Problem-Solving Applications in Developer Environments

Nicholas Nelson
Electrical Engineering & Computer Science
Oregon State University
nelsonni @oregonstate.edu

Abstract

Programming is inherently a problem solving exercise: A programmer has to create an understanding
of the situation, externalize and contextualize thoughts and ideas, develop strategies on how to pro-
ceed with the task, enact changes according to the most appropriate strategy, and reflect to learn from
each problem. Therefore, programming is clearly more than just code input, testing, and maintenance.
However, modern development environments largely focus on the “writing code” parts of programming.
To support all aspects of problem solving in programming, we propose a new Integrated Development
Environment (IDE) which uses a dynamic, expressive, and human-centric cards and canvas paradigm.

1. Introduction

Modern Integrated Development Environments (IDEs), such as Eclipse, IntelliJ, and Visual Studio, rely
upon a fairly uniform interface of panes and windows to contain code and support different development
lifecycle tasks. However, recent shifts toward distributed, service-oriented, and highly parallel software
development have seen IDEs struggle to coup with the needs of developers. These developers have
increasingly demanded tools that provide realtime feedback which integrates with both collaborators
and customers that are increasingly embedded within the development model.

The pressure to add features that accommodate these interconnected development models has forced
several IDE developers to rethink the core architectural designs of their environments. We believe that
an entire reimagining is necessary in order to develop IDEs into general-purpose Problem Solving En-
vironments (PSE).

2. Research Approach

We first surveyed the literature from the perspective of programming as problem solving, and found
several activities that developers employ when programming. These activities which can be partitioned
into six categories (Activities), with specific actions that represent in more detail how the high-level
activities manifest themselves in practice (Actions). Clearly, not every task involves all of these problem
solving actions, and there is no linearity to the order in which they are employed. Sometimes an action
may not even be observable when it takes place solely in a programmer’s head. To support programming
as problem solving, we proposed a new kind of IDE; a card-based IDE.

Our preliminary work will be utilized as the foundation for our IDE, which will iteratively focus on pro-
viding support for problem solving activities as development matures. We are iteratively designing this
cards-based IDE, with the final goal of comprehensively supporting problem solving in programming,
While doing this we will build and extend existing work, namely Code Bubbles (Bragdon et al., 2010),
Variolite (Kery, Horvath, & Myers, 2017), PatchWorks (Henley & Fleming, 2014).

The IDE will be composed of an open canvas containing cards, which come in a variety of different types
(code, text, sketches, web resources, etc.) and can be stacked and grouped according to the problem
solving needs of developers (see Figure 1). Each card include a top bar containing a title and controls
for going into fullscreen mode or closing a card. Within each card is multiple card faces representing
different aspects of the same content (metadata regarding interactions with that particular card, static
analyzer output for a piece of code, or links to references made throughout a GitHub project in regard to
the issue contained within that card, different versions of a file saved within version control), which can
be accessed using a swipe motion either via touchscreen or mouse.



Figure 1 — Cards-based User Interface of a Problem-Solving IDE

Code Editor - Java 1.6 @ & Code Editer - Java 1.6~ @ &

For example, as a user, Sally has a GitHub issue card open in order to gain an understanding of the
problem that she is preparing to resolve (Figure 1-1). Swiping through the related faces of the card, she
finds links to both a design document and an email that are related to this issue; she opens them into
separate cards and groups them into a stack (Figure 1-2). She needs to alter the current design, so she
makes some sketches directly onto the design card. While exploring potential solutions, Sally finds a
StackOverflow posting that contains sample code that would be helpful (Figure 1-3). She moves that
postings into a card and groups it with the GitHub issue and the previously stacked design and email
cards, and adds a quick annotation to provide contextual relevance to other developers and herself.

Once she has developed a strategy, she opens the relevant code file into a card and begins enacting the
changes necessary to resolve this issue (Figure 1-4). As her solution takes shape, Sally realizes that
her changes are large enough to require a code review. She selects the two code cards that contain her
current solution and shares them with Mark (Figure 1-5). During their review session, Mark and Sally
both make changes to the code and are able to simultaneously keep track of each others progress and
focus on their own code.

In this new environment, new cards are generated by opening files, selecting and extracting content
from other cards, or via card sharing with collaborators. This sharing functionality provides a permis-
sions model that allows developers to share specific cards (or groupings of cards) either in a read-only
mode which retains control of the content for the owner, or a synchronized editing mode that allows
simultaneous updates to occur from all collaborators.

Our goal with this IDE is to explore a new paradigm of interactions. The types of interactions that
best facilitate problem solving is an open problem. Therefore, we plan to conduct several user studies
regarding the different potential interactions made possible by a cards-based IDE. We hope to develop
both a platform for future research, and a development environment that addresses the problem solving
needs of real-world developers.

3. References

Bragdon, A., Zeleznik, R., Reiss, S. P., Karumuri, S., Cheung, W., et al. (2010). Code Bubbles: A
working set-based interface for code understanding and maintenance. In CHI (pp. 2503-2512).

Henley, A. Z., & Fleming, S. D. (2014). The Patchworks Code Editor: toward faster navigation with
less code arranging and fewer navigation mistakes. In CHI (pp. 2511-2520).

Kery, M. B., Horvath, A., & Myers, B. A. (2017). Variolite: Supporting exploratory programming by
data scientists. In Chi (pp. 1265-1276).



