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Abstract 
We present a case study of requirements for “data wrangling” capabilities in a healthcare application 
context. Data wrangling is an increasingly common requirement for data scientists, policy makers, 
market researchers, intelligence analysts, and other professions where existing data must be used in 
ways that were not envisioned when it was first collected. We characterise data wrangling as a 
programming problem, in which aggregate data must be restructured in ways that remain consistent 
with its semantic origins or ontological referents. We recommend the table as a lowest common 
denominator representational device, affording both direct manipulation and programming by 
example. We describe work in progress, in which we have identified new opportunities for clinical 
end-users to interact with the content of a customisable information system, through a focus on tables 
as an approachable analytic tool. 

1. Introduction 
Much of the work of the professional data scientist is concerned with ‘data wrangling’ – organising 
data into a form that will allow it to be used for statistical analyses or visualisations. Data journalist 
Simon Rogers, as with many data analytics consultancies and other less public-minded specialists, 
finds this the most time consuming and technically challenging aspect of the work, up to 80% of a 
typical data analysis project (Rogers 2013). In his guide for the budding data journalist, Rogers 
suggests that this might involve copy and pasting values between Excel tables, before converting to 
comparable units, getting rid of unnecessary columns, merging cells, and changing it into a format 
compatible with visualisation systems. 

Much of this work is currently manual, although tools such as TextWrangler can automate the 
extraction of numerical data embedded within XML or other text formats, and mashup techniques 
such as Yahoo Pipes can be used to scrape data and aggregate data from websites. Recognising and 
exploiting regularity in textual data has been a topic of concern at PPIG in the past (e.g. Church 2008, 
Blackwell 2001). However, it is often the case that the data is already in a structured form, simply the 
wrong structure for the task at hand. The data of concern may be stored in database, or even simply 
embedded within a large table, requiring queries to extract it, joins to combine it, or ‘pivot’ operations 
to unpack and reorder a nested structure. 

In this paper, we report early results from a project ‘in the wild’, in which data wrangling has been 
identified as a central issue for end-user professionals. Our collaboration involves researchers from a 
business school, a computer science department and an NHS hospital, with the goal of helping 
hospital clinicians to make better use of patient data. Our ultimate objective, as with other fields of 
data analytics and data journalism, is to create visualisations and conduct statistical investigations as 
an aid to improved policy and care. However, results from our first phase of fieldwork indicate that 
data wrangling is one of the most substantial technical obstacles to this goal. In the remainder of this 
paper, we describe the problem we have observed, discuss the specific technical opportunities that 
have been highlighted by our investigation of this domain, and present some initial design principles 
that we are now exploring as the basis for novel end-user programming tools appropriate to the users 
we have been meeting. 



 

 

2. Background and previous research 
2.1. Research context 
The research that we report in this paper is part of a project entitled Repurposing Clinical data for 
quality improvement in Critical Care (ReCliC), funded by the Health Foundation. The goal of the 
ReCliC project, as expressed in its title, is to explore ways in which data can be used more effectively 
in clinical practice. We take a specific focus on the clinical context of critical (or intensive) care – a 
relatively complex healthcare context, involving greater degrees of monitoring and intervention than 
most healthcare work. One consequence of this complexity is that larger quantities of data are 
generated in a critical care context, and hence that automated approaches to working with that data are 
particularly likely to be profitable. 

The customisable clinical information system that is the focus of the current research has previously 
been studied in the context of end-user programming research (Morrison & Blackwell 2009). In a 
previous study, we investigated the potential for end-user programming tools to offer additional value 
to such systems by hiring a professional programmer to carry out extension work, under the 
instruction of a clinical end-user (Blackwell & Morrison 2010). In that study, we observed that the 
most pressing need for system extension was with regard to structuring the data in new ways, 
allowing for aggregated reports to be generated. In this work, drawing on a wider variety of 
informants from additional institutions, we have again identified the problem of reorganising and 
restructuring aggregated data. 

The current research focuses on five NHS Critical Care sites across the UK, all employing the same 
clinical information system (CIS). At each site we engaged with key users responsible for supporting 
the clinical information system as well as servicing requests for data. The roles of key users varied 
significantly as well as their range of technical and clinical skills. This included a nurse, pharmacist, 
consultants, IT staff and an information analyst. We also engaged with a wider group of end users 
who typically enter data into the clinical information system but also request data for various 
purposes. End users included both clinical and non-clinical staff. 

