
Harmonious Authorship from Different Representations
(Work in Progress)

Antranig Basman1, Colin Clark2, and Clayton Lewis3

1 Raising the Floor - International
antranig.basman@colorado.edu

2 OCAD University
cclark@ocadu.ca

3 University of Colorado, Boulder
clayton.lewis@colorado.edu

Abstract. We describe the Infusion system, which is a library, language system or integration
domain implemented in JavaScript, as well as a mentality and model for thinking about the ex-
pression of end-user applications. We promise that this system will bring together the worlds of
different kinds of users engaged in different tasks at different times, and allow them shared authorial
access to the same artefacts which are presented to each in a notation appropriate for them.

Keywords: POP-II-A. individual differences; POP-II.C. cognitive dimensions, data flow, visual languages;
POP-I.A. programming economy; POP-I.C. web

1 Introduction

Differing notations bring different affordances — and are suited for different audiences and different tasks(Blackwell
& Green, 2003). For example, notations with low viscosity might be appropriate during initial development of a
new system, whilst others with few hidden dependencies might be more appropriate during maintenance. Those
with powerful abstractions might be suited for experts, whilst others with good visibility might be better suited
to novices or end-users. Traditionally, the choice of notation for a particular task implies more than a skin-deep
commitment to a particular style of representation and way of working. For example, the choice of a conventional
programming language such as Java or Haskell, based on the core representation of a stream of textual characters
forming its source code, strongly limits the kinds of alternative notation which can be provided for other tasks
and audiences. Correspondingly, the choice of a visual programming idiom such as Scratch(Maloney, Resnick, &
al., 2010), Blockly(Google Developers, 2015), or Max/MSP(Cycling 74, 2007), cuts off the potential for engaging
with audiences familiar with the power of traditional text editors and IDEs.

Our work for some years on the Fluid Project has been to build a system, Infusion, which aims to produce not
just a single “middle way” between such extremes of notation, but also schemes for navigating between different
notations in which “the same artefact” might be expressed. This will naturally involve some compromise between
the needs of different audiences since, as in our examples above, the gap between the notational worlds of the
visual and non-visual is not simply a matter of notation. The differences between the structure and referential
style of, say, a Java program and a Scratch program are too profound to allow one to be usefully transformed
and represented in the style of another.

Infusion evolves through repeated cycles of experimentation, validation and rationalisation, guided by some
core heuristics. We still can’t clearly see the forms of notation that can deliver on the aims we have just described
— but we have made some crucial architectural decisions which put us at variance with existing popular notations,
without which we believe that these aims cannot be achieved. These focus on the use of what we call aligned,
publically addressable state, an idiom we will enlarge on in later sections.

A clear source of inspiration for Infusion is taken from the highly successful “evolved” solutions embodied
in web technologies — we claim both the document object model (DOM) and representational state transfer
(REST) idioms as embodiments of the aligned state idiom just referred to. As well as being inspired by the
web, Infusion is built for the web — it is a library of standard JavaScript that can be included in any modern
browser, and harmoniously coexists with applications written in standard markup and widgets. It is also suitable
for standalone JavaScript runtimes such as Node.js.

2 Short guide and example

We’ll work through a simple application encoded by an Infusion component tree. This will be considered first
from the point of view of some users (authors) named Users A, A′ and A′′, employing traditional text-based
development tools, and then from the point of view of other participants, Users B, C and D. We’ll then consider
the kinds of interactions they might share through the application, and the potential lifecycles of these interactions.



2.1 A small example involving relay

The model relay system is used to set up permanent, possibly transforming, relationships between different
bodies of state. This kind of capability is also currently comprised under today’s descriptions of reactive systems,
particularly seen in the so-called functional reactive programming (FRP). In Figure 1, we’ll set up a small system
consisting of two pieces of state linked by a transforming relay, held in two different components, and then show
how we can interact with it from JavaScript, which we’ll call the base language. The components and relay are
expressed as configuration in JSON, referencing function and component definitions in JavaScript via strings
representing their globally namespaced names.

