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Abstract 

This paper presents an analysis of the user interfaces of a range of algorithmic music composition 
software using the Cognitive Dimensions of Notations as the main analysis tool. Findings include the 
following: much of the reviewed software exhibits a low viscosity and requires significant user 
knowledge. The use of metaphor (staff notation, music production hardware) introduces multiple 
levels of abstraction which the user has to understand in order to use effectively: some instances of 
close mapping reduce abstraction but require the user to do more work. Significant premature 
commitment is not conducive to music composition, and there are clear opportunities for the greater 
provisionality that a piece of structurally-aware music software could provide. Visibility and 
juxtaposability are frequently compromised by complex design. Patching software reduces the hard 
mental operations required of the user by making the signal flow clear, although graphical complexity 
can have a negative impact on role-expressiveness. Complexity leads to error-proneness in several 
instances, although there are some tools (such as error-checking and auto-completion) which seek to 
ameliorate the main problems. 

1. Introduction 

This paper presents an analysis, using the Cognitive Dimensions of Notations (Green & Blackwell, 
1998), of a representative selection of user interfaces for algorithmic music composition software. 
Cognitive Dimensions of Notations (CDN) are design principles for notations, user interfaces and 
programming language design, or from another viewpoint ‘discussion tools’ for designers (Green & 
Blackwell, 1998). For the purposes of this report, algorithmic composition software is software which 
generates music using computer algorithms, where the algorithms may be controlled by end users 
(who may variously be considered as composers or performers). For example, the algorithms may be 
created by the end user, or the user may provide data or parameter settings to pre-existing algorithms. 
Other kinds of end-user manipulation are also possible. The software accepts either precise or 
imprecise, indicative input from the user which is used to output music via emergent behaviour. A 
wide variety of algorithmic composition software is considered, including visual programming 
languages, text-oriented programming languages, and software which requires or allows data entry by 
the user. The paper considers a representative, rather than comprehensive, selection of software. The 
analysis also draws, where appropriate, on related discussion tools drawn from Crampton Smith 
(Moggridge, 2006), Cooper et al. (2007) and Rogers et al. (2011). Finally, the paper reflects on the 
compositional representation of time as a critical dimension of composition software that is implicit in 
several of the CDNs. 

For detailed images from a wide variety of algorithmic composition software illustrating all issues 
touched on in this paper, see Bellingham et al. (2014), of which this paper is an abbreviated version. 
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2. Structure and connections 

Sections, and the connections between them, are an important feature of much music. Several genres 
of music require a sectional structure (ABA, for example). An interface which matches the user’s 
conceptual structure will reduce both repetition viscosity (caused when the software requires several 
actions to achieve a single goal) and knock-on viscosity (created when a change is made and the 
software requires further remedial action to restore the desired operation). Cooper et al. (2007) 
suggest three separate models for the perception of software; the implementation model of the 
software (how it works), the user’s mental model (how the user imagines the software to work) and 
the representational model of the software (what the software shows the user). Repetition viscosity 
could be significantly reduced by better matching the mental model to the representational or 
implementation models. For example, if the implementation model made use of repeating sections the 
user could apply a change to the section and it would play back correctly both times. If the 
representational model showed repeating sections (as visual blocks, for example) and then relayed the 
changed material to all relevant repeats in the implementation layer, the user would input the desired 
changes once and they would be propagated out to the playback system. This model links to 
provisionality, which refers to the degree of commitment the user must make to their actions (Green 
& Blackwell, 1998). It allows users to make imprecise, indicative selections before making definite 
choices. Provisionality reduces premature commitment as it allows a composer to create sketches 
before allowing for specific details. 

Some of the software under review allows the software to make selections within a given range. 
SuperCollider makes use of .coin and .choose messages for this reason; .coin, for example, 
represents a virtual toss of a coin. Other software, such as Max, can make use of pseudo-random 
numbers in parameters; this allows the composer to issue a command such as ‘use a value between x 
and y’. Such selections can increase provisionality in the system (the degree of commitment the user 
must make to their actions), although more complex variations require significant planning which 
negates the benefits of being able to quickly create a functional piece of code. DAW software such as 
Logic Pro (Apple Inc., 2013) makes use of audio and MIDI loops to facilitate provisionality in 
composition and arrangement. Users are able to create sketches using loops, replacing them later in 
the process. Some music composition software allows the user to create music following basic 
harmonic or rhythmic parameters. Noatikl has preset objects which can be used to create sequences, 
and Impro-Visor’s preset algorithms allow for quick musical sketches based on a chord progression 
(Keller, 2012). One possible design would allow the user to specify the desired structure and then 
populate the sections. Repeated sections would require two ‘pools’ of information; those attributes 
common to both, and those for that specific iteration. 

