A fox not a hedgehog: What does PPIG know?

Luke Church Mariana Marasoiu
Computer Laboratory Computer Laboratory
University of Cambridge University of Cambridge
luke@church.name mariana.marasoiu(@cl.cam.ac.uk

Abstract

We outline a thematic history of the Psychology of Programming Interest Group based on a coding of
[~400] publications. We highlight the changing interests of the community, draw out trends and
discuss missing topics. We compare and contrast with [~50] publications from the PLATEAU
community. We find that, fox-like, PPIG has a very broad coverage of a wide range of topics. We
characterise trends in these and go on to discuss missing topics and areas for future work.

1. Introduction
How people go about programming and the how to designing systems that support them is of growing
interest once more to both the HCI and technical communities.

Victor (2012) helped restart the collective imagination of building live, usable, programming systems.
Work on live programming has continued within the software engineering communities at LIVE at
ICSE' and ECOOP?, within the live coding scene via TOPLAP?, the Dagstuhl on Live Coding
(Blackwell et al., 2014) and the new conference series ICLC*. There are also other meetings interested
in specific programming technologies, such as the workshop on block based languages (Turbak et al.,
2015).

Further, as programming has become a required element of the curriculum in the United Kingdom
there has been substantial interest via the Computing At Schools project (Peyton Jones, 2015).

Simultaneously, there has been a growing interest in the experience that developers have via
workshops such as LIXD®, and the new PX® workshop at ECOOP. There was recently a well attended
group at the Special Interest Group of CHI 2016 on the Usability of Programming Languages (Myers
etal., 2016).

Matters that concern the PPIG and PLATEAU (Sunshine et al., 2009) communities are on the rise
again. At the same time, what constitutes knowledge within the communities is increasingly
contested. For example, a substantial theme of discussion within the SIG-CHI was related to the work
of (Stefik et al., 2014), where they conclude that little of the work in the PPIG and PLATEAU groups
is about programming language design and meets their selected standard for empirical research (1.1%
and 14.3% of papers respectively, within the constraints explained in their paper).

This leads to the question: if these communities haven’t had much to say in the past about high quality
randomized trials of programming language design, what do they talk about? In this work we explore
this question.

! http://liveprogramming.github.io/2013/

2 http://2016.ecoop.org/track/LIVE-2016

3 http://toplap.org

* http://icle.livecodenetwork.org

5 http://www.lorentzcenter.nl/lc/web/2013/563/description.php3 ?wsid=563&venue=Snellius
8 http://2016.ecoop.org/track/PX-2016

mailto:luke@church.name
mailto:mariana.marasoiu@cl.cam.ac.uk
https://paperpile.com/c/OvTGEG/QcLJ/?noauthor=1
https://paperpile.com/c/OvTGEG/UxAL
https://paperpile.com/c/OvTGEG/hiPm
https://paperpile.com/c/OvTGEG/hiPm
https://paperpile.com/c/OvTGEG/i5IN
https://paperpile.com/c/OvTGEG/Kb0T
https://paperpile.com/c/OvTGEG/Kb0T
https://paperpile.com/c/OvTGEG/D4zK
https://paperpile.com/c/OvTGEG/4Vm7

2. Analytical Methodology

2.1 The Corpora

We analyse papers available in digital form published at the annual workshops of the Psychology of
Programming Interest Group (PPIG) and at the Workshop on Evaluation and Usability of
Programming Languages and Tools (PLATEAU). Table 1. shows the number of papers for each
conference that were analysed, organized by year.

'92 '93 '94 '95 '96 '97 '98 '99 '00 '01 '02 '03 '04 '05 '06 '07 '08 '09 '10 '11 '12 '13 '14 'I5

PPIG [12 - 6 21 20 11 18 19 18 22 18 19 22 26 21 20 20 16 17 22 17 - 24 11

PLATEAU 8§ 10 11 5 - 10 12
Figure 1. Number of papers published and analysed from each conference, grouped by year.
There are 400 papers from PPIG and ?? from PLATEAU.

We make no distinction between ‘work in progress’, ‘graduate consortium submissions’ and ‘full
papers’, but didn’t include the work in progress workshops of PPIG. The purpose of this analysis is to
reflect on the communities interests, not quality control.

2.2 Data analysis

We used thematic analysis methods (Braun & Clarke, 2006) which we adapted to document analysis
in order to generate topics. The analysis proceeded as follows. One author read through the titles of
the papers in the corpora and extracted a set of research topics, which were discussed with the other
author. These topics were then organized in larger themes by both authors. In the next step, the
authors then independently read through the text of the papers with the dual purpose of assigning
topics and generating new topics when necessary. Each paper was assigned multiple topics.

Since the coding scheme evolved in time, the corpora was searched again for some of the newly added
codes as an extra check to ensure that the papers were labeled correctly. Papers found this way were
reread and assigned potentially assigned the new code.

