

Programming with simulated neurons: a first design pattern

Carl Evans

Dept. of Computer Science

Middlesex University

C.Evans@mdx.ac.uk

Ian Mitchell

Dept. of Computer Science

Middlesex University

I.Mitchell@mdx.ac.uk

Chris Huyck

Dept. of Computer Science

Middlesex University

C.Huyck@mdx.ac.uk

Abstract
An investigation has been carried out with regard to programming a form of deterministic logic based

entirely in terms of biologically plausible neurons. To this end, a prototype has been successfully

developed that incorporates a neuron version of the classic state design pattern. This neuron version is

based on a novel programming technique, which models logical states as persistently active cell

assemblies. These are populations of intra-connected neurons that have been triggered to continually

fire until programmatically suppressed, thus enabling a neural form of state-transition logic. These

neural-state cell assemblies have been developed using a specialist neuron simulation software library

that is commonly employed by neuroscientists and is the adopted software protocol for the hardware

platforms currently being developed for the Human Brain Project. An underlying inspiration of the

work is to look forward to the possibility of a programming paradigm based entirely on biologically

plausible neurons. It is envisaged that such a neural programming paradigm would benefit from

established techniques, and that the neural cell assembly state pattern that has been developed and

described in this report is a next step in that direction. In addition, a new graphical notation has been

formulated in order to visualise the prototype. Whilst not a primary focus of the research to date, this

visualisation notation may prove beneficial to the computational neuroscience community who work

with similar neuron simulation software as that employed for the prototype presented here.

1. Introduction
This report describes a first design pattern for programming with simulated neurons. It is, in part, an

adaptation of a simulated neuron programming technique pioneered by Huyck (2009). It is a novel

approach that intersects the typical perspectives of computer scientists specialising in artificial

intelligence (AI) and computational neuroscientists for whom a primary concern is modelling the

biochemical function of the brain. That is to say, in practical terms computer scientists working with

standard network topologies tend to focus their interest on the design of artificial neural networks

(ANNs) for learning (and classification) tasks, whereas neuroscientists tend to investigate and

measure response to interconnected populations of neurons, via the use of specialist neuron

simulators, based on a variety of mathematical models. Members of the AI community often develop

ANNs using general purpose, symbolic, programming languages. One could suggest that a desirable

goal of the connectionist approach to programming AI systems would be to have a programming

language based entirely on neurons. Perhaps this would be a domain-specific language rather than a

general purpose language, but central to its approach would be a much more biologically plausible

mapping to biochemical neuron activity than can be achieved with the general purpose symbolic

languages that currently exist. However, whilst a purely neuron-based programming language does

not yet exist, there are hardware platforms that are based on a neuron architecture rather than a

traditional Von Neumann structure, e.g., the SpiNNaker architecture (Furber et al. 2013).

Furthermore, a number of such neuron hardware platforms support neuron simulator libraries such as

PyNN (Davison et al. 2008). The research groups employing neuron simulation libraries generally

belong to the neuroscience community. Huyck and Mitchell (2014), on the other hand, are computer

scientists who have demonstrated the use of this combination of neuron-based hardware and neuron

simulator software to develop a classification system based on the earlier simulated neuron

programming technique developed by Huyck. That work has a broader goal of machine learning

rather than promoting a novel programming paradigm per se. However, the focus of the work reported

here is to adapt this programming model and to make some further steps towards a simulated neuron

design pattern that aims to provide a blueprint for, at least, one aspect of programming deterministic

logic in simulated neurons. In particular, this work has mapped the concept of programming with

neuron populations to the classic state design pattern of Gamma et al (1995). The state design pattern

is specifically an object-oriented design pattern that has a distinct model of state object transitions.

This pattern does lend itself to a neuron model, which represents state as a firing neuron populations,

but such a design is less straightforward than the object-oriented version. Addressing this design

problem is a key feature of the work described in this report. In addition, the authors have a desire to

demonstrate integration of a simulated neuron programmed module within a broader software

framework and demonstrate more general utility. Accordingly, a small prototype has been

successfully developed, which incorporates the neuron state model as a component within a model-

view-controller (MVC) architectural pattern, whereby another of the classical design patterns, the

strategy pattern, is employed to interchange the underlying model component between an object

implementation (using object-oriented Python) and a neuron implementation (using PyNN).

