

PPIG 2011 University of York www.ppig.org

PPIG 2011: User Configurable Machine Vision for Mobiles

Alistair G. Stead

Computer Laboratory
Cambridge University

ags46@cam.ac.uk

Keywords: POP-II.A. End Users, POP-III.C. Visual Languages, POP-IV.B. User Interfaces

Abstract
We describe efforts to evaluate a new smartphone-based visual programming language, which gives
users the ability to map their own musical blob notation to synthesized audio. We use the Cognitive
Dimensions of Notations questionnaire (Blackwell & Green, 2000) to gain qualitative feedback, and
use traditional observation methods to support our results. Using this methodology, we were able to
find that musical and non-musical users both react positively to the system, with no marked difference
between the two groups.

1. Introduction
As part of an on-mobile programming project, we developed a new domain-specific visual
programming language (DSVL). The purpose of this language is to allow end users to create rules,
which when triggered by some input, produce synthesised music.

To enable control of the synthesis, the user is able to train a classifier with a smartphone camera on a
set of coloured blobs. After training, the user can specify mappings (using the DSVL) between blobs
and synth tracks. During the performance stage, the system recognises blobs and triggers the
appropriate rules, which then produce synthesized audio.

Figure 1: System Usage Scenario

DSVLs are restrictive languages, consisting of domain concepts and well-formed rules that evaluate
the models. The language is intended to be used primarily by domain experts in digital music
performance but we hope to obtain findings that have general relevance to all end users.

1.1. Background

Recent developments in technology have resulted in smartphones becoming significantly more
powerful and useable. This is in part due to the multitude of sensors now available, including touch
screens, proximity sensors, accelerometers, gyroscopes, microphones and cameras. The surge in
popularity in this market has encouraged a huge amount of software development and
experimentation.

End user programming (EUP) aims to give end users the ability to express powerful programming-
like functionality, without being an expert in programming. The type of functionality needed is

 2

PPIG 2011 University of York www.ppig.org

usually repetitive or unique to the needs of the user, and is therefore not included in mainstream
software applications. While EUP has been implemented successfully on personal computers (e.g.
Apple Automator (Apple)), there is little evidence of it being implemented on modern smartphones.

Visual languages have long existed in the form of diagrams, which are largely used in a professional
context (e.g. design or software engineering). Visual programming (VP) is the specification of
programs by manipulating graphical objects. The notion that VP could be more accessible to humans
when programming than textual interaction (Blackwell, 1996) drives research into how to best
represent concepts to users doing EUP. If we are to consider EUP on smartphones then it is important
to choose a language appropriate to the form factor and potential use case scenarios. Touchscreen
interaction supports direct manipulation of objects on the screen, which would be useful if using a
visual language. Text is inherently difficult to interact with due to the size of the screen, on-screen
keyboards occluding information and the small size of the text.

Visual programming allows the user to easily identify relationships between objects and reduce the
semantic gap between their mental model of the system and the computational model. These
advantages could make programming more appealing to novices. VP is therefore primarily aimed at
users with little or no experience.

1.2 System Architecture

The system consists of three main stages: training a classifier, programming the condition-action
rules, and the performance stage (see Figure 2). The user first trains a classifier on different coloured
blobs in the camera’s field of view so they can then be identified during the performance. The
programming stage allows the user to describe the relationship between the appearance of a particular
blob colour and one or more output synth tracks (concurrent synthesised output). After programming,
the user can draw multiple blobs that give the system a particular behaviour during the performance
stage, depending on the users movement of the camera over the blobs.

Figure 2: System Progression

Figure 2 shows the system being trained on three coloured blobs. A rule is constructed during
programming that changes the pitch of synth α to a specified value when a black blob is recognised.
During performance, when the black blob appears in the cameras view, the rule triggers and the sound
is changed. As no rules refer to green and red blobs, nothing happens when they appear in view.

Our programming language draws from the concept of rewrite rules, as in Agentsheets (Repenning,
1993), BitPict (Furnas, 1991) and ChemTrains (Bell, 1991), where rules are executed if the conditions
are satisfied. The rules in this system are specified by the end user and contain conditions that
describe the existence of blobs in the cameras field of view. The remainder of the rule affects the
properties of the synthesised music output.