We only considered a code for the paper if it was the central theme, e.g. a language, for a
programming language: where its features were discussed? Was it used in empirical or analytical
studies described in the paper? We didn’t consider it as a topic if it was mentioned in passing, or if it
was mentioned as the language that the system described was implemented in.

At this point an inter-rater reliability score for a 5% sample was computed giving a Kappa of 0.84,
indicating broad agreement between the reviewers.

In order to improve the analysis, we then discussed the differences in the codes to reach consensus.
Typically, we found this was resolved by adding codes to papers and occasionally by refining the
coding scheme itself. Some of the outcomes of the discussions are included in a later section. Whilst
this processes decreases the objectivity, it also decreases the likelihood of accidental oversights. In
practice the authors found that accidental omission was by far the most common reason for the
addition of new codes to a paper during the discussion phase.

2.3 Notes on the coding

We elected to engage in this coding activity rather than to use the keywords that the authors have
tagged their work with due to many papers not having keywords and to allow a somewhat
independent reflection on what the papers were about.

We initially intended to use Latent Dirichlet Allocation (LDA) (Blei et al., 2003) to extract topics
automatically. This technique was inspired by the work of (Greenberg et al., 2015) in their analysis of

https://paperpile.com/c/OvTGEG/uDeK
https://paperpile.com/c/OvTGEG/nTx3
https://paperpile.com/c/OvTGEG/Prb4

the programming languages literature. However, the application of LDA resulted in poor topics for the
PPIG corpus. Consequently we elected to identify and code the topics manually.

Both authors have developed and used open coding schemes in several analyses in past, but were
struck by the difficulty of coding the PPIG papers. Over the 23 years covered in the analysis, the PPIG
community does not seem to have converged on any particular strategy of narrative structure, and the
lexicon for describing topics is still somewhat undecided. Moreover, the range of technologies,
aspects and domains covered within the conference is very broad.

This intellectual diversity acts as a core strength of the community but, as we shall see, raises some
challenges in the development of theory. Let’s start by looking at the clearly identifiable themes and
patterns.

3. Languages, People, Analyses

3.1 Languages

Looking first at which languages are studied, we see a fairly similar distribution between PPIG and
PLATEAU. Java dominates both conferences, and the broader family of C-style languages even more
so. There are a wider range of programming languages considered in PPIG than PLATEAU, but this
be accounted for by their relative age.

® Java ® Java
® et @
@ Pascal ®cE
@ Frolog @ Python
[N3 @ JavaScript
@ Vvisual Basic @ Assembly code
@®c @ Scratch
@ sSmalltalk @ Yahoo! Pipes
@ Python ® Go
® Ada @ Matlab
@ HTML @ perl
@ JavaScript @ Pharo
© Zspecification @ Cuorum
@ Assembly code @ Ruby
@ B specification
@ GRAL
@® lcon
@ KidsRuby
mw
(A4) (B)

Figure 1. Languages discussed at PPIG (A) and PLATEAU (B)

Looking at how interest in the languages studied at PPIG evolved over time, we see a definite
transition in [YEAR] when Java replaced a waning interest in Pascal and Prolog. Other languages
such as C++ and Visual Basic show continued but lower intensity interest.

Java

5 Pascal

5 C++

L#..-——AAA—A

5 . Prol og
0

3 Yisual Basic
0 i e _ccnlmee ot

U o> 2 o AP L O A DO DL L A D O 0 N LA N L0

o o o° o O o I O O H O O L L O & O NN ar N
FFEFEFTET TS TS ST S S S S

Figure 2. Languages discussed at PPIG over time

There isn’t an easily available baseline to compare these to. There are a number of different schemes
for assessing language popularity’ . The TIOBE index®, which lists languages by popularity, seems in
general agreement with the Figure above, except with a considerably higher emphasis on C.

TIOBE Programming Community Index
Source: www.tiobe.com
30

25

== Java
= C

C++
w— C#
== Python

== PHP

15 JavaScript
== Ruby
== Perl

Visual Basic .NET

20

Ratings (%)

10

2002 2004 2006 2008 2010 2012 2014

Figure 3. The TIOBE index of languages over time

7 https://en.wikipedia.org/wiki/Measuring_programming_language popularity
¥ http://www.tiobe.com/tiobe_index?page=programminglanguages_definition

http://www.tiobe.com/tiobe_index?page=programminglanguages_definition

3.2 Who are the programmers?

Looking at the programmers who were being studied at PPIG, we can categorise the papers broadly as
either studies of professional or expert programmers (those whose primary occupation is
programming), of end-user programmers, (those who are programming to support some other primary
occupation), and of novices and those learning to program.