The remainder of this report is structured as follows. Section 2 provides some brief background to

aspects of computational neuroscience and design patterns that underpin this research. Section 3

describes the neuron-based state pattern of programming which is the main focus of this work. In

presenting this, the report describes a new graphical notation that has been developed in order to

visualise the implementation of the prototype. Section 4 discusses the integration of the neuron model

within the context of an MVC framework, and Section 5 provides conclusions and proposes future

evolution of the research.

2. Background
The following background sections aim to convey some basic underpinnings to the work. They

mainly relate to a few key neuroscience concepts, the fundamentals of design patterns, and refer to the

software technologies that have most relevance.

2.1 Spiking neuron models
The concept of a ‘spiking’ neuron model is a fundamental feature. When one (pre-synaptic) neuron

signals another (post-synaptic) neuron across their synapse, a change in the neuron’s electrical

(membrane) potential occurs. If the potential is large enough, the charge on the post-synaptic neuron

rapidly changes. This is known as an ‘action potential’, which reaches a peak and resets, thus forming

a voltage pulse, or ‘spike’ in the membrane potential.

Figure 1 – Characteristic plot of an integrate and fire spiking neuron

Figure 1 illustrates the characteristic sharp rise and peak of potential, which then ‘leaks’ away and

resets to a baseline voltage (typically achieving a negative charge prior to settling to the baseline).

This represents a classic neuron model that is typically represented in computational neuroscience as a

numerical integration, hence the term ‘integrate and fire’ neuron model (Brette and Gerstner, 2005).

There are numerous mathematical neuron models based on this theme.

2.2 Neuron simulation and hardware
Several neural simulation tools have been developed with the purpose of allowing neuroscientists to

simulate biologically plausible networks of neurons based on the types of spiking neuron model

described above. These simulation systems allow computational neuroscientists to build neuronal

networks at a high level of abstraction and their application programming interfaces (APIs) allow

researchers to vary the parameters of the mathematical formulae on which the chosen neuron model is

based. Furthermore, these simulation technologies enable large scale neuron networks, and developers

often think in terms of a network of neuron ‘populations’ rather than a network of single neurons

(although, of course, still possible and potentially of interest). The simulator software libraries

provide support for creating sets of neurons that can be both intra-connected within a given

population, as well as being inter-connected with other sets of neurons. They also provide numerous

algorithms to define different types of cell population connection, along with various other features

such as the generation of electrical inputs (such as spikes), and facilities to examine network activity.

Examples of popular spiking neuron simulators are NEST (Plesser et al. 2015) and Brian (Goodman

and Brette, 2013). When creating neural networks with these simulators, developers can take

advantage of the Python programming language. PyNN (pronounced ‘pine’) is a Python package that

provides a simulator-independent library for building neuronal network models (Davison et al. 2008).

PyNN operates at a higher level of abstraction such that the (same) Python code used to create a

network will run on several underlying simulator implementations that are supported, effectively

providing a type of ‘write once, run anywhere’ meta-language. Currently NEST and Brian are both

supported by PyNN. Like the supported simulators, PyNN provides a high-level API for neuron

populations, synapse models, connectivity algorithms etc., particularly for large-scale networks,

whilst still allowing a lower-level API that may be suited to smaller networks but allows more

flexibility. An important aspect of the PyNN library is that it is the adopted software API for the

European Human Brian Project1 (HBP). In particular, two (complementary) neuromorphic hardware

projects are under development: BrainScaleS2 at Heidelberg, Germany, and SpiNNaker3 at

Manchester, UK. These projects are developing semiconductor computer chips based on novel neural

architectures rather than the traditional Von Neumann architecture. Both the BrainScaleS and

SpiNNaker systems have an interface, designed for neuroscience researchers, based on Python scripts

using the PyNN API. An HBP funded project being conducted by the AI group at Middlesex

University, entitled ‘Neuromorphic Embodied Agents that Learn’ (NEAL) aims to develop an agent

system that learns, specifically using a test environment of PyNN in combination with the HBP

Neuromorphic Platforms (Huyck et al. 2015). The NEAL project provides a context for the work

reported here, and this has been influential in the adoption of PyNN and Python technologies for this

research.