The research methodology is based on conducting semi-structured interviews with research subjects 
as well as observations of how the clinical information system is used in routine practice. 
Additionally, we have attended user group meetings where challenges faced in using the clinical 
information system are discussed and users share learning. The qualitative data collected from these 
interactions are coded for relevant themes, discussed amongst the research team and refined through a 
repetition of these steps. 

Future phases of this research will explore clinical potential for novel statistical analyses, including 
time series trends, sample comparisons, correlations and clustering. We expect that end-user 
programming perspectives will also be relevant in this future work. However, in the current study, we 
focus purely on the end-user challenge of gaining access to data, and organising it into a form from 
which statistical analyses might be conducted – the challenge of ‘data wrangling’. 

2.2. Previous research in data wrangling 
Data wrangling tasks have previously been identified as a candidate for end-user programming 
techniques. For example, tools such as PADS (Fisher & Walker, 2011) and FlashExtract (Le & 
Gulwani, 2014) allow users to extract structured data from semi-structured data, by either describing 
with the aid of a description language how the data should look like (PADS) or demonstrating it 
through an example (FlashExtract). Other tools focus on improving ways of connecting content from 
several different sources into a single Mashup, through programming by example techniques 
(Tuchinda, Szekely, & Knoblock, 2008). Further to that Vegemite uses a spreadsheet-like interface, 
together with direct manipulation and programming by demonstration techniques to achieve that (Lin, 
Wong, Nichols, Cypher, & Lau, 2008). 

The research strategy that we have chosen is to treat data wrangling as a transformation problem, in 
which one set of data must be transformed into another. Based on the observation by Rogers (2013) 
that much routine data wrangling is carried out in spreadsheets, and on recent observation of the value 
that tabular representations provide in end-user data analytics (Sarkar et al 2014), we focus on 



 

 

approaches to transforming one table of data into another. Previous approaches include systems that 
use menus, demonstration or examples to specify a spreadsheet or table transformation program.  

Menu-driven tools allow the user to create programs by specifying a sequence of operations through a 
menu. One such tool is AJAX (Galhardas, Florescu, Shasha, & Simon, 2000), which uses an SQL-like 
language and focuses on data cleaning – the process of resolving inconsistencies in the data, 
performing entity resolution and correcting errors. Other systems, such as OpenRefine (Verborgh & 
Wilde, 2013) allow some commands to be specified graphically, but mostly users need to write them 
in a command language. Potter's Wheel (Raman & Hellerstein, 2001), on the other hand, has purely 
menu-based interface, used by the end-user to describe a sequence of operations, which could then be 
saved and applied to new data in the future. It relies on users constructing transformations gradually, 
i.e. having a clear idea of what sequence of operations they have to execute. This implies a need for 
strong understanding of the semantics of the operations, rather than just their effect. 

Wrangler (Kandel, Paepcke, Hellerstein, & Heer, 2011) and its improved version, Proactive Wrangler 
(Guo, Kandel, Hellerstein, & Heer, 2011), take the Potter's Wheel approach one step further, by 
extending the transformation language and introducing an interface that allows the user to 
demonstrate what their intent is. This starts by selecting columns or rows relevant to the 
transformation, and is followed by suggestions from the system regarding what the intended 
transformation might be. The suggestions given by the Wrangler and Proactive Wrangler systems 
address the problem of the user needing a clear idea of the operations they need to go through. 
However, neither of these systems manages to completely solve this problem, still requiring the user 
to understand the particular semantics of the backend transformation language.  

FlashRelate (Barowy, Gulwani, Hart, & Zorn, 2015) and previously ProgFromEx (Harris & Gulwani, 
2011) allow users to give examples of the spreadsheet transformations they want to perform. The 
transformations are then automatically synthesised. The advantage of this approach is that users only 
need to understand the effect of transformations, not their semantics. However, a resulting problem 
with these approaches is that if the user does not understand the semantics, they find it difficult to 
verify that they have created the right program, to correct possible errors in the synthesised program 
or understand how it might be reused in future. 