2. Design of Evaluation Study
Nardi (1993) observed that end-users only take an interest in programming if it helps to improve
domain productivity. It is therefore important that we thoroughly test the language in terms of
creativity, flexibility and quality of results. These metrics are difficult to directly compare with other
digital performance systems due to the differences in methodology. We are primarily interested in the
usability of the language rather than comparisons with other digital music systems.

 3

PPIG 2011 University of York www.ppig.org

To evaluate effectiveness of the proposed DSVL, we devised a user experiment involving 8
participants who were asked to complete a series of moderately challenging programming tasks,
which exposed them to all aspects of the system design. The participants were given a short
introduction to explain that it is natural to find something new difficult to use initially and that
negative as well as positive feedback was welcome. This was given with the intention of avoiding an
experimental demand effect where the user might avoid criticising the system to win praise.

2.1 Cognitive Dimensions of Notations Framework

The Cognitive Dimensions of Notations framework (CDs) was developed to provide an evaluation
technique for programming environments (Green & Petre, 1996). The CDs began to be used to design
system-specific questionnaires, allowing designers to map user feedback directly to each CD.
Blackwell and Green (2000) proposed a generalised questionnaire which gives users clear definitions
of relevant CD’s and allows them to feedback which features they felt were relevant to each CD.

This generic questionnaire is useful when evaluating our system as it carefully explains the terms and
definitions to the participant and allows us to directly link responses to CDs of the system. Splitting
the feedback into CDs will also help to identify themes. The questionnaire will contain four sections:

1. Background information

2. Definitions

3. Parts of the system

4. Questions about the main notation

“Background information” probes the users’ experience with similar tools and their level of expertise
when it comes to using such systems. “Definitions” will describe the terms we use to refer to parts of
the system, such as notation. “Parts of the system” asks the participant to assign the proportion of their
time devoted to performing specific parts of the task. “Questions about the main notation” gives a
simple definition of each CD and prompts the participant to recognise features of the system that
relate to each CD in terms of their goals. Due to space constraints, the questions will not be described
here. For a full description, see (Blackwell & Green, 2000).

The generic CD questionnaire describes the programming language to the participant as a “notational
system”. This has potential to cause confusion if participants associate the term “notation” with the
blobs they are drawing (which act as musical notation) rather than the programming language on the
smartphone. To avoid confusion, the distinction was clarified at the beginning of the questionnaire.

2.2 Participants

To complete the usability study, we recruited two groups of participants: users with background in
digital music performance and users without any background in digital music performance. Making a
comparison between these groups allowed us to draw conclusions with external validity.

User Group 1

The target user requirements are that participants in group 1 should be very familiar with music and
live digital performance. Recruiting domain experts is advantageous due to instant familiarity with
domain terms (e.g. pitch, midi notes) and an ability to arrange complex, meaningful pieces of music,
thoroughly testing the system.

User Group 2

Participants in this group should have no digital music performance background and therefore should
be reasonably unfamiliar with domain terms. 	

Programming Experience

The programming experience of the user will not be a factor used to target or group users, as we do
not expect programming experience to affect overall usability. This expectation is due to the fact the
language is very different from languages in mainstream regular use, and that due to its visual, game-

 4

PPIG 2011 University of York www.ppig.org

like, simple design, the tool does not appear to be a programming language. In fact, during usability
testing, the participants were not told explicitly that they were using a programming language. This
decision was made to avoid potential user-alienation due to possible negative stereotypes attributed to
the term (e.g. that it is inherently difficult, requires experience or involves mathematics).

As a safety measure, the user was asked in the final question of the questionnaire if they have had
previous programming experience. This was not expected to be an influential experimental factor but
could explain any unforeseen variation in usability.

A characteristic that may affect the participants’ feedback is previous experience using smartphones.
Although seemingly user friendly to those with experience, participants with no experience of touch
screens or cameras on the phone could be confused. Although it is interesting to compare feedback of
such participants, there was no requirement for smartphone experience during recruitment.

2.3 Core Design

We provided eight single-participant sessions over a period of 48 minutes, after which, the participant
was asked to complete the usability questionnaire. The time was partitioned into 5 minutes for the
initial tutorial, 7 minutes for each of the four tasks, and up to 15 minutes experimentation time.

The initial tutorial was a typed introduction to the system that gave an overview of the different
categories of tiles, the “palette” object (allowing users to drag new tiles onto the grid) and the
classification and performance process. Screenshots of the tiles and the grid were given to enable the
users to understand which parts of the system were being described.