2.3 Cell assemblies
Using a neural simulation middleware, such as PyNN, one can create connections between neuron

populations using various synapse models. Synapses are either excitatory or inhibitory. Put very

simply, the type of synapse model can determine whether or not the action potential of a pre-synaptic

neuron stimulates the post-synaptic neuron (excitatory) or negates its existing activity to some degree

(inhibitory). An important biological aspect is that the strength of a synapse can change over time,

either in the short term or long term. With repeated modification, the strength of the synapse

excitation (or inhibition) becomes increased (or decreased), and semi-permanent, an effect known

(biologically) as long-term potentiation (LTP) or long-term depression (LTD). LTP is thought to be

the basis of learning and memory, a process known as ‘plasticity’. Furthermore, it is understood that

the proximity of connected neurons is very influential, such that, if cells (neurons) that are near to

each other repeatedly fire together, their firing efficiency is increased, or reinforced, a phenomenon

sometimes referred to as Hebbian learning, named after Donald Hebb, the father of neuropsychology

(Hebb, 1949). Hebb was also particularly interested in how neurons acted together in groups, or ‘cell

assemblies’, which has been a focus of work by Huyck and his co-researchers. In particular, Fan and

1 https://www.humanbrainproject.eu/

2 https://brainscales.kip.uni-heidelberg.de

3 http://apt.cs.manchester.ac.uk/projects/SpiNNaker

Huyck (2008) developed a variation using a ‘fatiguing leaking integrate and fire’ (FLIF) neuron

model to form cell assemblies. This FLIF neuron model has been employed to demonstrate how a

population of intra-connected neurons (i.e., a cell assembly) can be configured to fire in a persistent

manner. That is to say, the neurons within a given assembly can be wired to maintain a continuous

firing state, and this has been used to demonstrate that a network of cell assemblies can be arranged to

represent a finite state automaton (FSA). Further discussion on this model is provided in Section 3.

With regard to the use of cell assemblies, a priority of the work of Huyck at al. has been on learning,

with NEAL being one of the more recent projects. The research described in this report is orthogonal

to this theme. The focus is not on learning, as such, but rather to demonstrate how the cell assembly

approach can be used to represent deterministic logic by way of a neuron-based state-transition model.

In particular, a blueprint for programming with simulated neurons is proposed that adapts the cell

assembly model to represent the concepts behind a classic object-oriented design pattern, namely the

state design pattern.

2.4 Design patterns
The world of software design patterns has broadened considerably since the landmark text by Gamma

et al. (1995). The ‘gang of four’ (GoF) authors, as they are frequently referred to, proposed

specifically twenty-three object-oriented patterns, which have become regarded as classic software

design patterns. It is generally accepted that some of these classic patterns are, perhaps, more

pervasive than others. For example, the observer design pattern is fairly ubiquitous, whereas a pattern

such as the flyweight pattern tends to be seen in quite specialised domains such as computer graphics.

Buschmann et al. (1996) extended the patterns concept to an architectural level (commencing a series

of texts describing software architectures, the so-called Pattern-Oriented Software Architecture, or

POSA, patterns), and since then a large patterns community has evolved and continues to grow4. A

fundamental concept of design patterns is that they provide a solution template to a recognised design

problem. Very importantly, design patterns are not invented specifically to solve a given design

problem. Rather, they are recognised for what they really are, i.e., acquired wisdom with regard to an

existing approach to solving a recurring design problem. It is the categorisation and documentation of

that solution blueprint that constitutes the design pattern. Gamma et al. did not invent their patterns,

rather they documented and formalised known techniques to solve known problems, and it is also

particularly important to acknowledge that they aim only to represent guidance rather than absolute

frameworks. As an example, consider the state design pattern. This is one of the original GoF patterns

and has applicability when a component’s dynamics should vary when its internal state is modified (it

is thus regarded as an example of a behavioural pattern). The configuration of an object-oriented

pattern is typically reflected in a UML (Unified Modelling Language) class diagram, which presents

the general template of the design solution. Figure 3 illustrates the standard UML class diagram for

the state design pattern. There is no absolute requirement to follow this exact model in order to call

one’s implementation a state pattern. But key to the class configuration is a hierarchy of state classes

that extend from a common parent class, which in turn defines a consistent protocol for the client

component (the ‘context’ class). The basic arrangement is that, at any point in time, the context would

be linked with only one of the implemented state class objects, and the currently-referenced object

would represent the current state of the system. Hence, the specific implementation of the operations

of the current object define the dynamics of the current state. However, a key aspect that the general

GoF state design pattern UML class diagram, as shown in Figure 3, does not explicitly illustrate is

that the spirit of the pattern is for an individual state object to determine, or control, which state it

transits to. That is to say, it is a particular feature of the object-oriented state design pattern that the

implemented state sub-classes take responsibility for changing the class of the current state object (as

referenced by the context object) whilst adhering to the abstract protocol specification.

