figure 2).  
 
4. Suppose that only three threads exist in the system: redCar1, redCar2 and blueCar1. 

Suppose further that redCar1 is running and has just invoked the redEnter() method and the 
redEnter() method has returned. A context switch occurs and the redCar2 thread begins 
running and invokes the redEnter() method. redCar2’s invocation of the redEnter() method 
has not returned. 

 
Which of the following event sequences could happen next?  Circle YES if the sequence is 
possible; otherwise, circle NO.  Then please provide a brief explanation of your reasoning. 

 
(d) A context switch occurs, and the redCar1 thread begins to run. redCar1 then invokes 

redExit() and this invocation returns. 
YES  NO 
 

(e) A context switch occurs, the redCar1 thread begins to run. redCar1 then invokes the 
redExit() method and blocks on the monitor lock. 
YES  NO 

Figure 2 -- Question 4.d and 4.e 

These two questions are aimed at testing the subjects’ ability to consider multiple possible inter-
leavings in an execution. The answer to both of the questions should be YES since the question only 
describes that redCar2’s invocation of the redEnter() method is interrupted by a context switch but 
does not mention whether redCar2 holds the monitor lock or not when interrupted. Three possible 
interleavings exist here. One is that redCar2 has invoked the method but has not yet obtained the 
monitor lock. The second is that redCar2 invoked the method, holds the monitor lock and has not yet 
released it. Another possibility is that redCar2 has already released the monitor but not yet returned 
from the redEnter() method. The first and the third situations could lead to event sequences described 
in 4.d and the second situation could lead to event sequences described in 4.e. 

Organizing students’ answers to these two questions, we have the following table (Table 1). 
 

 4.d 4.e Subjects 
1 YES YES 102, 139, 132 
2 YES NO 108, 109, 113, 122, 126,138, 141, 142, 145 
3 NO NO 110, 119 
4 YES No answer 128 

Table 1 – Subjects’ Answers to Questions 4.d and 4.e 



   

 

Apparently, most of the students were not able to answer both of these questions correctly and the 
majority failed on question 4.e. However, by looking closely at their explanations, we found the 
reason for the failure does not truly stem from students’ inability to consider the possible interleaving, 
as expected. Actually, all 9 subjects failed in 4.e because of misconceptions about the monitor lock. 
Some of them confused it with the okToExit or okToEnter condition variables. Others were ignorant 
of the mechanism of the monitor lock so they succeeded in question 4.d, which does not deal with the 
monitor lock concept but failed in 4.e. Also worth noting is that most students reasoning about these 
two questions was based on “story-level” understandings, as seen in explanations such as “redCar1 is 
free to exit” or “nothing blocks redCar1 to exit”, etc. Actually, none of them considered the event 
sequence at the implementation level, which again highlights their misconceptions of the context 
switch and its properties.  

Thus, we found students’ misconceptions about concurrency and synchronization cannot be captured 
in a simple list of confusions or misunderstandings of concepts, terminologies and mechanisms. 
Rather, they are correlated with one another, interacting in a seemingly hierarchical architecture so 
that it is not possible to examine higher level misconceptions without first teasing out the impact of 
lower-level misconceptions, or ensuring that participants first have a firm grasp of lower level 
concepts. In other words, to understand higher level concepts, students must first rid themselves of 
lower level misunderstandings. 

4.1 Misconception Pyramid 
We introduce a misconception pyramid (Figure 3), which captures common misunderstandings that 
students exhibited when reasoning about a concurrent system, and the hierarchical structure of the 
misconceptions according to the difficulty and dependency relations of understanding the concepts in 
that level. Understanding concepts at higher levels of the pyramid requires an understanding of the 
concepts at lower levels first. Descriptions of the types of misconceptions one might find at each level 
are presented in Table 2, which was constructed based on misconceptions identified in the literature 
and also those that we encountered in our analysis of subjects’ explanations of their reasoning in this 
study. 

The bottom level of the pyramid is the description level and includes misconceptions such as 
misunderstanding of the requirements, constraints and other details of a concurrent system at the level 
of the “story” about the red cars and blue cars. For example, some subjects wrote explanations such as 
“redCar2 should wait for redCar1 to invoke redEnter() method first” or “redCar1 should block the 
bridge first” demonstrate one common misconception at this level: that the thread labels redCar1 and 
redCar2 were the actual running order of the threads. 