Our aim is to ease data wrangling tasks by unifying existing approaches such as Wrangler and 
FlashRelate, prompting the user to specify an example of the effect of the desired transformation 
program, automatically synthesise a suitable program, and allow the user to understand and amend it 
when needed. 

3. Preliminary findings 
In this section, we discuss findings from our field research into the organisational factors that set the 
context for reuse of clinical data, and analyse the characteristics of the data itself from an end-user 
programming perspective. 

3.1. Organisational factors in data reuse 
Our initial field research identified two constituencies of people who might be regarded as ‘end-users’ 
from the psychology of programming perspective. Neither is formally trained in IT (apart from the 
product training provided by the CIS supplier, together with any local or user-group support). 
However, one group has acquired primary responsibility for the data wrangling task. Morrison and 
Blackwell (2010) presented a case study of one such individual, who was described in that publication 
as a ‘professional end-user.’ In the current analysis, we describe these individuals as ‘key users’. The 
other group wishes to make use of the data, but currently has no tools that they find suitable for 
extraction of data from the system. We call these (data) ‘end users’.  

In the remainder of this section we describe the ways that these two groups interact with the system 
within their organisational context. There are also organisational constraints on their work, sometimes 
reflected in their formal posts. Key users are often people who have been assigned specific 
responsibility for system operation, while data end users are more often clinical staff or hospital 
managers who need access to data for other purposes. Some of these staff are paid for the time they 
spend analysing data or interacting with the CIS, while others engage with the system outside of their 



 

 

primary duties. However, there is not a straightforward mapping from the category of paid 
professional duties to the key user / data end user distinction. In some sites, the key user is a clinician 
or manager whose primary responsibilities are in clinical treatment or hospital management rather 
than IT systems. 

In studying the typical process of interaction, we found that data end users requested data for a variety 
of purposes, including regular reports for clinical and management purposes, data for audit purposes 
(often submitted for national audit requirements), and data for research purposes. Key users would 
agree any data request queries with end users, taking into account not only their understanding of 
what data was stored in the clinical information system but also how likely they were able to extract 
particular data out of the system. Investigating this process highlighted particular issues for both key 
users and end users. 

The first stage we identified in servicing data requests is the negotiation between the key user and end 
user. Key users indicated that end users are often not very clear about what data they require and there 
is a need to elicit more specific information before the exact specifications are understood. End users 
had not often thought through queries and key users see part of their job as facilitating the 
development of the ‘right’ question. Part of this negotiation is for key users to make end users aware 
of what is pragmatically possible within the constraints of the clinical information system. Since key 
users know the CIS best, they have a sense of how queries need to be stated to be feasible and so need 
to negotiate end user expectations accordingly.  

A significant issue highlighted by key users attempting to address requests for data is the limited 
functionality of the CIS in providing the means to extract data. A distinctive (and desirable) feature of 
the CIS is that the recorded data is fully customisable. Data fields and formats can be defined to suit 
local clinical practice, to accommodate particular combinations of monitoring and measuring 
equipment, and to support local innovation (Morrison, Blackwell & Vuylsteke 2010). As a result of 
this substantial degree of customisability, the data extraction tool provided with the product (called 
‘Query Wizard’) needs to be highly generic, allowing for queries that match and extract any possible 
combination of data types and values. This extremely high degree of abstraction and customisability 
results in a cognitive dimensions profile closer to that of a professional programmer than typical end-
user tools. 

Documentation is limited, and those key users who do use the tools are self-taught, because formal 
training is not readily available. The need for data extraction has steadily increased in recent years so 
that those key users who have developed skills over time have offered to teach others in sites across 
the national health care provider. So cumbersome is the clinical information system data extraction 
process that when investigating small data sets e.g. a single or small group of patients, users typically 
choose to, or are often encouraged to, read data off the screen of the user interface intended for 
everday observation and data entry, rather than attempt an automated data extraction process.  

Aside from the difficulty in using extraction tools, an additional concern is that any data extracted 
using the tool is in a structure that does not lend itself to immediate analysis. Data is distributed in 
such a way that it is necessary for key users and/or end users to first manipulate the data set so that it 
is arranged in rows and columns that can be used to address the initial data request. In order to do this 
users turn to an intermediate tool i.e. spreadsheet software, to first organise data into suitable views. 
This is particularly necessary when dealing with large, more complex data requests. Given the 
limitations of the extraction tools, such queries need to be sub-divided into queries key users estimate 
will be executable. Each of these sub-queries is then aggregated and manipulated in a spreadsheet to 
build up the overall data query result. 