At the start of the experiment, the participant was instructed to express anything they found difficult
or negative. A microphone was positioned next to the participant to avoid conflict when the system
produced sound. Using methods described by Clarke (2001) the views were transcribed and cross-
referenced with feedback given in the questionnaire to highlight areas where (1) verbal and
questionnaire feedback overlap, (2) verbal feedback was not made but participants recorded an issue
in the questionnaire and (3) verbal feedback was given but not recorded as an issue in the
questionnaire. Participants were asked to vocalise only criticism during the study in an effort to
minimise the cognitive load used during the well-known “Think aloud” technique. This allowed
participants to focus on creativity and the task, rather than trying to justify their actions.

The exploration phase of the experiment was similarly monitored. Key metrics were recorded by
observation to provide some insight into how the system is being used. These metrics included: the
largest rule size for each performance; the number of colours of blobs used during each performance
the number of rules used in each performance; the time taken to prepare each performance and the
time taken to carry out the performance.

The experiment was conducted in controlled conditions using a Nexus One with Android 2.3.4; a
MacBook Pro for sound synthesis; a whiteboard with coloured markers and a microphone for
recording participant comments.

2.4 Tasks

The tasks given to the users were intended to provide exposure to all aspects of the system. The main
aspects of the language are the different types of tile available:

• Synth – referring to the synth track to be manipulated

• Triggers – conditional statements which have to be true for the rule to execute

• Value – a value which can be applied to a property

• Properties – a property of the synth track a value can be applied to

These tile types are referred to more formally in technical descriptions of the system. The formal
terms have not been revealed as they could potentially confuse or intimidate the users. This intuition
was confirmed when running the pilot experiment and discussing the terms with the participant.

 5

PPIG 2011 University of York www.ppig.org

Figure 3: Synth, Triggers, Value and Property Tile Categories

To ensure full exposure to the system, each category of tile was tested in isolation using individual
tasks. We used a consistent template where participants were required to work only with the tile of
interest. The participants were given a step-by-step instruction sheet and were able to ask questions if
they had difficulties resulting in non-completion of the task. This verbal prompting was noted and will
be discussed during evaluation of the results. As well as thoroughly testing features, this methodology
allows the users to learn, ensuring that as complexity of tasks increases, they are not overwhelmed.

3. Data Analysis
Due to the nature of the experiment there is limited statistical analysis we can do given qualitative
feedback from the questionnaire. The transcript of any negative user experiences will be used in
conjunction with this to strengthen validity of the claims and any conclusions that are drawn.

We use the quantitative data from the exploratory phase of each session to make some observations of
how much expression and experimentation the language encourages. For example, the mean number
of rules or mean rule length might tell us how confident the participant was to build a complex
program of their own. The mean time taken for performances may tell us if participants quickly get
bored or find that their rules produce a synth that they were not expecting. This data may also be used
to strengthen any conclusions we can make from the questionnaire and verbal feedback.

In theory, the digital music performance users will be more at ease with the notation due to their
knowledge of the domain terms and familiarity with thinking about music in a technical and abstract
manner. We expect the following outcomes from experimentation:

• Digital performance users should find the system easier to use.

• Previous smartphone experience is not expected to influence results.

• Programming experience is not expected to influence results.

4. Results
In this section, we describe quantitative results gathered during experimentation and highlight
interesting qualitative feedback gathered in the questionnaire and during the experiment. The CDs
questionnaire amassed feedback for thirteen cognitive dimensions. We discuss common themes from
questionnaire feedback, interesting or unique results, and results from CD’s that are particularly
relevant to this system. Detailed results can be found on the PPIG website, ppig.org/data-repository.

Participants Programming Experience Smartphone Experience Similar System Use

P1 Intermediate Yes SC
P2 Intermediate No Max, PD, SC, Chuck
P3 Intermediate Yes SC
P4 Basic No SC, Max, PD

Table 1 – Participants Group 1 Background (SC – SuperCollider, PD – Pure Data)

 6

PPIG 2011 University of York www.ppig.org

All participants from User Group 1 have experience with Supercollider (SC) and similar musical
synthesis systems. These systems are not particularly similar to our system in the way they work, but
use similar terms and can be used for live coding.

Participants Programming Experience Smartphone Experience Similar System Use

P5 None Yes None
P6 Basic No None
P7 None No None
P8 Basic Yes None

Table 2 – Participants Group 2 Background

Participants in Group 2 have little to no programming experience. There is an unplanned 50/50
balance of participants’ smartphone experience across both groups.