15
12.5
10
7.5 End-user programming

5
25 - . . ‘ .
o

Movice programming/Learning programming

12.5

7.5 Professional/expert programming

s ¥ IS > IS 3 c\@
PSS E LS LS P

Figure 4. Interest in different programmer types over time

Papers were labeled as any of the three categories only when it was explicit which population was
being studied.

@ End-user programming
@ Movice programming
Learning programming

& Professionallexpert
programming

(4) (B)
Figure 5. The distribution of programmer types being studied at PPIG (A) and PLATEAU (B)

Contrasting the two conferences, we can see that PPIG has been more interested in novice
programming and PLATEAU more in professional programmers.

3.3 What techniques are used for discussing these programmers?

We broadly categorised the techniques used into analytical, empirical, qualitative and qualitative.
These are non-exclusive labels, meaning that a study can use a combination of these techniques and
receive a combination of labels. We can see that analyses within these communities is predominantly
empirical (231 papers and 38 papers for PPIG and PLATEAU) as opposed to analytical (29 papers and

5 papers), with a balance of qualitative methods (108 papers and 18 papers) and quantitative methods
(138 papers and 24 papers).

The communities start to vary in the techniques they are using for performing the analysis.
Considering analytical techniques, there are insufficient PLATEAU papers in this category to make
further separation useful. However, within the PPIG community, there are several analytical and
theoretical frames that have been used repeatedly, as can be seen in the figure below.

A-

4 Constructivism

. A

4 Attention Investment

MAAL

4 . I Mental models

Cognitive Dimensions

%]

.- =]

fa h

@

(=]

o e

Figure 6. Theoretical frames and Analytical techniques at PPIG over time

This shows that some analytical and theoretical approaches fluctuate over time (e.g. Cognitive
Dimensions, Constructivism) whereas others such as the Mental Models perspective on programming
remain relatively steady.

Similarly, we can look at the empirical techniques that are used at PPIG:

’ Ethnographic methods
0 el e e

% Grounded theory

0 = = —

5 Usability studies

. i P -

Classroom studies

- ‘ Programming skill assessment

Interview methods

|

tn

=

o !

Programming experiments

5 Survey/questionnaire methods
0
> Observational methods
0
5 Field study
0
> Case studies
o e e e # e
5 Corpus analysis
o — — T T
& Eye tracking
o — —— . . e
R Ny Experiznce report
ol i, o
> Think Aloud methods
0 —— - R

O T - T WP S - W S N e R R N - TR TR N P S

o o & o 9 P o o PP PO PPN NN
FFEETF LT LT T TS S S S S

Figure 7. Empirical techniques at PPIG over time

We can see that new methods get added (e.g. Grounded theory, eye tracking or corpus analysis). These
new techniques don’t displace existing ones but compliment them resulting in an increased range of
techniques. PLATEAU has similar characteristics, but with slightly more restricted techniques. The
community has focused on programming experiments, corpus analyses, surveys, usability studies and
experience reports but, so far, there are no publications using eye tracking studies, grounded theory or
ethnographic techniques.

3.4 Which aspects of computation have been studied?

25 . . Yariables - roles, names, etc.

25 Recursion

25 ‘ Abstraction

Algorithms

|

25 Concurrency and parallel programming

L . s 00

Figure 8. Aspects of computation studied at PPIG over time

Considering computational artefacts the difference between PPIG and PLATEAU is most evident. In
the 6 years of PLATEAU, more papers which have been primarily concerned with concurrency and
parallelism (7) have been published than in the 22 years of PPIG proceedings. However, in the same
time, PPIG has been considerably more concerned with the roles and naming of variables (16 papers)
compared to PLATEAU where this has not been a substantial area of study.

As (Blackwell & Morrison, 2010) point out, professional programmers tend to concentrate on
semantics and control flow, whereas variable names are a primary concern of end user programmers
and those relatively new to programming. As such, the continued interest in variables at PPIG may
correspond to a continued interest in end-user programmers and novice programmers as discussed
earlier.

3.5 Which aspects of programming have been studied?
As we see, there has been an ongoing interest in program comprehension, debugging and problem
solving at PPIG, with some testing and software maintenance publications as well.

https://paperpile.com/c/OvTGEG/xJLj

Comprehension

Debugging
. . .., -
6 Testing
10
5 Software maintainance
O — —
10
5 . Problem solving
04 ‘—.‘.—.‘_—‘_
X O A D DO N 5 X B b A D O L0 AN >0
\(ng?/ R A A Q/QQQ’ TS q/d@ S s
Figure 9. Aspects of programming studied at PPIG over time
3.6 Which types of technology have been studied?
S_,
2.5 . . Specification language
o - N
L
2.5 Spreadsheets

5

25 . . _ . IDEs
o

S

n

25 - . — Yisual languages

0
5

2.5 . - - . | Chject orientation

5

2.5 Yisualisation/Diagrams

0

S\

x H Lo Q N &L X & o A >
gt o & P & < P &S
RO MNC S IR S S

NI)
) o)
BN S

Figure 10. Programming technologies studied at PPIG over time

Here we can see the resurgence of interest in visual languages alluded to in the introduction. We also
see from this and the studies of aspects above that the PPIG community is interested in programming
systems, combinations of notations and the tools that people use to interact with them.