1 fluid.defaults("examples.simpleRelay", {

2 gradeNames: "fluid.component",

3 components: {

4 celsiusHolder: {

5 type: "fluid.modelComponent",

6 options: {

7 model: {

8 celsius: 22

9 }

10 }

11 },

12 fahrenheitHolder: {

13 type: "fluid.modelComponent",

14 options: {

15 modelRelay: {

16 source: "{celsiusHolder}.model.celsius", // IoC reference to celsius model field in the other component

17 target: "{that}.model.fahrenheit", // this reference could be shortened to just "fahrenheit"

18 singleTransform: {

19 type: "fluid.transforms.linearScale",

20 factor: 9/5,

21 offset: 32

22 }

23 }

24 }

25 }

26 }

27 }); Fig. 1. Short example showing a transforming relay from view of User A – temperature conversion

To start with, it’s worth noting that our design so far involves no JavaScript code. A single function call,
fluid.defaults, is necessary to register the configuration with the system, but in other styles of interaction, for
example the Nexus described in section 4 even this can be dispensed with. We’ll need to execute some further
base language code to create an instance of this system and experiment with it, but one can imagine that this also
could be dispensed with in other visual/non-visual authoring environments which might feature, for example, a
graphical “playground” in which instances can be set up and torn down by direct manipulation (see Figure 5).

We now imagine that another user, User D, decorates this definition with some further elements (some shown
in Figure 2) that can turn it into a live HTML interface, allowing a further user, User E, to use the interface
(shown in Figure 3). User E, cast in the traditional role of an “end user”, can type numeric values into either
field and see the opposite field update with the corresponding value in the other scale.

1 // User D designates a "decorated variety" of our simpleRelay type which produces a live HTML interface

2 fluid.defaults("examples.relayApp", {

3 gradeNames: ["fluid.viewComponent", "examples.simpleRelay"],

4 components: {

5 celsiusField: {

6 type: "fluid.uiInput",

7 options: {

8 model: {

9 value: "{celsiusHolder}.celsius"

10 }

11 },

12 fahrenheitField: {

13 type: "fluid.uiInput",

14 options: {

15 model: {

16 value: "{fahrenheitHolder}.fahrenheit"

17 }

18 }

19 }

20 }

21 });

22 // Construct an instance of the application bound to the current HTML document’s body element

23 var app = examples.relayApp("body");

Fig. 2. Decorating the model skeleton from Figure 1 to bind to a simple HTML interface (markup not shown)

Fig. 3. Simple HTML GUI for end user (User E) of temperature conversion tree shown in Figure 1

2.2 Decorating the skeleton for console interaction

In this section, we will imagine two further users decorating the same application skeleton in Figure 1 to perform
interactions from the browser console. User A′ will decorate the base the base system with some model listeners



which will react to changes in the model values and report on them. We can do this i) without further application
code, and ii) without needing to modify the above definitions. After that, user A′′ will use the language-level API
to trigger modifications to the values and hence the reports. These interactions are shown in Figure 4.

1 // User A’ designates a "decorated variety" of our simpleRelay type which will log messages on model changes

2 fluid.defaults("examples.reportingRelay", {

3 gradeNames: "examples.simpleRelay",

4 distributeOptions: [{ // options distributions route options to the subcomponents in the tree compactly

5 record: {

6 funcName: "fluid.log",

7 args: ["Celsius value has changed to", "{change}.value"]

8 },

9 target: "{that celsiusHolder}.options.modelListeners.celsius"

10 }, {

11 record: {

12 funcName: "fluid.log",

13 args: ["Fahrenheit value has changed to", "{change}.value"]

14 },

15 target: "{that fahrenheitHolder}.options.modelListeners.fahrenheit"

16 }]

17 });

18 fluid.setLogging(true); // send any logging output to the console

19 // User A’’ uses the grade of User A’ to construct an instance of our decorated tree type

20 var tree = examples.reportingRelay();

21 // This will immediately report:

22 // Celsius value has changed to 22

23 // Fahrenheit value has changed to 71.6

24 tree.celsiusHolder.applier.change("celsius", 20);

25 // Celsius value has changed to 20

26 // Fahrenheit value has changed to 68

27 tree.fahrenheitHolder.applier.change("fahrenheit", 451);

28 // Fahrenheit value has changed to 451

29 // Celsius value has changed to 232.7777777777778

Fig. 4. Example of operating a transforming relay by Users A′ and A′′ — output is shown in comments

This shows that the relay has set up a lens between the state held in the two components. The relay operates
from the point of construction onwards — and ensures that the model constraint is satisfied by the initial system
as well as with respect to modifications at either end of the relay. This relationship will persist until one or other
of the related components is destroyed, which will also remove the instance from its parent, as required by the
cellular model described in section 3.3.

2.3 The application from different points of view

The original authoring of the application was by User A who finds it convenient to use traditional software
development tools based on text buffers and function calls. We’ll now explore how we envisage how the authoring
of this short application snippet could be shared with users of other kinds — for example, User B, who prefers a
visual “boxes and wires” environment (mocked up in Figure 5) allowing development using direct manipulation
by mouse, and the closely related User C, who would prefer a topologically identical environment, but instead
mediated by speech and keyboard, in the style of the “nonvisual visual programming” environment presented in
(Lewis, 2014). These would lead to the same experience by the end user E in Figure 3.

Fig. 5. Mockup of User B’s visual environment for authoring temperature conversion tree shown in Fig. 1

The notation/interface shown in Figure 5 contains the same information as that in Figure 1 (as would user
C’s hypothetical non-visual representation). Since this information has been expressed in the form of aligned state,
we can directly correlate parts of these interfaces together, as well as user actions directed at them — we speak
more about this kind of alignment in section 3.2. Because of this correlation, we plan for these interfaces to be
usable simultaneously, to author one and the same underlying “application”. Another result from this correlation
is for user E’s view, “the actual application itself” to be the target of authoring actions, in the style of Self’s “the
thing on the screen is the thing itself”(Ungar & Smith, 2013) model. This could be enabled by a “progressive
disclosure” UI exposed, perhaps, to only some users in some contexts, allowing access to a progressively rich set
of editing primitives drawn from the worlds of users C, B and A. The underlying application would be “live”,



to the extent that, if any of the participating authors introduce, say, a fresh temperature field showing values in
Kelvin, all views would update to show it (user E’s only if a matching UI component were provided for it) — as
well as, through the same underlying state-directed idiom, the current temperature value that a user had entered
into any live embodiment of the application (for example, user A′′ or E) would be preserved, and shown in the
new temperature scale too.

2.4 The link to Inclusive Design

Infusion is based on Inclusive Design practices, where software should be freely adaptable to meet the requirements
of users with different notational requirements, whether these are prompted by cognitive, physical, interactional
or other differences. It’s crucial that this can be done in an aligned way, such that the complete community of
users sharing a need can share a particular coordinate, relating their embodiment of the notation to that used by
another community. Our simple application can be seen as a direct example of such notational accommodation, in
that a value (attached to a source of state in the world) is rendered to one user in one scale (Celsius), and another
user in another (Fahrenheit). New adaptations can be freely introduced and removed from individual systems,
without disturbing the wider community of cooperating users. More substantial adaptations can be introduced,
such as accommodating special devices or modes of input and output.

2.5 “One person’s excess intention is another person’s secondary notation”

A crucial requirement in order to meet our goal of harmonious authorship from different notations is the con-
struction of notations that are as free as possible from the expression of excess intention . Excess intention
results when the notation we have available unavoidably captures more than what we intend to express in our
design. Traditional programming languages, especially procedural ones, are famously rich in excess intention —
some of which are being recognised and combatted by newer notations, others of which are not. Here are two
examples we have characterised:

Sequential Intention — Imperative programming languages unnecessarily force the creator to commit to an
exact sequence of executed instructions, which is usually far in excess of the real requirements underlying
the goals they are interested in. This is a criticism that is broadly acknowledged, and some responses to it
are becoming widespread — for example, as expressed in the model of dataflow programming, or in monadic
styles of packaging control flow.