4.1 Group 1 (Digital Music Performance – P1, P2, P3, P4)

Visibility - P3 and P4 described the pitch and time slider bars as difficult to change precisely in the
Time Value settings dialog (see Figure 11), due to the limited space for the sliders. Task 3 requires the
participant to change the pitch to a specific midi note; P3 and P4 noted difficulty in pinpointing that
exact midi note. P2 described the screen as “too small” during the tasks and in the questionnaire.

P4 noted that finding the settings dialog and changing the blob colour might be difficult for a first
time user. P4 also noted that the palette was useful in finding tiles.

Viscosity - P4 noted “Blobs often get moved around unwillingly. Double tapping sometimes doesn’t
work and note value is hard to see / define”. P2 described a difficult change as moving tiles as “they
don’t fall accurately”. The difficulty in getting precise pitch/time was again mentioned by P3 and P4.

Diffuseness - P4 took issue with the need to use two tiles to make a sound instead of one tile that
would set the pitch and the volume. The other candidates appear to be aware of the things that take
more space to describe, such as adding more effects or lots of rules.

Progressive Evaluation - Two candidates found checking work easy by going back to the main menu
and clicking “Perform”. P2 found this “not so easy; you need to change ‘modes’ which is a little
cumbersome.” P4 thought checking progress would require taking notes. All participants agree that
they can try out partially-completed versions of the product.

Provisionality - The participants appear to assume “sketch” is the same as writing notation. They
agree they can “sketch” rules and test them before finishing. P3 and P4 agree that when precision is
not required, they can pay less attention to the note and still have a working product. P1 states that not
being precise allows them to “try several versions of the desired synth on the grid.”

Premature Commitment - P1 and P3 preferred to work in the same order as the tasks. With regards
to decisions that needed to be made in advance, P1 noted that they needed to devise the effects they
wanted to produce with each colour/blob. P4 said interestingly that decisions can be changed later but
some unexpected results may occur.

Error Proneness - P1 found that they tried to delete tiles by dragging them to the palette. This does
not delete the tiles, just places them on the grid space under the palette. P2 accidentally pressed
buttons around the phone while programming, such as the volume button and the home button. When
asked about small irritating slips, P1 stated that they accidentally put blocks of different rules side by
side. P2 admitted not feeling competent in handling a smartphone in general.

Others - P1 would like to have more actions available. P2 would want a “more reliable general
interface”. P4 stated that the value tiles could be improved, referring to the issue of occlusion.

 7

PPIG 2011 University of York www.ppig.org

4.2. Group 2 (Non Digital Musical Performance – P5, P6, P7, P8)

Visibility - P5 stated “double clicking is fairly standard but holding down would be nicer.”
Interestingly, P6 stated that at first understanding the icons/concepts/changes were difficult but
improved later, presumably as they progressed through the tasks. On comparing or combining
different parts, P5 stated that it is difficult to see exact frequencies at the same time.

Viscosity - P7 and P8 correctly identified what notation takes up more space (many rules or a rule
with many tiles). P5 wrongly asserted that all rules have a fixed length. P6 referred to the learning
curve, saying “at first more difficult to see what changing rules actually means”. P7 was unsure how
the frequency and time changes affected output. P5 and P8 found no changes particularly difficult.

Diffuseness - P7 stated that the notation was long winded and “needs a tile for everything”. P4 stated
that it not always easy as the screen only has a finite area. P7 and P8 understood that several triggers
and things that required many subparts took up more notation space.

Hard Mental Operations - P5 found it mentally challenging to “figure out what the tiles do
initially”. P6 found it challenging to “comprehend what a change meant”. P7 found understanding the
meaning of the tiles challenging. P8 found “associating a piece of music in one’s head with the order
of the triggers” challenging. P5 found the tile/frequency block complex the first time they used it.

Closeness of Mapping - P6 found the two concepts were “quite different – the sound vs. the rules”
and therefore notation was not closely mapped results. P1 stated that “creating a new rule just to
adjust something you could adjust by moving one block” was strange.

Role Expressiveness - P6 found notation for a synth track, hard to interpret. P7 found the different
types of tile difficult to interpret. P5 and P7 found the use of both pitch and volume tiles confusing.