3.7 Which social interactions have been studied?
8,

4
. . Pair programming
g

Teams/Communication

P

(=]

"

Lpen source

=]

extreme Programming

2
0 %
A ‘

O D o) o)
Oy Oy O) Oy Oy
S PP S

9 O
M § N
A U S D)

Figure 11. Social concerns studied at PPIG over time

This shows how some themes within the PPIG are relatively transitory and associated with
investigating interests from the broader software engineering community.

3.8 Which factors influencing behaviour have been considered?
8.

Fersonality influences

Attitude

Affective aspects

Self efficacy

= %]

Figure 12. Behavioural concerns studied at PPIG over time

Relatively recently there has been a growing interest in non-cognitive psychological concerns at
PPIG. These started with discussions of personality influences, but of late self-efficacy has become an
increasing concern.

4. Discussion

4.1 PPIG and PLATEAU

Many of the differences between PPIG and PLATEAU stem from the audience being considered.
PPIG has substantial End User Programming and educational interests, whilst PLATEAU is more
concerned with professional and expert programmers. This leads to different artefacts being studied
(e.g. IDEs vs. visual languages) and, to a certain degree, to different techniques. The most notable
place where this has shaped the research agenda is PPIG’s interest in variables rather than control flow
constructs.

This difference in the study focus of the two cultures is institutionally useful - it allows the
conferences to complement each other in the content they cover, whilst the overlap allows for
effective exchanges of knowledge between the communities.

This then leads to the question of what hasn’t been talked about much at PPIG. Note that we are not
suggesting that these topics haven’t been discussed at all, but instead suggesting that they might
warrant more attention than they have received so far.

4.2 Missing groups of users

PPIG as a community has learnt a lot from studying a wide variety of users, including End User
Programmers, live coders and even security workers (Biddle, 2014). However these are not the only
groups of people who engage in programming-like behaviours (Blackwell, 2002).

There are other notable communities to study. For example, the communities that design
‘high-integrity’ systems have presumably made considerable progress along the axis of quality - what
might we learn from them about the psychology of ‘normal’ programming?

Likewise, computer games often include substantial aspects of end user programming, such as the
players mentally simulating ‘what might be’, creating artifacts that are repeatedly reused, and
managing long range dependencies between their actions and their emergent outcomes in the game -
all things that we find programmers doing. They do this with a user experience that is so compelling
that people interact with it for its own sake. Studying both the large, available, gaming population and
their analytical discourse (e.g. (Salen & Zimmerman, 2003)) might yield interesting learnings.

4.3 Missing psychologies and economies

As we have seen in the analysis above, the psychological techniques that PPIG has employed have
primarily been cognitive in nature. Given that programming is a heavily cognitive activity, this is
unsurprising. However, there are many other aspects of psychology that are of relevance. There are
some good indications in this direction. For example, the application of Prospect theory (Kahneman &
Tversky, 1979), which at least partially derives from mathematical psychology, resulted in Attention
Investment, one of the award winning theories within the field. Similarly, Conway’s Law, an adage
that systems reflect the organisation that built them (Conway, 1968), can be viewed as a form of
organisational psychology applied to programming.

Similarly, there may be more to learn from applying behavioural economics to understanding
programmers. There is theoretical work missing on understanding why programming languages and

https://paperpile.com/c/OvTGEG/mDct
https://paperpile.com/c/OvTGEG/nBFC
https://paperpile.com/c/OvTGEG/aXFA
https://paperpile.com/c/OvTGEG/7Gy9
https://paperpile.com/c/OvTGEG/7Gy9
https://paperpile.com/c/OvTGEG/jfpI

features get adopted when they do. Moreover, there is relatively little work in understanding how
notations evolve over time and how their users respond to these changes.

Finally, as (Bowker & Star, 2000) argue, abstractions have political consequences. How these political
consequences affect the day to day work of programmers is poorly understood but very important in
understanding the relationships between computers and society.

4.4 Theory formation

As the above results indicate, there is much more empirical work within PPIG than there is theory
application. In Kuhnian terms (Kuhn, 1996), PPIG is still pre-scientific in its methodologies: there are
few stable theories that are widely used to ground the experimentation and the ones we have are
relatively poorly validated.