Over time, key users have developed other ways to overcome data extraction issues. For example, one 
key user has kept a separate data set in a spreadsheet (manually updated at intervals) which enables 
her to more quickly query basic data in a format that requires less, and often no, manipulation after 
the query process. 

Another way users have tried to overcome these issues is to circumvent the use of the CIS data 
extraction tools altogether. A subset of data collected in the CIS has to be submitted to the national 



 

 

intensive care audit database ICNARC. This data is either extracted from the CIS automatically, or 
(sometimes) partially manually re-keyed into the required audit data set. Despite the challenges that 
this extraction process itself introduces, the ICNARC data set has a well-defined structure (as required 
by national audit specifications) which lends itself to being more easily queried than the CIS. Both 
key users and end users will use this data set in their local contexts to perform queries which they 
regard as a simpler process by comparison to using the CIS. Evidently the key constraint is that this is 
a subset of the entire CIS database and so can only support particular queries. 

As alluded to previously, a constraint for key users is the limited level of skills they may have to 
perform data related tasks. While it is rare for key users to have data-related training, a few have made 
efforts to develop specific programming skills, such as SQL, to extend their ability to extract and 
manipulate data in more useful ways. In effect this enables them to bypass the CIS and the related 
data extraction tools, allowing them to directly access the database. Such efforts are still limited, 
however, because key users have a relatively basic understanding of the CIS database structure, thus 
placing a constraint on the effectiveness of data extraction. 

A related issue limiting the ability of key users to service data requests is that they must typically 
combine such tasks with a wider set of responsibilities. Work on CIS tasks has to be balanced with, 
for example, clinical or other IT related work. This limits the amount of time key users can dedicate to 
working with the CIS as they prioritise more urgent work accordingly. Key users often have to make 
expeditious decisions as to whether it is possible to service a data request. If a request appears too 
complex and time consuming to extract and manipulate the data, it is likely to be deferred or rejected 
when the wider responsibilities of the key user are considered more urgent. 

We observe that the consequence of this prioritisation is that end users may limit data requests over 
time. Knowing that key users are busy, or that a data request is likely to be too complex, results in end 
users either not asking the question at all or perhaps agreeing to simplify the question to match the 
time and abilities of the key user as well as the capabilities of the CIS, pre-empting the negotiation 
they are likely to have with the key user in agreeing the data request. 

3.2. Data semantic roles 
As mentioned in the previous section, a distinctive (and desirable) feature of this CIS is that the 
recorded data is fully customisable (Morrison, Blackwell & Vuylsteke 2010). This is achieved 
through use of an extremely general database model. The main data store is a single table of time-
stamped entries, each consisting of an attribute-value pair. The set of possible attribute values is 
completely configurable in each installation of the system, defined as the set of ‘variables’ that can be 
recorded, reported, graphed or acted upon.  

Each entry in a table represents a single observation – the type of observation or measurement that has 
been made, and the observed result or value of the measurement. This logic is compatible with the 
logic of the critical care unit, in which the clinical team are constantly making observations or 
measurements of the patients. However the practical application of these observations is constrained 
by a number of practical issues that arise from the characteristic ways data is collected for analysis. 
These different natural categories of data observation can be compared to the ‘roles of variables’ 
identified in conventional code (Sajaniemi & Prieto 2005), for example: 

1. Statistical invariants: Apart from the changing observations, most other entries in the database are 
single values, not expected to change. We are not asserting that these things can never change, simply 
that they are invariant for the purposes of clinical reasoning. Examples include data of birth, height, 
eye colour etc. 

2. Timebase resampling: Various observations are collected at differing intervals. One aspect of a 
patient's condition might be recorded once a day, another aspect three times a day, another every hour, 
and another (automatically measured) every five minutes. Whenever it is necessary to compare or 
relate these observations, some kind of interpolation is necessary, whether as simple as using two 
values as close to each other as possible (constant nearest neighbour), linearly interpolating between 
points on either side, or fitting a regression model to account for sources of variance. 