Artefact Boundary Intention — Object-oriented languages force the designer into a single, exhaustive
decomposition of their domain of interest into a non-overlapping collection of objects with well-defined names,
properties, relations and contracts. However, another view of the same domain by a creator with different
aims, skills or preoccupations might very well decompose it into an entirely different set of entities — which
may or may not bear a strict hierarchical relationship with those from the first view.

Other sources of intention excess raise similar issues. In transforming from one notation to another, one must
somehow capture all that is “excess” from one viewpoint with respect to another, and store it somewhere as an
annotation to the structure — in exactly the same way one would be required to capture a secondary notation
that had been attached in a notation, to preserve it during a stage of processing that was blind to it.

Our system addresses intention excess issues in a few ways. Our choice of configuration primitives is guided
by an autoethnographic process that attempts to explain our intentions when writing base language code. Con-
figuration styles which fail to do this economically are discarded, and the process continues to iterate. In general,
intention cast in the form of aligned, transformable state naturally involves less excess than that in terms of other
primitives (such as function or object definitions) — since, for example, both sequential and artefact boundary
intention is minimised. Finally, the coordinate system that the state is endowed with provides a natural set of
“hooks” on which to hang secondary notations as the primary notation is transformed between representations.

3 Theoretical underpinning and links to existing paradigms
Our configuration is organised as a set of globally named elements which are known as grades, which fulfil a
few of the traditional roles of types in other systems, but fail to qualify in other areas. The configuration part
of the system, since it consists of pure state aligned with a natural coordinate system, is ripe for transforming,
expressing, and authoring in a variety of forms.

3.1 The role of programming languages and computational power

It is arguable whether Infusion is best described as a “programming language”, a “framework” or some other thing.
It shares clear characteristics of both. The best designation that we have found so far is that of an integration
domain (Kell, 2009), which is an arena for the naming and scheduling of effects, computations and their units
of organisation, rather than an system in which computation is expressed directly. This issue, we feel, has long
misdirected the field — since every notation which has been put into the role of “programming language” has
been put under immediate pressure to demonstrate that it can express any computation (“is Turing-complete”)
in order to qualify for this role. On the contrary, an integration domain, as noted by Kell, can easily be endowed
with lesser computational power, and we argue, should be so. It is crucial, for example, for the transparency and



responsiveness of authoring tools, that relationships between parts of a program can be determined by the exercise
of limited computational power. The Self family of languages emphasise the importance of such responsiveness
for the feeling of authors that “the thing on the screen is the thing itself”(Ungar & Smith, 2013). A system or
language whose structure implies the potential for unbounded computations (for example, those of a complex
type system such as ML or Haskell) directly fights this aim. Such type systems, if provided, should be an optional
addition to the system just for the use of a particular audience. Recent work on “gradual typing”(Siek & Taha,
2006) has tended in this direction, but so far there is little work on systems promising multiple independent,
completely optional type systems for the same artefacts.

3.2 The first-class role of state, and transparent access to it

We promote the use of transparent, publically addressable state. The Infusion system should maintain all state
— not just that on behalf of its users, but also its own book-keeping — in public view, with each piece of
state available through an utterable1 public address. This is at odds with both it object-oriented and functional
programming, which insist that the state which the application manages on behalf of users must be hidden from
view, either through data hiding in the former paradigm, or prohibition of side-effects in the latter.

Publically addressable state is the touchstone of the prevalent REST(Fielding, 2000) style of conversation
or API for web applications, and this analogy has guided our development since the start. REST stands for
representational state transfer — describing a conversation where state is represented, rather than opaque
tokens traded, which represent mere behaviour or methods as is common in procedural or object-oriented API
contracts, and also where state is transferred — that is, that the representation is an exhaustive summary of the
state that can be used to move it from place to place.