The problem with the lack of stable theory is that it becomes difficult to construct artefacts within a
discipline that is continuously reinventing its own basis. This leads to two questions: what are good
theoretical foundations that can be used, and how can they be used to extract understanding out of the
considerable body of empirical work that is already published at PPIG. This could take the form of
either attempting to empirically validate the dominant theories within PPIG (e.g. The Cognitive
Dimensions of Notations). Projects like Blackbox (Brown et al., 2014) should provide data that can
serve as an empirical basis, if we can understand how to analyze it effectively to ask the right
questions.

4.5 Modern technologies

The languages that PPIG has extensively studied are old. Many new languages have been released and
grown in adoption since Java. There are no doubt lessons that can be learnt in programming from, for
example, Dart (Bracha & Bak, 2011), F#(Syme et al., 2007), Hack (Facebook, 2014), Go (Pike, 2009),
Rust (Matsakis & Klock, 2014), Scala (Odersky et al., 2004), Swift (Inc, Apple, 2014). Some of these
bring new debates and technical hypotheses (e.g. gradual typing can decrease premature
commitment).

Similarly there are new technical trends, such as the widespread adoption of machine learning, that
raise new notational and interaction challenges. Debugging machine learning systems is an open
problem and one that PPIG is ideally situated to study.

These should be aided by progress in technology. As we highlight in (Church et al., 2016), very large
scale computing power can now be economically applied to assist developers, if we can work out how
to use it effectively. This offers a very useful opportunity for PPIG, asking the question - how can we
use thousands of CPUs to assist developers?

Distributed systems not only offer a technical potential to assist developers, but they also represent a
new domain for PPIG to study. Site Reliability Engineers (Beyer et al., 2016) represent a new
audience with new roles and challenges.

It is not only new technologies within the domain of programming that pose interesting questions that
PPIG is well placed to address. New, or re-imagined, interaction technologies such as Dialog Systems,
Augmented Reality and the Internet of Things all carry challenges that could both inform and be
informed by the perspectives that PPIG brings.

4.6 Fundamental challenges

There have been hints at PPIG suggesting new directions for the philosophy of computation, from
viewing naming as a primary operation rather than a syntactic necessity (Church et al., 2012), to
concerns about divergence in the worlds of the program and representation. However, as we suggest

https://paperpile.com/c/OvTGEG/B7z6
https://paperpile.com/c/OvTGEG/tEa2
https://paperpile.com/c/OvTGEG/7tZr
https://paperpile.com/c/OvTGEG/hJ8O
https://paperpile.com/c/OvTGEG/CuKR
https://paperpile.com/c/OvTGEG/JxbB
https://paperpile.com/c/OvTGEG/5krK
https://paperpile.com/c/OvTGEG/JvjU
https://paperpile.com/c/OvTGEG/AJf0
https://paperpile.com/c/OvTGEG/vOyJ
https://paperpile.com/c/OvTGEG/D3xF
https://paperpile.com/c/OvTGEG/JbAk
https://paperpile.com/c/OvTGEG/gefW

above, there is much more to be done at the intersection of politics, philosophy and the psychology of
programming, and even more to be done by building and characterising actual programming
languages designed from these insights. This is a fundamental challenge: turning the Psychology of
Programming from a reflective community to an actively generative one.

5. Conclusion

In (Berlin, 1953), Berlin dichotomised thinkers and writers into two categories, those with one
defining idea through which they see the world - the hedgehogs - and those that explain it through
many different ideas - the foxes. Reflecting on the analysis above we must conclude that PPIG is a
fox, not a hedgehog.

As the new excitement for the design of programming systems grows, we propose that PPIG should
engage by expanding its horizons to study the new languages, domains, psychologies, philosophies
and programmer populations - synthesizing this knowledge into new theoretical frames. In other
words, PPIG is at its best as a fox and its scope for influence grows, the PPIG of the future needs to be
foxier still.

6. Acknowledgements
We would like to thank the PPIG and PLATEAU communities, as well as the programming language
research community at large for a fascinating set of material to study.

7. References

Berlin, 1. (1953). The Hedgehog and the Fox: An Essay on Tolstoy s View of History. Weidenfeld &
Nicolson.

Beyer, B., Jones, C., Petoff, J., & Murphy, N. R. (2016). Site Reliability Engineering: How Google
Runs Production Systems (1 edition). O’Reilly Media, Inc, USA.

Biddle, R. (2014, June). Beyond Usable Security. Presented at the PPIG 2014 - 25th Annual
Workshop, Brighton, UK. Retrieved from
http://www.ppig.org/library/paper/beyond-usable-security

Blackwell, A. F. (2002). First steps in programming: A rationale for attention investment models.
Proceedings - IEEE 2002 Symposia on Human Centric Computing Languages and
Environments, HCC 2002, 2—10.

Blackwell, A. F., & Morrison, C. (2010). A logical mind, not a programming mind: Psychology of a
professional end-user. In PPIG 2010: Proceedings of the 22nd annual workshop of the
psychology of programming interest group, September 19--22, 2010. Madrid, Spain (pp.
175-184).