Referring to Figure 3, if the context object (i.e., an object of ContextClass) is currently linked to an

object of class ConcreteStateA, and a request to execute an operation on that object is made, then the

implementation of that object’s operation may determine whether or not the reference from the

context object to a state object should be changed, and if it is to be changed, which state object (of a

4 www.hillside.net

sibling sub-class of the abstract State class) it should be changed to (in which case it would typically

‘call-back’ to the context object to set its new link).

Figure 3: State design pattern (object oriented)

This state sub-class control is particular to the object-oriented design pattern, rather than the more

general FSA concept. Furthermore, different operation implementations may determine different state

change decisions, thus promoting a potentially complex object state transition model. For the

described prototype, however, the relatively simple model of a traffic light simulation has been

selected. This system has only four discrete states, each with a single operation to essentially move to

the next state in the sequence (hence only one possible state transition per state). In terms of an object

model, the typical implementation is for each concrete state object to set the reference of the context

object (acting effectively as a state-machine object) to point to the next state object in the sequence,

with the traffic signal system having a cyclic state transition model as illustrated by the UML state

diagram in Figure 4.

Figure 4: Object-oriented state pattern representing a traffic signal

Figure 4 (a) illustrates the structural (class) configuration of the general GoF state pattern applied to

the traffic signal example. This only requires one abstract operation that each of the four concrete

(light) states implement, and that is to change the reference of the context object. The dynamics of this

are represented in the UML state diagram illustrated by Figure 4 (b).

2.5 Summary
The thrust of the work described in the remainder of this report addresses the premise that simulated

neurons can be used to program in a general purpose manner. Such a programming paradigm would

naturally appeal to those working within the field of artificial intelligence and could be employed to

complement typical machine learning and classification tasks (Huyck and Fan, 2007). The underlying

theme of this position is to adopt the connectionist approach to AI and aim to develop ‘intelligent’

programs in a biologically plausible manner. Some connectionists might argue that this cannot

ultimately be achieved with symbolic programming alone. It is envisaged that this will take on more

importance with the emergence of biologically inspired computer architectures that will, perhaps one

day, support a programming language that is predominately neural. In addressing this challenge, much

of the work of Huyck and his co-researchers has had a strong focus on the use of cell assemblies as a

biologically plausible model. Whilst, in the main, the work of Huyck et al. has investigated numerous

aspects of learning and memory, the idea of being able to program more generally, via the cell

assembly model, underpins a number of their projects and provides the inspiration for this

investigation. This branch of the research deviates from a specific focus on learning and memory, and

attempts to validate the cell assembly based FSA design by adapting it to a blueprint for, at least, one

aspect of deterministic programming in neurons. That is to say, a first design pattern that is specific to

programming with simulated neurons.

3. A neuron-based state pattern
This section will describe the prototype software that has been developed in order to demonstrate the

neuron-state model described in the report. The source code is available to download directly from the

following url: http://www.cwa.mdx.ac.uk/NEAL/code/neural-state-simulation.zip.

3.1 Visualisation of PyNN code
Rather than presenting Python code, this report will convey the structure of the program using a visual

representation of the network, and in particular, visualisations of specific PyNN programming

structures that are critical to the model. These visualisation are, in essence, a novel feature in their

own right. They have been designed to aid in comprehension (and documentation) of some earlier

projects that employed similar cell assemblies, such as NEAL. There is clear potential to extend this

visualisation aspect further, but this is not a primary focus of this report.

A PyNN program is a timed simulation. Following initial set up (mainly related to neural timing

parameters), a simulation typically comprises the following aspects: a spike generator, one or more

populations of neurons, and a set of projections that link populations of neurons. Any given

population can be based on a single cell type, or a combination of cell types. The populations created

for the prototype that has been developed comprise a single cell type, which is an integrate-and-fire

model. The PyNN class representing a cell type provides numerous parameters to configure those

cells according to the mathematical model upon which they are based. A projection makes synapses

from the neurons of one population to another population, and does so using a specified connector.