Hidden Dependencies - Two participants stated that the dependencies were visible and two
participants stated they were not visible, with P8 giving the example of pitch and volume. When
creating a large description, P7 noted that if using too many tiles, they would not all fit on the screen
at once. P5 noted that forgetting the exact frequency values is a problem.
Progressive Evaluation - Participants stated that it was easy to stop to check work so far. Participants
gave conflicting responses when asked if they could try out partially completed systems. Two
participants interpreted partially completed as not a whole rule and answered no (due to the constraint
of having to have a valid grid). The other two candidates interpreted “partially complete” as having a
subset of the final set of rules ready and answered yes. In both cases participants were correct.

Provisionality - P6 noted “you can make things relative rather than focus on precise numbers”.

Others - P5 suggested a “burst of sound as well as constant”. P8 would have liked more triggers.

Quantitative Results

	
Figure 4: Group 1 (G1) and Group 2 (G2) Reported time Allocation

(Exp = Exploratory Design)

PPIG 2011 University of York www.ppig.org

The participants were asked to give the percentage of their time they allocated to the following:

• Searching for information within the notation.

• Translating substantial amounts of information from some other source into the system.

• Adding small bits of information to a description that you have previously created.

• Reorganising and restructuring descriptions that you have previously created.

• Playing around with new ideas in the notation, without being sure what will result

We can see from results shown in Figure 4 that both groups reported time allocation in very similar
proportions. The majority of time was spent searching for notation and reorganising. There is a
noticeable drop in the translation time between the two groups, these results will be analysed further
in the discussion.

Figure 5: Most Number of Rules

Figure 6: Sessions Conducted

Figure 5 shows each participant’s highest number of rules during the experimental stage. P8
constructed 7 rules - considerably more than other candidates. No participant used just one rule or one
blob, as in the tasks. Figure 6 shows how many sessions (training, programming, composition and
performance) each candidate undertook during the experimental stage. P7 conducted 4 sessions in
very quick succession, despite not having had previous smartphone experience. Most participants
focused on one session, often alternating between programming and experimenting.

Figure 7: Longest Time Taken for Experimentation

The time taken to construct a program was always more than the time taken to run it. Typically the
programs produced were of a fairly simple nature and therefore unsurprisingly took less time to run.

 9

PPIG 2011 University of York www.ppig.org

5. Discussion
The first point to discuss is the usefulness of the questionnaire and the participants’ ability to
adequately answer the questions posed to them.

Given that the questionnaire is purposely generic, there could not have been bias (from the experiment
coordinator) in the way the questions were asked. The questions are intended to be simple for anyone
to understand, given definitions in section 1. The majority of participants asked the experiment
coordinator at least one question about a question’s meaning. The questions forced participants to
think of the notation in ways they had not previously; for example, the consistency questions asking
which parts of notation are different but should be the same, or are the same but should be different.

All but two CDs were relevant to this system (no possible subsystems). The high number of questions
caused the questionnaire to be 25 minutes long, with answers becoming shorter in the latter stages.
Some participants’ misunderstood questions and occasionally even avoided answering due to
complexity (confirmed verbally).

We obtained interesting qualitative results from all participants, highlighting areas for improvement.
The questionnaire results were mirrored during the experiment and can be considered valid. The
participants’ responses were consistent with verbal feedback, supporting validity of this questionnaire
as an evaluation tool. Initially, we planned to mine the questionnaire for numerical data by classifying
answers and comparing the groups using numerical analysis. It is apparent from variation in
participants’ responses that some questions may have been interpreted differently. Due to variation
and some missing responses, numerical analysis would provide invalid and misleading results.

5.1 What does the questionnaire tell us?

P2 described the screen as being “too small”. The phone has a screen size of 5x8.1cm and a resolution
of 480 x 800. Although the grid size is flexible, each grid space is set to 80x80 pixels, giving 10mm
per square of the grid. According to Holz and Baundisch (2011), targets of over 8.6mm have a touch
accuracy of 95%. Given no other participant raised this in the questionnaire or vocally, we could
attribute this frustration to P2’s lack of smartphone experience. The participant may have been
alluding to the finite number of possible grid spaces. Although finite, the grid can be moved by
dragging with the finger. It is very large and should easily accommodate any set of rules the user
would like to use. There is a possibility the candidate may not have noticed this functionality.