Blackwell, A., McLean, A., Noble, J., & Rohrhuber, J. (2014). Collaboration and learning through
live coding (Dagstuhl Seminar 13382). Dagstuhl Reports, 3(9), 130-168.

Blei, D. M., Ng, A. Y., & Jordan, M. 1. (2003). Latent Dirichlet Allocation. Journal of Machine
Learning Research: JMLR, 3, 993-1022.

Bowker, G. C., & Star, S. L. (2000). Sorting Things Out: Classification and Its Consequences (Inside
Technology). The MIT Press.

Bracha, G., & Bak, L. (2011, October). Dart, a new programming language for structured web

https://paperpile.com/c/OvTGEG/UNar
http://paperpile.com/b/OvTGEG/UNar
http://paperpile.com/b/OvTGEG/UNar
http://paperpile.com/b/OvTGEG/UNar
http://paperpile.com/b/OvTGEG/UNar
http://paperpile.com/b/OvTGEG/JbAk
http://paperpile.com/b/OvTGEG/JbAk
http://paperpile.com/b/OvTGEG/JbAk
http://paperpile.com/b/OvTGEG/JbAk
http://paperpile.com/b/OvTGEG/mDct
http://paperpile.com/b/OvTGEG/mDct
http://paperpile.com/b/OvTGEG/mDct
http://paperpile.com/b/OvTGEG/mDct
http://www.ppig.org/library/paper/beyond-usable-security
http://paperpile.com/b/OvTGEG/nBFC
http://paperpile.com/b/OvTGEG/nBFC
http://paperpile.com/b/OvTGEG/nBFC
http://paperpile.com/b/OvTGEG/nBFC
http://paperpile.com/b/OvTGEG/xJLj
http://paperpile.com/b/OvTGEG/xJLj
http://paperpile.com/b/OvTGEG/xJLj
http://paperpile.com/b/OvTGEG/xJLj
http://paperpile.com/b/OvTGEG/xJLj
http://paperpile.com/b/OvTGEG/xJLj
http://paperpile.com/b/OvTGEG/UxAL
http://paperpile.com/b/OvTGEG/UxAL
http://paperpile.com/b/OvTGEG/UxAL
http://paperpile.com/b/OvTGEG/UxAL
http://paperpile.com/b/OvTGEG/UxAL
http://paperpile.com/b/OvTGEG/UxAL
http://paperpile.com/b/OvTGEG/nTx3
http://paperpile.com/b/OvTGEG/nTx3
http://paperpile.com/b/OvTGEG/nTx3
http://paperpile.com/b/OvTGEG/nTx3
http://paperpile.com/b/OvTGEG/nTx3
http://paperpile.com/b/OvTGEG/nTx3
http://paperpile.com/b/OvTGEG/B7z6
http://paperpile.com/b/OvTGEG/B7z6
http://paperpile.com/b/OvTGEG/B7z6
http://paperpile.com/b/OvTGEG/B7z6
http://paperpile.com/b/OvTGEG/hJ8O
http://paperpile.com/b/OvTGEG/hJ8O

programming. Presented at the GOTO Aarhus conference, Aarhus. Retrieved from
http://gotocon.com/aarhus-2011/presentation/Opening%20Keynote:%20Dart,%20a%20new%20
programming%?20language%20for%20structured%20web%20programming

Braun, V., & Clarke, V. (2006). Using thematic analysis in psychology. Qualitative Research in
Psychology, 3, 77-101.

Brown, N. C. C., Kélling, M., McCall, D., & Utting, I. (2014). Blackbox: A Large Scale Repository of
Novice Programmers’ Activity. In Proceedings of the 45th ACM Technical Symposium on
Computer Science Education (pp. 223-228). New York, NY, USA: ACM.

Church, L., Rothwell, N., & Downie, M. (2012). Sketching by Programming in the Choreographic
Language Agent. CI.Cam.Ac.Uk. Retrieved from
http://www.cl.cam.ac.uk/~afb21/publications/PPI1G-2012.pdf

Church, L., Séderberg, E., Bracha, G., & Tanimoto, S. (2016). Liveness becomes Entelechy: A
scheme for L6. In Proceedings of the Second International Conference on Live Coding (ICLC
2016). McMaster University, Canada.

Conway, M. E. (1968). How do Committees Invent? Datamation, 14(5), 28-31.
Facebook. (2014). Hack. Retrieved June 7, 2016, from http://hacklang.org/

Greenberg, M., Fisher, K., & Walker, D. (2015). Tracking the Flow of Ideas through the Programming
Languages Literature. In Thomas Ball and Rastislav Bodik and Shriram Krishnamurthi and
Benjamin S. Lerner and Greg Morrisett (Ed.), /st Summit on Advances in Programming
Languages (SNAPL 2015) (pp. 140—-155). Dagstuhl, Germany: Schloss
Dagstuhl--Leibniz-Zentrum fuer Informatik.