 

 

 

 

 

 

 
 

The next level of the pyramid includes misconceptions related to terminology we used in describing 
concurrent scenarios. A typical example is the misunderstanding of the meaning of “block on” a 
conditional variable/monitor lock as “hold/own” a conditional variable/monitor lock. This kind of 
misconception can be seen throughout the explanations given by subjects in our study. Most students 
who held this kind of misconception did so consistently, causing them to fail on a particular group of 
questions. Typical students’ explanations that illustrate this level of misconception include but are not 
limited to “okToEnter is already blocked” or “monitor is already blocked by redCar2”.        

Description 

Terminology 

Concurrency 

Implementation 

Uncertainty 

Figure 3 -- Pyramid of Misconceptions 



   

 

 
The third level of the pyramid is the concurrency level, which includes misconceptions about 
basic thread behaviors such as context switching and the thread life cycle. For example, some 
students seemed to think that a context switch could not happen while a thread was executing 
in a critical section and many students thought that a context switch is not allowed during the 
execution of a method and regarded the whole method body as uninterruptible. Some typical 
students’ explanations are “redCar2 should receive return call then switch out” or “because 
redCar2 has not done its activity (so it cannot be context switched out)”. 

 
 

Description Level 
D1 Misconceptions of system and/or problem descriptions 
Terminology Level 
T1 Misconceptions of the meaning of “invoke/call” a method 
T2 Misconceptions of the meaning of “return” from a method/invocation 

T3 Misconceptions of “block” on a monitor lock as “hold/has” a monitor 
lock 

T4 Misconceptions of “block” on a conditional variable as “hold/has” a 
conditional variable 

Concurrency Level (thread behavior) 
C1 Misconceptions about context switching 
C2 Misconceptions about the thread life cycle 
Implementation Level 

I1 Misconceptions about conditional variables and the wait/signal 
mechanism 

I2 Misconceptions about monitor lock 
I3 Misconceptions about block and unblock mechanism 
Uncertainty Level 
U1 Confused about space of executions and thread interleavings 

Table 2: Misconception Pyramid Table 

 
Invoke 
…… 
Lock the monitor lock 
      Check conditional variables 
              Access and modify shared variable 
              …… 
Release monitor lock 
       Signal on conditional variables 
…… 
Return 

Figure 4 – Basic Monitor Programming Function Structure 

 

The fourth level of the pyramid is the implementation level, which is related to detailed 
implementation mechanisms such as the monitor lock and condition variables and their 
functionalities. By investigating the subjects’ answers and explanations in our study, we found that 
few subjects were clear on the basic monitor programming structure shown in figure 4. We believe 
that this is greatly related to students’ misunderstandings in the three previous levels. If students do 
not understand the context switch, they are not able to appreciate the actual purpose and 
corresponding mechanism of the monitor lock. Misunderstandings of different terminologies also lead 
to confusion about the workings of monitor programming structures and functions. 

The top level of the pyramid is concerned with failures in dealing with uncertainty; that is, the 
inability to envision or manage all the possible threads interleavings and execution scenarios. While 



   

 

this problem is often cited as the main source of difficulty in the comprehension of concurrent 
program executions, we found that this level of difficulty was not seen in our study, as students tended 
to fail much earlier in the pyramid, and thus were not even exposed to these higher-level issues.  
Whether a detailed investigation of participant reasoning processes would find the same to be true in 
other studies of comprehension of concurrent program executions is an open question. 

An alternative representation of the pyramid might combine the two lower levels them into a 
single level, in which Description and Terminology sit side-by-side, supporting the 
Concurrency level.  Further, another approach to layering might think of the top layer of the 
pyramid, which we term “Uncertainty” as dealing with dynamic analysis issues, and the 
second layer of the pyramid as dealing with static analysis issues, with both layers together 
dealing with implementation-related issues. 
 

4.2 Subject Profile 

Next, we introduce the subject profiles shown in Table 3. These subject profiles reflect the types and 
frequency of occurrence of each subject’s misconceptions. The first column of the table indicates the 
subjects’ ID number. The other columns correspond to items in the misconception pyramid table. 
Each cell of (subject, item) is the number of (answer, explanation) pairs of that subject that 
demonstrate the corresponding type of misconception.  
 