Most software in the domain allows links to be made only between pre-existing entities. In these cases 
the user is unable to say ‘I don’t know what is going here’, which can be a useful option when 
composing. One possible solution to this problem would be to decouple the design of the 
patch/composition from the actualisation. This could take the form of a graphical sketching tool which 
would allow the user to test the structure and basic design of the patch. 

The role-expressiveness of an element relates to how easily the user can infer its purpose (Green & 
Blackwell, 1998). The use of metaphor (such as mixing desks, synthesisers, piano rolls and staff 
notation) allows users to quickly understand the potential uses of each editor. Abstractions can be 
used to make software more effectively match the user’s mental model (Cooper et al., 2007). Multiple 
steps can be combined to make the software conform to the user’s expectations. Such abstractions can 
make use of a metaphor such as the hardware controls of a tape machine. Other hardware metaphors 
are used in current algorithmic composition software. The Cylob Music System by Chris Jeffs (2010) 
makes use of step-sequencer and drum machine designs, among others. 

There are two types of links made in the software under consideration; one-way and symmetric. One-
way links send data, whereas symmetric links can both send and receive information. One-way links, 
such as a send object in Pure Data or a variable in SuperCollider, do not reflect changes made 
elsewhere in the system. Visual audio programming systems typically use a patch cable metaphor and, 
as the majority of physical patching utilises a unidirectional (i.e. audio send or return) rather than 
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bidirectional (i.e. USB) connection, software such as Max and Pure Data retains a one-way 
connectivity metaphor. Visual patching systems allow users to see links at the potential expense of 
increased premature commitment. The patch-cable metaphor used in visual programming languages 
makes dependencies explicit and reduces the potential for hidden dependencies. In addition, the use of 
patch cables is an example of closeness of mapping (Blackwell & Green, 2003). 

Both graphical and text-oriented languages can make use of variables and hidden sends and returns. If 
users are required to check dependencies before they make changes to the software the search cost is 
increased. This in turn can lead to higher error rates (via knock-on viscosity). Abstractions can impose 
additional hidden dependencies; users may not be able to see how changes will affect other elements 
in the patch. Both Max and Pure Data allow graphical elements (such as colour, fonts and canvas 
objects) to be added to patches, enhancing the information available via secondary notation (extra 
information conveyed to the user in means other than the formal syntax). Graphical languages are 
substantially more diffuse (verbose) than text-oriented languages, and can make hidden dependencies 
explicit. Text-oriented languages typically have a lower role-expressiveness (how easily the user can 
infer the software’s purpose). ChucK (Wang & Cook, 2013) is an interesting hybrid in this respect. 
Data can be ‘chucked’ from one object to another using the => symbol, the use of which imitates a 
patch cable. The other text-oriented languages reviewed do not make direct use of graphical or spatial 
interconnectivity. In this way ChucK makes limited use of Crampton Smith’s second dimension of 
IxD; visual representation (Moggridge, 2006). 

3. Time 

The passage of time is highly significant when considering the representation of music. Time is not 
viewed as a separate entity in Cognitive Dimensions, although it is implicit in some dimensions. 
Payne (1993) reviewed the representations of time in calendars, which primarily focussed on the use 
of horizontal and vertical spatial information to imply the passage of time: in many cases a similar 
approach can be taken by music software. Sequencers, such as Cubase (Steinberg GmbH, 2013), 
frequently use horizontal motion from left to right to denote the passage of time. Trackers, such as 
Renoise (Impressum, 2013), frequently show the passage of time as a vertical scroll from top to 
bottom. Live coding software can present alternative representations of time, as seen in software such 
as ixi lang (Magnusson, 2014), Overtone (Aaron et al., 2011) and Tidal (McLean, 2014). 

Much musical software makes use of cyclic time (loops), as well as linear time. Both of these kinds of 
time can be sequenced, or mixed, or arranged hierarchically at different scales, or arranged in parallel 
streams, or all of these at once. Tidal, for example, has been developed to allow the representation of 
linear and cyclic time simultaneously (Blackwell et al., 2014). Software written to perform loop-based 
music frequently uses a different interface to denote the passage of time. Live (Ableton, 2014) makes 
use of horizontal time in some interface components; other interface elements allow the user to switch 
between sample and synthetic content in real-time with no time representation. Mixtikl (Intermorphic, 
2013) is a loop-based system and, in several edit screens, does not show the passage of time at all as 
the user interacts with the interface. 

In a classic paper, Desain and Honing (1993) discuss different implicit time structures in tonal music. 
They point out that, in order to competently speed up piano performances in certain genres, it is no 
good simply to increase the tempo. While this may be appropriate for structural notes, decorations 
such as trills tend to need other manipulations such as truncations without speed-ups or substitutions 
to work effectively at different tempi. Similarly, elements of rhythm at different levels of periodicity, 
for example periodicities below 200 ms vs. above 2 seconds, may require very different kinds of 
compositional manipulation since the human rhythm perception (and composers and performers) deal 
very differently with periodicities in these different time domains (Angelis et al., 2013; London, 
2012). In a related sense, Lerdahl & Jackendoff (1983) uncover four very different sets of time 
relationships in harmonic structures in tonal music. 