Inc, Apple. (2014). Swift. Retrieved June 7, 2016, from https://swift.org

Kahneman, D., & Tversky, A. (1979). Prospect Theory: An Analysis of Decision under Risk.
Econometrica: Journal of the Econometric Society, 47(2), 263-291.

Kuhn, T. S. (1996). The Structure of Scientific Revolutions (3rd edition). University of Chicago Press.

Matsakis, N. D., & Klock, F. S., II. (2014). The Rust Language. In HILT ’14 Proceedings of the 2014
ACM SIGAda annual conference on High integrity language technology (Vol. 34, pp. 103—-104).
New York, NY, USA: ACM.

Myers, B. A., Stefik, A., Hanenberg, S., Kaijanaho, A.-J., Burnett, M., Turbak, F., & Wadler, P.
(2016). Usability of Programming Languages: Special Interest Group (SIG) Meeting at CHI
2016. In Proceedings of the 2016 CHI Conference Extended Abstracts on Human Factors in
Computing Systems (pp. 1104—1107). ACM.

Odersky, M., Altherr, P., Cremet, V., Emir, B., Maneth, S., Micheloud, S., ... Zenger, M. (2004). An
overview of the Scala programming language (No. 1C/2004/64). Ecole Polytechnique Fédérale
de Lausanne. Retrieved from https://infoscience.epfl.ch/record/52656/files/ScalaOverview.pdf

Peyton Jones, S. (2015). The dream of a lifetime: an opportunity to shape how our children learn
computing. Presented at the PPIG 2015 - 26th Annual Workshop, Bournemouth, UK. Retrieved
from http://www.ppig.org/sites/default/files/2015-PPIG-26th-Peyton.pdf

Pike, R. (2009). The Go Programming Language. Presented at the Google’s Tech Talks. Retrieved
from https://redmine.bring.out.ba/attachments/3206/go_talk-20091030.pdf

http://paperpile.com/b/OvTGEG/hJ8O
http://paperpile.com/b/OvTGEG/hJ8O
http://gotocon.com/aarhus-2011/presentation/Opening%20Keynote:%20Dart,%20a%20new%20programming%20language%20for%20structured%20web%20programming
http://gotocon.com/aarhus-2011/presentation/Opening%20Keynote:%20Dart,%20a%20new%20programming%20language%20for%20structured%20web%20programming
http://paperpile.com/b/OvTGEG/uDeK
http://paperpile.com/b/OvTGEG/uDeK
http://paperpile.com/b/OvTGEG/uDeK
http://paperpile.com/b/OvTGEG/uDeK
http://paperpile.com/b/OvTGEG/uDeK
http://paperpile.com/b/OvTGEG/uDeK
http://paperpile.com/b/OvTGEG/7tZr
http://paperpile.com/b/OvTGEG/7tZr
http://paperpile.com/b/OvTGEG/7tZr
http://paperpile.com/b/OvTGEG/7tZr
http://paperpile.com/b/OvTGEG/7tZr
http://paperpile.com/b/OvTGEG/gefW
http://paperpile.com/b/OvTGEG/gefW
http://paperpile.com/b/OvTGEG/gefW
http://paperpile.com/b/OvTGEG/gefW
http://www.cl.cam.ac.uk/~afb21/publications/PPIG-2012.pdf
http://paperpile.com/b/OvTGEG/D3xF
http://paperpile.com/b/OvTGEG/D3xF
http://paperpile.com/b/OvTGEG/D3xF
http://paperpile.com/b/OvTGEG/D3xF
http://paperpile.com/b/OvTGEG/D3xF
http://paperpile.com/b/OvTGEG/jfpI
http://paperpile.com/b/OvTGEG/jfpI
http://paperpile.com/b/OvTGEG/jfpI
http://paperpile.com/b/OvTGEG/jfpI
http://paperpile.com/b/OvTGEG/jfpI
http://paperpile.com/b/OvTGEG/JxbB
http://hacklang.org/
http://paperpile.com/b/OvTGEG/Prb4
http://paperpile.com/b/OvTGEG/Prb4
http://paperpile.com/b/OvTGEG/Prb4
http://paperpile.com/b/OvTGEG/Prb4
http://paperpile.com/b/OvTGEG/Prb4
http://paperpile.com/b/OvTGEG/Prb4
http://paperpile.com/b/OvTGEG/Prb4
http://paperpile.com/b/OvTGEG/vOyJ
https://swift.org/
http://paperpile.com/b/OvTGEG/7Gy9
http://paperpile.com/b/OvTGEG/7Gy9
http://paperpile.com/b/OvTGEG/7Gy9
http://paperpile.com/b/OvTGEG/7Gy9
http://paperpile.com/b/OvTGEG/7Gy9
http://paperpile.com/b/OvTGEG/tEa2
http://paperpile.com/b/OvTGEG/tEa2
http://paperpile.com/b/OvTGEG/tEa2
http://paperpile.com/b/OvTGEG/JvjU
http://paperpile.com/b/OvTGEG/JvjU
http://paperpile.com/b/OvTGEG/JvjU
http://paperpile.com/b/OvTGEG/JvjU
http://paperpile.com/b/OvTGEG/JvjU
http://paperpile.com/b/OvTGEG/Kb0T
http://paperpile.com/b/OvTGEG/Kb0T
http://paperpile.com/b/OvTGEG/Kb0T
http://paperpile.com/b/OvTGEG/Kb0T
http://paperpile.com/b/OvTGEG/Kb0T
http://paperpile.com/b/OvTGEG/Kb0T
http://paperpile.com/b/OvTGEG/AJf0
http://paperpile.com/b/OvTGEG/AJf0
http://paperpile.com/b/OvTGEG/AJf0
http://paperpile.com/b/OvTGEG/AJf0
http://paperpile.com/b/OvTGEG/AJf0
https://infoscience.epfl.ch/record/52656/files/ScalaOverview.pdf
http://paperpile.com/b/OvTGEG/i5IN
http://paperpile.com/b/OvTGEG/i5IN
http://paperpile.com/b/OvTGEG/i5IN
http://paperpile.com/b/OvTGEG/i5IN
http://paperpile.com/b/OvTGEG/i5IN
http://www.ppig.org/sites/default/files/2015-PPIG-26th-Peyton.pdf
http://paperpile.com/b/OvTGEG/5krK
http://paperpile.com/b/OvTGEG/5krK
http://paperpile.com/b/OvTGEG/5krK
http://paperpile.com/b/OvTGEG/5krK
https://redmine.bring.out.ba/attachments/3206/go_talk-20091030.pdf