Subject D1 T1 T2 T3 T4 C1 C2 I1 I2 I3 U1 Total 
102 2 1 2 1 2 1 1 5 9 0 0 24 
108 3 2 1 0 0 3 1 3 10 0 0 23 
109 3 0 0 0 0 8 1 0 11 0 0 23 
110 7 3 4 4 2 2 1 8 9 0 0 40 
113 2 2 1 1 1 6 1 12 11 0 0 37 
119 1 0 4 0 2 4 1 8 11 0 0 31 
122 0 0 4 0 0 1 0 0 9 0 0 14 
126 0 7 0 0 0 2 1 4 14 0 0 28 
128 
132 NA 

138 1 4 0 0 1 8 1 2 9 0 0 26 
139 1 4 7 1 2 9 1 7 9 0 0 41 
141 2 4 5 2 6 4 1 7 9 0 0 40 
142 0 0 1 2 0 1 0 3 10 0 0 17 
145 0 0 0 0 0 1 1 1 14 0 0 17 
Avg 3 3 4 2 2 7 2 9 19 0 0  

Table 3: Subject Profile Table 

While 13 of the 15 subjects provided sufficient explanations for us to build profiles, 2 out of 15 
(subjects 128 and 132) provided almost no explanations for their answers, which made it impossible 
to evaluate their misconceptions. Perhaps the most noticeable characteristic of the subject profile is 
that no misconceptions of items I3 or U1 are found, but that subjects show a very high frequency in 
demonstrating misconceptions in I1 and I2. This reinforces the idea that students’ misconceptions 
form a hierarchical structure in which lower level failures not only cause higher level misconceptions 
but also isolate students from higher level concepts.  

Another interesting characteristic of the subject profile is that the most common misconceptions are 
I2, I1 and C1, which are misconceptions about monitor locks, condition variables and context 
switching. Causality relations exist among these misconceptions; for example, a subject’s incomplete 
understanding of when and how a context switch could occur causes their misunderstanding of the 
functionality and mechanism of monitor lock, which thereafter causes them to confuse monitor lock 
with condition variable.   We plan to conduct additional studies to further explore the validity of this 
idea. 

Based on the collected data, we can make some statements about particular subject’s comprehension 
of concurrency. For example, we could generalize that subject 139 is almost ignorant of concurrency 



   

 

concepts and synchronization mechanisms since he demonstrated all kinds of misconceptions at 
different levels, while subject 122, who just showed consistent misconceptions in a limited range of 
items, apparently has a much better comprehension of concurrency. This is also validated by the Part I 
scores of these two subjects, as seen in Table 5 and illustrated in figure 8. 

4.3 Subject Evaluation 

Although a subject profile allows us to characterize both a single subject’s understanding of 
concurrent systems and the whole subject sample, we introduce two metrics to better quantify the 
evaluation. One is the breadth of range of misconceptions (denoted as Metric B) and the other is the 
weighted severity of misconceptions (denoted as Metric S). 

  

Figure 5 – Evaluation Metrics 

Metric B for a single subject is the percentage of misconceptions the subject has regarding the whole 
pyramid of misconceptions, as illustrated in figure 5. For example, subject 122 exhibited 
misconceptions in 3 of 11 categories, so B122 = 3/11 or 0.27, while subject 139 exhibited 
misconceptions in 9 of 11 categories for B139 = 9/11 or 0.82.  With metric B we are able to evaluate 
how many different misconceptions a particular subject has. A larger B illustrates more widely spread 
misconceptions of a particular subject. 
 

Level 0: Description Level 
D1 0.3 
Level 1: Terminology Level 
T1 0.067 
T2 0.067 
T3 0.067 
T4 

0.268 

0.067 
Level 2: Concurrency Level 
C1 0.1 
C2 

0.2 
0.1 

Level 3: Implementation Level 
I1 0.045 
I2 0.045 
I3 

0.135 

0.045 
Level 4: Uncertainty Level 
U1 0.097 

Table 4: Misconception Item Weight Table 

Subject Part1  Metric B Metric S 
102 18 0.82 1.832 
108 24 0.64 2.086 
109 25 0.36 2.295 
110 15 0.82 4.036 
113 24 0.82 2.67 
119 19 0.64 2.057 
122 29 0.27 0.773 
126 21 0.45 1.579 
128   19 N/A N/A 
132 23 N/A N/A 
138 29 0.64 2.03 
139 11 0.82 2.958 
141 24 0.82 2.959 
142 27 0.45 0.886 
145 24 0.36 0.875 

Table 5: Subject Performance Table 

 

The S metric, however, evaluates misconceptions on another dimension. It is designed to characterize 
the severity of single subject’s misconceptions. Thus, to compute the S metric, we must first assign a 
weight to each misconception item. As we pointed out before, lower level misconceptions are likely to 
cause higher level misconceptions. Also, lower level misconceptions impede a subject’s 
understanding of a system more than higher level misconceptions do. Therefore, we simply use an 
inverse ratio of the level to assign weights. Table 4 illustrates how the weights are assigned.  