 

 

3. Persistent legacy data: When new variable types are added to the local CIS configuration, it is not 
possible to delete the previous variables (because this would invalidate existing queries and reports). 
Data associated with those variables is therefore retained in the database, with local practices used as 
work-arounds to prevent confusion (for example, renaming out-of-date attributes with the letter ‘z’ as 
a prefix, so that they are not inadvertently selected when attribute values are offered in alphabetical 
order). 

3.3. Data ontology 
Our focus in this project on a specific domain has highlighted the ways in which the degree of abstract 
generalisation supported by customisable tools might be unhelpful. This builds on observations with 
regard to design-time abstraction (Blackwell et al 2008), and also on the suggestion that external 
representations can be more usable if made less abstract, so that users are able to reason about more 
specific interpretations (Stenning and Oberlander 1995). These considerations are aspects of the 
cognitive dimension of abstraction, which we believe is a central issue in the respective approaches of 
key users and data end users. In this section, we therefore offer some further analysis of the types of 
abstraction that have resulted from the highly customisable CIS system. 

In the relational model, data types are ontologically undifferentiated, with attention paid only to the 
compatibility of machine data types, the specification of whether a value might be used as a relational 
key, and possibly special viewing or editing facilities for free text or binary objects. We speculate that 
in an end-user context such as the repurposing of patient data, this extreme degree of abstract 
generalisation is unhelpful. For example, the name of a patient “Adam Smith” and the name of a 
surgical procedure “coronary artery bypass graft” are both text fields. However, there is no clinical 
context in which it would be meaningful to compare these two values to each other, or to count the 
relative numbers of each. Our hypothesis is that manipulation of data will be easier for end-users to 
achieve if values such as these cannot be confused, by means of detecting and maintaining the 
ontological referents of different types of data in the database. 

The design of programming standards to reflect ontological categories is reminiscent of the People, 
Places and Things design standard promoted by Apple's Taligent spin-out in the 1990s (Cotter & 
Potel 1995). Taligent failed in part because of failure to anticipate that most software ‘objects’ would 
not be ‘things’, but rather purely engineering abstractions such as lists, buffers, wrappers, sockets and 
so on (Blackwell 1993). More seriously, perhaps, they were unable to enforce a business model in 
which a single understanding of ontology could be imposed on potentially incommensurable 
knowledge systems (Star & Bowker 1999). Attempts to create ontologically-justified data type 
protocols continued in initiatives such as the Object Management Group's Business Object Model 
(BOMSIG) (Zamir 1998), or continuing Semantic Web work of the W3C Web Ontology Language 
(McGuinness & Van Harmelen 2004). Arguably, all of these share the fallacy identified by Umberto 
Eco as the "Search for the Perfect Language" (1995). 

A lighter-weight approach to ontology and types can be found in Scaffidi's Topes proposal (Scaffidi et 
al 2008), as well as in the unit inference approach to spreadsheets developed by Abraham and Erwig 
(2004). Ontological differentiation might recognise common sense categorisations, such as TIME IS 
ORDERED. CAUSALITY IS UNIDIRECTIONAL, and PERSONS ARE INDIVIDUALS. These categories also aid 
statistical reasoning. For example, it is reasonable to investigate whether the time of day for surgery 
has any consistent effect on the outcome of an operation. It is less reasonable to investigate whether 
the time of day for surgery has a consistent effect on the patient’s date of birth. By taking the 
ontological referents of data into account, the tabular structure of the data can help to guide statistical 
enquiries. 

 

 

 



 

 

4. Potential design strategies 

We propose a design for a system, which guides the user through constructing a simple example 
explaining their intent, automatically synthesises a likely spreadsheet transformation program which 
matches this example, and then executes the program, having the rest of the spreadsheet as an input. 
Below, we present our approach by describing its three dimensions, following best practises of the 
program synthesis community (Gulwani, 2010): the way the user shows what their intent is, the space 
of possible programs, and strategy for searching the space of possible programs. 