P5 stated “double clicking is fairly standard but holding down would be nicer”. The participant is
referring the settings dialog of a tile. During implementation, both double tap and long tap techniques
were implemented and tested. The “long tap” technique was found to be inferior to the double tap
technique due to the need for a delay of more than half a second (to avoid the user mistakenly
accessing settings when they want to drag the tile). Due to the need to change settings frequently, this
delay was frustrating. Using a long press for a dialog is also counter-intuitive as an object appears
under the finger. A double tap is intuitively provoking a response from the object being tapped.

P2 also noted in the viscosity section, that double tapping sometimes does not work. This is likely due
to mistakenly tapping in the wrong area and could be related to the size of the grid. He also mentions
that the tiles “don’t fall accurately”. The tile drag and drop system ensures that while moving the tile,
the grid space it will “land” on, if dropped, is highlighted in yellow. This space is directly under the
user’s finger, while the tile icon is offset to allow the user to see which tile they are dragging.

Figure 8: Dragging a tile from the palette (red blob is the user’s finger)

 10

PPIG 2011 University of York www.ppig.org

P4 took issue with the need to use two property tiles instead of one tile that would represent pitch and
the volume. P1 noted that it seemed strange to use a single value tile to change both pitch and volume.
The system was designed to be extensible and allow multiple musical properties to be changed. The
“value” and “time value” tiles are generic and applicable to any property. P7 thought the notation was
long winded and “needs a tile for everything”. The design decision to change properties independently
appears to have caused confusion initially for the participants.

P4 stated that it is “not always easy [to compare or combine different notation] as the screen only has
a finite area”. This is referring to having a large rule that might extend off the grid. During
implementation of the system, this possibility was recognised. The solution was to allow tiles to be
connected in any order or any cluster, as long as they are directly connected. This may not have been
obvious to users as the tasks used the same order of tiles every time for consistency.

Figure 9: Subset of possible rule combinations

Figure 9 shows four possible combinations of tiles that make the same rule. The palette tool can be
closed and opened to maximise the grid area available when it is not needed.

Questions devoted to dependency are particularly interesting as four participants appeared to think
there were no dependencies and three thought there were (P2 did not answer). The system does not
constrain the uniqueness of the rules. Duplicate rules depend on each other (as both would run in
parallel) and any two rules referring to the same synth, using the same triggers depend on each other.
This is a difficult concept to grasp and realistically cannot be learnt within a short amount of time.

Most participants found trying out test versions of their programs easy (by tapping back and clicking
“Perform” on the main menu). P2 found this “not so easy; you need to change ‘modes’ which is a
little cumbersome”. During the experiment, this participant pressed several buttons by mistake,
including the physical volume and sleep controls. Given lack of smartphone experience, we can
conclude that he found the phone difficult to use and not just our system.

When asked about using partially built programs, some participants stated that they could not be used
due to grid validation. A valid grid consists of zero or more rules which have: one or more synths, one
or more triggers, one value and one or more property tiles.

P4 stated that “decisions can be changed later but some unexpected results may occur” when asked
what needs to be considered before writing the notation. A trial and error approach to building a
program could lead to interesting unanticipated results. We would like to facilitate experimentation, as
well as making the system easy to use for people with a specific idea in mind.

Figure 10: Current Value tile representation

When thinking about secondary notation, most participants stated they would record what rules or
tiles meant. There is currently no provision for notes or annotation within the application but detailed
descriptions of the tiles could be added to the settings dialog. Some participants mentioned it was
difficult to see exact values without going into the settings dialog. Currently, the tile shows a dynamic
representation of the current value. This could be improved by showing specific values.

 11

PPIG 2011 University of York www.ppig.org

The “Time Value” tile changes the current value of a given property of a synth to a new value over
the given time period. P4 noted that when he was setting the “Time Value” parameters in the settings
dialog, he occluded the value with his finger.

Figure 11: Demonstration of value occlusion

Clearly the sliders should be underneath the labels to avoid the occlusion. The user interface uses
standard Android slider controls which give the user the ability to set the value to any in the range of
0-99. This value can represent volume percentage as well as midi notes. In the future, we could
introduce precision + and – buttons to allow the user to increase and decrease the value.

5.2 Group Comparison

From Figure 4 and Error! Reference source not found. we can see that both groups reported
allocated time in a similar way, with most being spent searching for information within notation or
reorganising previously created descriptions. It is possible that this is due to the ease of using trial and
error when experimenting with the system. Both sets of users spent least time adding bits of
information to the description and translating information from other sources. The large variation of
translation time in Group 1 is due to P2, who is marked in Figure 4 as an anomaly due to having
unusual issues when using the smartphone. Time allocations were estimated by participants and could
therefore be inaccurate.