Honing (1993) differentiates between tacit (i.e. focussed on ‘now’), implicit (a list of notes in order) 
and explicit time structures. Some of the software under review can be considered in this way; for 
example, some modes of operation in Mixtikl and Live utilise tacit time structures, the note lists in 
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Maestro Genesis and MusiNum are implicit time structures, and software such as Max or Csound can 
generate material which uses explicit time structures. The flexibility of many of the programming 
environments under consideration means that the user can determine the timing structures to be used. 
Honing (1993) also applies the same process to structural relations: he suggests that there are tacit, 
implicit and explicit structural relations. A system which uses explicit structural relations would allow 
the musical structure to be both declarative and explicitly represented. 

4. Complexity and stability 

There are several compositional software interfaces which range from the highly complex and flexible 
to simple, limited designs. Viscosity - a measurement of the software’s resistance to change - is not 
necessarily a negative attribute. Highly viscous software can present a user with a single, stable, well 
defined use-case. An example of this is Wolfram Tones (Wolfram Research Labs, 2011) which 
presents the user with a limited control set as a ‘black box’ (Rosenberg, 1982). Another example is 
Improviser for Audiocubes (Percussa, 2012), in which the complexity of the performance is generated 
by the physical layout of the Audiocubes (Percussa, 2013). As a result, keeping the sequencing 
interface simple avoids over-complicating the composition and performance processes. This 
simplicity, however, increases the viscosity and arguably limits compositional opportunity. 

The text-oriented systems under review exhibit poor discriminability due to easily confused syntax, 
which invites error (Blackwell & Green, 2003). For example, Thomas Schürger’s SoundHelix (2012) 
produces code with a large number of XML tags, potentially reducing human readability and 
increasing the time taken to write the commands. Such a system increases the error-proneness of the 
system (whether the notation used invites mistakes). Issues of this type can be ameliorated by the 
syntax checking seen in the Post windows of SuperCollider and Pure Data, in which errors are 
outlined in a limited way. A more thorough error-checking system would be a significant 
improvement in the software’s usability. SuperCollider 3.6 introduced an IDE (Integrated 
Development Environment) based design, including autocompletion of class and method names. Such 
a system significantly reduces errors introduced by mistyping. 

There are several music metaphors used in the software in this domain which require the user to be 
conversant in music theory. Harmony Improvisator (Synleor, 2013) requires input in the form of 
scales, chords and inversions. Noatikl (Intermorphic, 2012) uses abstractions to create what it refers to 
as ‘Rule Objects’ (‘Scale Rule’, ‘Harmony Rule’, ‘Next Note Rule’ and ‘Rhythm Rule’) to control 
how the software generates patterns. The Algorithmic Composition Toolbox (Berg, 2012) makes 
reference to note patterns and structures. Roger Dannenberg has explained how staff notation is rich 
in abstractions (1993); software which uses elements of staff notation is building abstractions on top 
of abstractions. An example of a consistent design is Mixikl (Intermorphic, 2013). The design 
language refers metaphorically to both hardware synthesisers (the use of photorealistic rotary 
potentiometers and faders) and patching (patch cables which ‘droop’ as physical cables do). Fractal 
Tune Smithy (Walker, 2011) makes use of a less consistent design language. The design makes use of 
notation, piano roll, hardware-style controls, text-based data entry and window and card metaphors. 
The software is, as a result, highly capable of a wide variety of tasks but potentially at the expense of 
usability. There can also be consistency issues when software does not use standard operating system 
dialogue boxes. An example is SuperCollider’s save dialogue (McCartney, 2014), in which the ‘Save’ 
button is moved from the far right (the OS standard) to the far left. This is a clear example of poor 
consistency which could lead to unintended user error. 

5. Summary 

There are opportunities for future work to consider the design of structurally-aware algorithmic 
composition software. It would be interesting to further employ Cognitive Dimensions in suggesting 
concrete improvements to the design of the software under review. A full review of time with 
reference to the CDN using the format suggested by Blackwell et al. (2001) would be a useful 
process. The CDN is an evolving body of work and there are several new dimensions which could be 
utilised in future work in the area. 
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The issue of time raises particular questions. Algorithmic composition tools use varied interaction 
designs, and may promiscuously mix diverse elements from different musical, algorithmic and 
interaction approaches. Consequently, such tools can raise challenging design issues in the 
compositional representations of time. To some degree, these issues parallel similar issues in general 
programming, for example concerning sequence, looping, hierarchy and parallel streams. However, 
growing knowledge about how people perceive and process different kinds of musical structure at 
different time scales suggests that the design of algorithmic composition tools may pose a range of 
interesting new design issues. We hope that this paper has made a start in identifying opportunities to 
create or extend design tools to deal better with these challenging issues. 
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