The manifest nature of public state is crucial for many of the most successful embodiments of end-user
programming. For example, in the spreadsheet paradigm, the programming surface consists purely of values in a
grid. Each grid element has a well-known and mostly stable public address which can be used to access its value.
Unfortunately from here on, the spreadsheet idiom starts to fall down, since any programming directives which
are issued must skulk in a “hidden world” behind each cell, unaddressable either as a whole or in part. (Burnett
& al., 2001) address this deficiency within the spreadsheet paradigm in particular. The public addressability of all
design elements is crucial for a notation to allow good visibility and a lack of hidden dependencies when required.

3.3 A system inspired by the web, and built for the web — IoCSS selectors

The web represents the most highly successful “evolved strategy” for dealing with the problem of distributed and
shared authorship. Whilst it appears to fall short of what are claimed as its antecedent blueprints, for example,
in Ted Nelson’s elaborate hypertext system Project Xanadu(Nelson, 1982), as well as being regularly claimed as
a deficient abstraction by object-oriented and functional programmers alike, we feel that there is a great deal to
study, admire, and learn from the solutions and strategies that it embodies.

Together with REST, discussed in section 3.2, another successful idiom that is essential for the day-to-day
running of the web is CSS, the scheme familiar to designers and developers alike for describing the styling
information applied to web pages. CSS fills a crucial role in brokering between distributed authors of “the same
document” who live in different communities, with differing workflows and tools. The space of DOM elements
in a web page is a shared authorial space that must be malleable in the face of demands of varying strength
from different ends of the process (design and logic). The space of CSS selectors can be “negotiated” in that
the requirement to identify a particular piece of the document could be met “opportunistically” by choosing a
selector which matches it contingently and unstably, or by arranging/negotiating to alter the document structure
to allow a selector to match it more stably and semantically.

Analogously, Infusion implements a selector system that can be used to flexibly refer to components within
an application’s component tree. We refer to this system as IoCSS , named after the framework’s role as an
“Inversion of Control” system. This implies that what has been previously thought of as “an application” has
been endowed with a regular but free-form cellular structure. In the case of an Infusion application, the cellular
unit is the component, rather than as it is with an HTML document the DOM node. The affordances of an
Infusion component are unusual set against those of typical units of software designs, given that they may be
freely embedded recursively, and that further subcomponents may be injected into existing parents without their
“knowledge” or disturbing the design. In object terms, Infusion components offer the possibility for containment
without dependency, which is not possible in an object-oriented system.

Once we have the cellular structure in place, we now need some landmarks. In the DOM, these are provided by
CSS class names, tag names and other well-known DOM attributes. In an Infusion application, these are provided
by the context names which can be derived from the grade names attached to a component and the member name
used to embed it in its parent. Some roles for IoCSS selectors using these landmarks are summarised in Table 1.

1 All state in a system has some kind of address, but in practice not all such addresses are utterable by ordinary (that
is, not specially privileged through forming part of the compiler, runtime or operating system) users or authors. For
example, state held in a function closure is held at an address that cannot be named from programming language code
outside the closure. This implies that intentions held by users about such state cannot be encoded and acted upon.



Term Correlates Distinction and Similarities Intention and Advantages

Grade Type/Class Rather than establishing contracts or
describing storage, a grade is a block of
(JSON) configuration with a
globally-qualified name which is merged in an
aligned way with others to produce a
description from which component instances
can be built. Grade names can also be used
as landmarks (context names) in order to
bind segments of IoCSS selectors.

The use of grade-based descriptions reduces
excess intention in descriptions of parts of
implementations. The run-time structure of
an instance is much more closely tied to the
authoring-time structure, allowing for the
“notation” of authors and users to be directly
corresponded.

Model Model (MVC
Programming) /
Model
(Model-based de-
velopment/MBD)
/ Behaviour
(Functional
Reactive Program-
ming/FRP)

Infusion models encode mutable state in a
JSON-equivalent form. Taken together with
the associated model relay rules, these can
constitute a model from the MBD point of
view, since the space of model states can be
deduced. Finally, the stream of values of a
model over time can be compared to an FRP
behaviour, transduced into other streams via
transforming relay rules.