6. Conclusions
The participants’ reaction to the system was encouraging, reacting positively to the tile metaphor and
visibility of notation. Almost all participants identified areas for improvement, which is useful when
considering future work. Apart from P2 (who had a particularly bad experience with the smartphone),
results suggest that the reaction to the system is similar for participants with smartphone experience
and those without, which was expected.

Observations of the experiments and analysis of questionnaire results show that some participants did
not understand the complex ideas of the system. For example, the notion that tiles in each rule could
be positioned anywhere as long as they are directly touching. Also, it is not clear whether all users
understood why there was a synth tile and how it affected the audio output. The separation between
the value and property tiles seems to have been initially counter intuitive to most participants, but
after learning throughout the tasks and experimentation, was understood. Only one participant (P8)
used multiple synth tiles to turn the volume of four synths to 100%.

Several participants mentioned a learning curve; they appeared to be comfortable after completing the
tasks but may not have fully understood the system’s intricacies. This could be due to the
ineffectiveness of communicating complex ideas to users in short written tutorials – several
participants misunderstood concepts descripted in the tutorial. The system is very different to others,
forcing the creation of a new mental model, rather than relating the system to one used in the past.

The CD questionnaire was effective as it probed the participants’ experience with the system, as well
as their mental models and object relationships. The only issue with the questionnaire is the variation
in interpretation of questions. Questions are compelling and clear, asking related questions to get the
user thinking. The problem may not be with wording of questions, but with the length of the
questionnaire and the complexity of the questions in relation to the system.

 12

PPIG 2011 University of York www.ppig.org

There was little difference in reaction to the system between groups, which is unexpected. We can
conclude from this that both users with and without music background might find this system equally
usable. There is a learning curve that users would inevitably have to undergo. All participants
welcomed the ability to progressively evaluate notation and did so during experimentation. Figure 4
shows that P8 from Group 2 was the most experimental user, using 7 rules in total.

Users from Group 1 and 2 suggested that to improve the system, a wider range of actions could be
introduced and the value tile could be improved. Group 2 users suggested a tile that produces a burst
of sound (i.e. changes to a new frequency, then changes back over a given time period).

7. Future Work
The feedback given in the questionnaire offers several adjustments to the system, including the
change of the “Time Value” tile settings dialog and the “Value” tile. Participants noted it was difficult
to see the exact value of these tiles while manipulating other tiles. More work needs to be done to find
a representation which makes the exact value obvious. Some participants tried to drag tiles back to the
palette to delete them. This could be a better method of tile deletion than the current delete button.

8. Acknowledgements
Thank you to Alan Blackwell for his amazing support, perspective and insight while supervising this
project. Thank you also to Sam Aaron for providing the audio synthesis system and for his support.

9. References
Apple. (n.d.). Automator: Your Personal Automation Assistant. From

www.apple.com/macos/features/automator

Bell, B. (1991). ChemTrains: A Visual Programming Language for Building Simulations.

Blackwell, A. F. (1996). Metacognitive Theories of Visual Programming: What do we think we are
doing? IEEE Symposium on Visual Languages , 240 - 246.

Blackwell, A. F., & Green, T. R. (2000). A Cognitive Dimensions Questionnaire Optimised for Users.
Psychology of Programming Interest Group, (pp. 137-154).

Clarke, S. (2001). PPIG. (pp. 275-289). Bournemouth: Workshop of the Psychology of Programming.

Furnas, B. V. (1991). New Graphical Reasoning Models for Understand Graphical Interfaces. SIGCHI
on Human factors in computing systems (pp. 71-78). New Orleans, Louisiana: ACM.

Green, T. R., & Petre, M. (1996). Usability Analysis of Visual Programming Environments: A
'Cognitive Dimensions' Framework. Journal of Visual Languages & Computing , 7 (2), 131 - 174.

Holz, C., & Baundisch, P. (2011). Understanding Touch. Proveedings of CHI (pp. 2501-2510).
Vancouver: ACM.

Nardi, B. A. (1993). A Small Matter of Programming: Perspectives on End-User Computing.
Cambridge. MA: The M.I.T Press.

Repenning, A. (1993). Agentsheets: A Tool for Building Domain-Oriented Dynamic, Visual
Environments. Ph.D. dissertation. Colorado, USA: University of Colorado.