Therefore, the metric S can be calculated as the expected value of severity of different misconception 
items according to formula illustrated in figure 5, in which Witem is the weight of the corresponding 
misconception item. Applying these two metrics to subjects in our study, we get the subject 
performance table (Table 5).   For example, subject 122 exhibited 4 misconceptions of type T2 
(w=0.067), 1 misconception of type C1 (w = 0.1), and 9 misconceptions of type I2 (w = 0.045).  S122 
is thus 4 * 0.067 + 1 * 0.1 + 9 * 0.045 = 0.773. 



   

 

To illustrate the validity of these two metrics, Metric B and Metric S, we explore the correlation 
between these values and students’ total score of Part I in the post-test.  

Figure 6 illustrates the correlation between metric B and the score of part I. As we see, although the 
high scores are not strictly determined by metric B, the metric characterizes how poorly a student may 
perform in reasoning about concurrency and synchronization scenarios, and overall shows the 
expected negative correlation (the greater the breadth of misconceptions, the lower the score).  

 
Figure 6 – Correlation between Metric B and Part I Score, Pearson correlation = -0.527 

 

 

 

Figure 7 illustrates the correlation between metric S and the score of part I. Unlike metric B, the 
metrics S seems to have a better (negative) correlation with score when metric S is small. As metric S 
becomes large, the correlation becomes random. This is reasonable, since when a subject has no idea 
of a concept in concurrency, they tend to reason about the corresponding scenario based on 
understanding of one possible sequential execution, which randomly coincides with the actual 
execution sequence under concurrency. 

By regarding metric B and metric S as two orthogonal vectors that characterize an individual subject’s 
misconceptions in concurrency and viewing the origin point in a coordinate system as an ideal expert 
who does not demonstrate any misconceptions in understanding a concurrent system, we are able to 
calculate the Euclidian distance of a particular subject from the ideal expert. This Euclidian distance 
may be regarded as a combination of metric B and metric S. In figure 8, we plot this new evaluation 
with the total score of part I for every subject. Regardless of the two subjects, number 132 and 
number 128, who did not given enough clues for us to conclude their misconceptions, other subjects 
tend to form a reverse correlation of their Part I score and the Euclidian distance from an ideal expert. 



   

 

 
Figure 7 – Correlation between Metric S and Part I Score, Pearson correlation = -0.386 

 

 
Figure 8 – Correlation between sqrt(B2+S2) and Part I Score, with Subject Number 
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Figure 9 – Correlation between sqrt(B2+S2)  and Part I Score with Linear Prediction, Pearson’s correlation = -0.476 

 
 
In figure 9, we plot the linear prediction of data in figure 8, which illustrates an expected inverse 
correlation between the evaluation of subjects’ misconception and the actual performance of a subject.  

Overall, we believe that metric B and metric S do a reasonable job of capturing the breadth and 
severity of misconceptions exhibited by individuals or by a group of individuals. The calculation of 
such metrics and the use of the misconception pyramid have the ability to guide instructors in 
assessing whether a concept or group of concepts has been sufficiently mastered by a student or class 
of students. The structure of the pyramid provides some insight into the order in which these concepts 
might be taught and suggests that intermediate evaluations be performed before moving on to higher-
level concepts. 

6. Conclusions and Future Work 
We have presented here an initial analysis of a relatively small study of students engaged in reasoning 
about the execution of multi-threaded programs. We have identified a number of misconceptions 
exhibited by study participants, and based on these findings, have proposed a hierarchical structure of 
misconceptions, and metrics for evaluating the breadth and severity of these misconceptions. We 
present arguments to support the validity of the hierarchy and of the metrics. We propose to conduct 
additional studies with larger groups, to further evaluate both the pyramid and the metrics, and to 
further flesh out the ways that students think and learn about concurrency and synchronization. 
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