Connectors comprise a combination of a synapse type (which specifies excitatory and inhibitory

weight values), and a connector algorithm. Various standard connector algorithms are provided via

the PyNN API. For example, one can connect a single neuron from one population to all neurons in

another population, make ‘all-to-all’ mappings, make random connections, or provide bespoke

mappings.

Whilst PyNN provides a wealth of neuron component classes within its API, only a few visual

artefacts are required to represent the neuronal state model that has been developed: a neuron

population, an intra-population projection, and inter-population projection (which specifies connector

or synapse type) and a spike-source component. Examples of these are illustrated in Figures 5a and

5b. PyNN provides a series of specialised cell types (as programming constructs) to represent a range

of electrical inputs to a neuron (or a neuron population). Collectively, these are termed ‘spike sources’

and are typically used to stimulate (i.e., add excitatory or inhibitory weight to) neurons within a given

simulation. The prototype employs a straightforward ‘spike source array’ cell type. This essentially

allows the programmer to code an array of specific ‘spike times’ throughout the simulation (in

milliseconds). The spike input is achieved by connecting the spike array to a population of neurons.

Figure 5a (i) illustrates a spike source of one neuron. A key feature of the cell assembly approach is to

create a population of neurons that are intra-connected. So, for each neuron in a given population, the

programmer can ‘project’ a connection from that neuron to its neighbours within the same population.

Furthermore, the programmer can specify to which neighbours to project the connection. Figure 5a

(ii) illustrates a visualisation that is used to represent a population of neurons, with the number of

neurons in the population indicated by the number enclosed within the triad of connected nodes.

Figure 5a (ii) is intended to illustrate that each of the 10 neurons in the population is connected to

each of the other 9 neurons in the population, but not self-connected. Figure 5a (iii) illustrates the

same type of population with neurons self-connected as well as to all neighbouring neurons.

Figure 5a: Visualisation of neuron populations

With populations defined, one can use several variations of connector to establish the overall network.

Some of these are illustrated in Figure 5b. For example, Figure 5b (i) illustrates a connector that is of

type ‘all to all’ with a net excitatory weight (indicated by the plus symbol). The arrows indicate the

direction of the connection.

Figure 5b: Visualisation of population connectors

Figure 5b (ii) indicates an ‘all to one’ connection algorithm with net inhibitory weight (indicated by

the minus symbol), Figure 5b (iii) shows one neuron connected to all in a given population with net

inhibitory weight, and Figure 5b (iv) illustrates a one-to-one neuron connection with positive weight

(excitatory), which is employed in the prototype for connecting spike sources to a cell assembly.

3.2 The model
The characteristic operation of a PyNN script is that it is executed for a predetermined time specified

in milliseconds. The selected spike mechanism provides network input, and the response of the

network to those inputs is recorded. There are several options for determining how data relating to

network activity is recorded and examined but it is typically plotted in the form of a graph. The goal

of the described prototype, however, is to represent firing states in real-time, and so requires an ability

to interpret population activity during the simulation run rather than inspecting recorded data after the

program has completed. The PyNN API does not specifically provide for this requirement, so it was a

small design challenge that needed to be overcome. This was manageable, however, because the

PyNN simulation control does allow for repeated invocations of Python ‘callable objects’. This allows

timed repetition of a section of code that can record the current activity of the network, inspect the

recording during the same program iteration, and then reset the recording parameters ready for the

next ‘call back’ from the simulation controller. Key to the implementation solution is the capability to

project a population onto itself (i.e., an intra-projection) and that the cell assemblies of the defined

states essentially all exist in a ‘primed’ state. In particular, Huyck and Fan (2008) demonstrated how

two active cell assemblies could ignite a third, and effectively spread their activation to that third cell

population. In addition, they were able to control how a cell assembly could supress the activation of

another population so that its neurons stop firing. A similar design is used with regard to the

implementation of the neural-based traffic-light state model implementation that is illustrated in

Figure 6. It should be noted that the population, connector and spike source network illustrated in

Figure 6 is one configuration that achieves a solution, but there are alternative configurations that can

also achieve the desired results. For example, it is possible to employ populations with fewer neurons

and configure the connectors with alternative algorithms and replicate the overall network activity.