Similar to the use of grades, Infusion models
minimise divergence between run-time and
authoring structures. They also aid liveness
and transportation of applications — it
should be possible to effectively move an
application between systems or users by
transmitting just its models.

Options
Distribu-
tions

Advice
(AOP)/Diff (VCS)

An options distribution, like an
aspect-oriented programming “advice”, allows
an existing application (component tree) to
be modified by an author from the outside -
that is, they can derive a variant application
without modifying the expression of the
original author. Unlike an advice,
distributions have the same structure and
syntax as ordinary configuration.

Since options distributions form a closed
system, it is clear how multiple authors can
collaborate on the same system, and multiple
modifications competing to target the same
piece of the design can have their relative
priorities negotiated. This also implies that
the same authoring tools can be used to write
and check distributions as well as ordinary
configuration.

Table 1. Guide to terms used in this paper and relation to common forms

4 Current Work and Future Developments
Examples of real-life applications built using Infusion can be seen at http://fluidproject.org/ — in partic-
ular our User Interface Options tool, itself an instance of our Preferences Editing Framework embedded on our
documentation site at http://docs.fluidproject.org/infusion. This tool can be dropped into any web page
to allow the user to customise the page’s presentation — for example, by selecting a custom font size, line spac-
ing, contrast colour scheme or other accessibility adaptations. For the EU project “Prosperity4All” (P4A - see
http://www.prosperity4all.eu/), part of the overall Global Public Inclusive Infrastructure project (GPII - see
gpii.net), we will be developing a portable and self-contained embodiment of the framework’s facility as an
integration domain named the Nexus. The decomposition of updates from a text buffer into constituent Nexus
messages will also be useful in other environments. In working with the Flocking(Clark & Tindale, 2014) system
for audio synthesis on the web, we plan to close up the gap between the nature of performance and score by
treating both as harmoniously cooperating elements on a common footing in a sea of state.

References

Blackwell, A. F., & Green, T. R. (2003). Notational systems - the cognitive dimensions of notations framework.
In J. M. Carroll (Ed.), HCI Models, Theories and Frameworks: Towards a Multidisciplinary Science.

Burnett, M., & al. (2001). Forms/3: A First-Order Visual Language to Explore the Boundaries of the Spreadsheet
Paradigm. Journal of Functional Programming , 11 (2), 155-206.

Clark, C., & Tindale, A. (2014). Flocking: A framework for declarative music-making on the web. In ICMC 2014
- 40th International Computer Music Conference. Athens, Greece.

Cycling 74. (2007). Max/MSP: History and Background. Retrieved from http://web.archive.org/web/

20090609205550/http://www.cycling74.com/twiki/bin/view/FAQs/MaxMSPHistory

Fielding, R. (2000). Architectural styles and the design of network-based software architectures (PhD thesis).
University of California, Irvine.

Google Developers. (2015). Blockly: Language design philosophy. Retrieved from https://developers.google

.com/blockly/about/language

Kell, S. (2009). The mythical matched modules: overcoming the tyranny of inflexible software construction. In
OOPSLA ’09 proceedings (p. 881-888). ACM.

Lewis, C. H. (2014). Nonvisual visual programming. In Psychology of Programming Interest Group Annual
Conference (p. 129-134).

Maloney, J., Resnick, M., & al. (2010). The Scratch programming language and environment. ACM Transactions
on Computing Education, 10 (4).

Nelson, T. H. (1982). Literary machines. Mindful Press.
Siek, J. G., & Taha, W. (2006). Gradual typing for functional languages. In Scheme and functional programming

(p. 81-92). ACM.
Ungar, D., & Smith, R. B. (2013). The thing on the screen is supposed to be the thing itself. Retrieved from

http://davidungar.net/Live2013/Live 2013.html