4.1. Specifying the intended program 

One problem with many menu-driven interfaces for data wrangling is the necessity for the user to 
have clear idea of the meaning of each of the suggested transformation steps. Naturally, this means a 
steep learning curve, making it hard for novices to use the system. In the context we have been 
studying, it is apparent that CIS users such as nurses and doctors often lack the time and access to a 
technical person who might help them learn how to use new software. Rather than menu-driven 
specification, we have therefore focused on the development of a demonstration-based approach, in 
which users interact directly with the data to select the items that are of interest. The interaction 
method that we have created, responding to this requirement, is called Data Noodles, and is described 
in a companion paper (Gorinova, Sarkar and Blackwell 2016) 

4.2. Transformation language 
The transformation of spreadsheets, selecting and restructuring them in response to the user’s actions, 
is achieved with a Domain Specific Language (DSL) largely inspired by the Potter's Wheel and 
Wrangler's transformation languages. It implements reshaping transformations, such as Fold and 
Unfold, substitution of missing values, and we plan to add support for data value interpolation, 
filtering, splitting and merging operations. We choose to use a language adapted from the two above, 
as this previous work has found them sufficiently expressive for common transformations, and 
furthermore, providing greater readability than more ‘fine-grained’ languages in which the program is 
a collection of constraints determining the value of each cell in the output spreadsheet (Barowy et al., 
2015; Harris & Gulwani, 2011).   

A key requirement for the CIS context is an interpolation operation, which fills in missing values of a 
column, by estimating them based on some function. In the context of electronic health records this is 
particularly useful, as often timestamps of different continues parameters do not match, e.g. heart rate 
could be recorded every minute, but respiratory rate every five minutes. Thus, if a clinician wants to 
analyse a dependency between a patient’s heart and respiratory rates, they either need to delete all 
extra heart rate entries (which will work only if the two time-series have some data points taken at the 
same time) or they could speculate about the way parameters behave between measures. Our 
interpolation operator would offer a range of options for describing this speculated behaviour, such as 
‘copy the last known value’, ‘copy the nearest known value’, ‘linearly interpolate’, etc.  

4.3. Program synthesis 

To synthesise programs in the DSL described above, we have been using the PROSE SDK (Polozov 
& Gulwani, 2015). PROSE is a .NET framework which provides tools for defining the syntax and 
semantics of a domain-specific language and can then synthesise a ranked set of programs satisfying 
some input-output example specification. To be able to synthesise spreadsheet transformation 
programs with PROSE, we define the following: 

• Syntax: a text file defining the syntax of the transformation languages as a context free 
grammar. 

• Semantics: a static C# class defining the operational semantics of each symbol of the 
grammar. That is an actual implementation of what each of the spreadsheet transformation 
language operations does. 



 

 

• Witness Functions: a static C# class defining the inverse semantics of each symbol in the 
grammar. A witness function deduces information for a parameter of a function, given some 
information about the entire function. For example, consider the column renaming function 
Rename(S, OldColumnName, NewColumnName), which returns S'– the spreadsheet 
S, but with the name of the column OldColumnName changed to NewColumnName. A 
witness function of Rename for S is then:  

WS(S')= Rename(S', NewColumnName, OldColumnName) 

• Scoring Functions: a static C# class defining a scoring function of each symbol in the 
grammar. That is, we inductively define a score of the entire transformation program, based 
on its components. For example, we adopt an Occam's razor approach -- the longer a program 
is, the lower its score is, as we believe that the most probable program the user wanted, is the 
simplest one that explains the input-output example. 

The above definitions allow PROSE to find spreadsheet transformation programs that are likely to 
describe the user’s intent, based on the example the user has provided.  

5. Discussion 

We have presented a context in which users face a very specific end-user programming problem 
arising from the need to restructure data from one loosely constrained context (a configurable 
information system) to another (exploratory statistical analysis). It appears that many of the 
challenges they face could be addressed by an example-based interaction approach, in which they 
would demonstrate the data format that they need, and that this demonstration could be used to 
synthesise a data transformation program. We have presented an overview of a program synthesis 
approach that could be used for this purpose, if made sufficiently accessible.  

In a companion paper (Gorinova et al 2016), we propose an interaction paradigm called Data Noodles, 
that we hope will be accessible to users, while offering sufficient power to achieve the data 
transformations appropriate to this application domain. In future, we plan to integrate ontological 
representation elements into this paradigm, in a way that will help constrain the statistical analyses 
that might then be carried out with such data. 
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