Figure 6: Visualisation of the PyNN neuron state model

In other words, Figure 6 illustrates an overall structural pattern that can use different population sizes

and connector algorithms. The network visualisation in Figure 6 includes labels (a) through (f) to aid

explanation of how the model operates. With respect to the state populations (indicated as containing

10 neurons) illustrated in Figure 6, state transitions operate from left to right. A spike-source

generates a timed series of positive pulses throughout the simulation to represent triggers for state

changes. This is indicated by label (a) in the diagram. This source is connected to a single neuron in

each of the four cell assemblies (i.e., intra-projected neuron populations). The synapse weight is

sufficient to ‘prime’ the populations, but not to make them fire. The network is essentially started by a

second (single) pulse injected to the first cell assembly, indicated by label (b). The combined

excitatory weight is configured to reach a threshold such that the first cell assembly now fires and

maintains an active state. This active state is connected to the next cell assembly in the chain via an

all-to-all projection as illustrated by label (c), but the net excitatory weight is insufficient for the

second cell assembly to fire and it remains primed. After a predetermined interval, the next spike is

injected into all four cell assemblies at point (a). The combined excitatory synapse weights that feed

into the second cell assembly at points (c) and (d) are sufficient to reach a threshold to make the

second cell assembly fire and maintain an active state. A one-to-many projection goes from that cell

assembly back to its predecessor, which has sufficient inhibitory weight to suppress its activity,

effectively taking it back to the primed state. The second cell assembly is projected forward to the

third cell assembly, denoted at position (f) in the network, but again, there is insufficient weight to fire

the third cell assembly until the next timed spike from position (a), and the sequence continues such

that the network switches between all four states with only one cell assembly firing at a time.

Deterministic control of the state transitions between cell assemblies is effectively under the control

of the spike (trigger) input at position (a). In the prototype, this is a timed series of pulses, but this

could be event-driven. Each timed pulse is transmitted to all four cell assemblies in the system such

that the spike input is not targeted at any one specific population. In effect, the network of cell

assemblies itself, via its wired projections, determines the active neuron state transition. Thus the

spirit of the state design pattern is captured in the model.

4. Prototype architecture
As noted above, PyNN developers are typically neuroscientists who visualise the operation of their

neural models via several types of graphical plots at the end of a given simulation. Certainly, the

activity of the connected neuron populations in Figure 6 can be presented in a plot. However, the

work described here has a more specific goal of conveying the utility of this network model as a

neural programming pattern, and as such there is a desire to demonstrate the pattern as an

implementation model within the context of a broader software system. To this end, the prototype has

been integrated within a model view controller (MVC) architecture. What is, perhaps, interesting

about this approach is that it is the model component that is interchangeable. MVC is a fairly

ubiquitous architectural pattern, but the vast majority of implementation descriptions that one finds

reference to focus on the interchangeability of the view component. For example, many web

frameworks utilise MVC in this manner. However, the interchangeability of the model component

was always a key aspect to the MVC pattern described by Gamma et al. (1995). Although MVC was

not listed as one of their 23 classic patterns, Gamma et al. made specific reference to the importance

of their strategy design pattern within MVC. The strategy design pattern facilitates the encapsulation

and exchange of an implementation algorithm at runtime for a given controller, and the prototype

described here has adopted this architectural approach, which is illustrated as a UML class diagram in

Figure 7.

Figure 7: Neuron state model as an implementation strategy within an MVC framework

The view component of the prototype is a simple Python GUI from which the user can run a

simulation of a timed sequence of transitions of a standard UK traffic signal (represented as simple

coloured graphical widgets). In the prototype, this can be achieved with either a classic object-

oriented state design pattern (object model) or via the new neuron-based state model. The GUI

provides a selection widget to change the implementation model from the object-oriented version to

the neuron-based PyNN implementation, and vice versa, and does so whilst the program is running

(thus satisfying the strategy pattern requirement to be dynamically interchangeable). This is managed

by the controller component, which employs the strategy pattern to assign the specific implementation

model of the simulation and delegate to that state model sub-type accordingly. In fact, structurally the

strategy pattern looks similar to the state pattern in that a context component (the controller in this

case) delegates to one of a number of model implementation strategies that satisfy an abstract parent

class protocol. There is, however, a distinct difference in dynamics between state and strategy

patterns, with the intent of the strategy pattern being focussed only on encapsulation of the algorithms

of a model. In this prototype MVC implementation, communication of state transitions from model to

view, via controller, is facilitated via a publish-and-subscribe model using a queue data structure. In

order to allow for both models to be interchanged during a single run of the prototype, this queue

stores an abstracted enumeration of the four states of the traffic signal.