Salen, K., & Zimmerman, E. (2003). Rules of Play: Game Design Fundamentals. MIT Press.

Stefik, A., Hanenberg, S., McKenney, M., Andrews, A., Yellanki, S. K., & Siebert, S. (2014). What is
the Foundation of Evidence of Human Factors Decisions in Language Design? An Empirical
Study on Programming Language Workshops. In Proceedings of the 22Nd International
Conference on Program Comprehension (pp. 223-231). New York, NY, USA: ACM.

Sunshine, J., Anslow, C., LaToza, T., Murphy-Hill, E., Sadowski, C., & Markstrum, S. (2009).
Workshop on Evaluation and Usability of Programming Languages and Tools. Retrieved June 5,
2016, from https://sites.google.com/site/workshopplateau/

Syme, D., Granicz, A., & Cisternino, A. (2007). Expert F'# (Experts Voice in .NET) (1st Corrected ed.
2007. Corr. 6th printing 2007 edition). Apress.

Turbak, F., Bau, D., Gray, J., Kelleher, C., & Sheldon, J. (2015). Blocks and Beyond: Lessons and
Directions for First Programming Environments. In 4 VL/HCC 2015 workshop. Atlanta.
Retrieved from http://cs.wellesley.edu/~blocks-and-beyond/organizers.html

Victor, B. (2012). Inventing on principle.

http://paperpile.com/b/OvTGEG/aXFA
http://paperpile.com/b/OvTGEG/aXFA
http://paperpile.com/b/OvTGEG/aXFA
http://paperpile.com/b/OvTGEG/4Vm7
http://paperpile.com/b/OvTGEG/4Vm7
http://paperpile.com/b/OvTGEG/4Vm7
http://paperpile.com/b/OvTGEG/4Vm7
http://paperpile.com/b/OvTGEG/4Vm7
http://paperpile.com/b/OvTGEG/4Vm7
http://paperpile.com/b/OvTGEG/D4zK
http://paperpile.com/b/OvTGEG/D4zK
http://paperpile.com/b/OvTGEG/D4zK
https://sites.google.com/site/workshopplateau/
http://paperpile.com/b/OvTGEG/CuKR
http://paperpile.com/b/OvTGEG/CuKR
http://paperpile.com/b/OvTGEG/CuKR
http://paperpile.com/b/OvTGEG/CuKR
http://paperpile.com/b/OvTGEG/hiPm
http://paperpile.com/b/OvTGEG/hiPm
http://paperpile.com/b/OvTGEG/hiPm
http://paperpile.com/b/OvTGEG/hiPm
http://paperpile.com/b/OvTGEG/hiPm
http://cs.wellesley.edu/~blocks-and-beyond/organizers.html
http://paperpile.com/b/OvTGEG/QcLJ