5. Conclusions
Programming with simulated neurons has two main benefits: neurocognitive modelling, and neuron

inspired AI. Neurocognitive modelling of the brain using a simulated version of a relatively low-level

and well understood primitive, i.e., neurons, will help advance understanding of neural and cognitive

functioning. The benefits of neuron inspired AI are perhaps less obvious, but more immediately

important. The waning of Moore’s Law can be partially compensated with parallelism, so

concurrency is significant. Programming in simulated neurons gives a very fine grained parallelism,

using billions of processors. The advent of neuromorphic hardware takes advantage of this, but the

software community does not really know how to take full advantage of these systems. Currently,

there is no neuron-specific programming language. At some point in the future, dedicated neuron-

oriented programming languages may exist, and the developers of such languages might look to base

their APIs on established neural programming patterns.

The work described in this report is still in its early stages but a working prototype has been achieved

as a proof of concept demonstration. At this time, a neuron-based equivalent of the classic state design

pattern is tentatively proposed. There is some further work to be achieved before, for example,

announcing this to the patterns community. For one thing, the prototype is based on a very simple

model with a single predetermined transition from one state to another single state. The next stage is

to develop the existing prototype to operate with a more complex state model in which the currently

firing cell assembly has a choice of more than one possible transition to alternative cell assemblies.

The authors are confident in achieving this, but only at that point might one accurately suggest a full

state design pattern equivalent.

A very important aspect of this work is that this neuron-based pattern of programming has not simply

been invented. Rather, it has been adapted from a technique that was developed by a computer

scientist and his co-workers specialising in machine learning with neural networks, and who have not

been consciously operating within the world of patterns. Key to the idea of proposing a design pattern

is in the recognition of a technically sound, and repeatable, programming method and its

representation. Uniquely, in this case, its representation is not object-oriented but neural. The authors

view this as the beginning of an interesting strand of investigation. Mapping the neural prototype

described in this report to a classic design pattern is a first step. Possibly, the authors may investigate

the mapping of other well-known patterns from symbolic programming paradigms in terms of their

usefulness in neural programming. However, there may well be neuron-specific patterns to be

discovered, and it is reasonable to suspect that concurrency will be at the heart of some of them.

6. References
Brette R and Gerstner W (2005) Adaptive exponential integrate and fire model as an effective

description of neuronal activity. Journal of Neurophysiology, 94: 3637-3642.

Buschmann F, Meunier R, Rohnert H, Sommerlad P, Stal M (1996) Pattern-Oriented Software

Architecture: A System of Patterns. Wiley.

Byrne E and Huyck C (2010) Processing with cell assembles. Neurocomputing, 74: 76-83

Davison AP, Brüderle D, Eppler JM, Kremkow J, Muller E, Pecevski DA, Perrinet L, Yger P (2008)

PyNN: a common interface for neuronal network simulators. Frontiers in Neuroinformatics,

2:11.

Fan Y and Huyck C (2008) Implementation of finite state automata using fLIF neurons. In: IEEE

Systems, Man and Cybernetics Society, pp 74-78.

Furber S, Lester D, Plana L, Garside J, Painkras E, Temple S, Brown S (2013) Overview of the

spinnaker system architecture. IEEE Transactions on Computers, 62(12): 2454-2467.

Gamma E, Helm R, Johnson R, Vlissides J (1995) Design Patterns: Elements of Reusable Object-

Oriented Software. Addison-Wesley.

Goodman D and Brette R (2013) Brian simulator. Scholarpedia 8(1): 10883.

Hebb D (1949) The Organization Of Behaviour. John Wiley & Sons.

Huyck C. (2009) A psycholinguistic model of natural language parsing implemented in simulated

neurons. Cognitive Neurodynamics, 3, 317-330.

Huyck C, Evans C, Mitchell I (2015) A comparison of simple agents implemented in simulated

neurons. Biologically Inspired Cognitive Architecture, 12: 9-19.

Huyck C and Fan Y (2007) Parsing with fLIF neurons. In: IEEE Systems, Man and Cybernetics

Society, pp 35-40.

Huyck C and Mitchell I (2014) Post and pre-compensatory Hebbian learning for categorisation.

Computational Neurodynamics, 8(4):299-311.

Plesser H, Diesmann M, Gewaltig M, Morrison A (2015) Nest: the neural simulation tool.

Encyclopedia of Computational Neuroscience, 1849-1852.

