
Towards Webcam-based Eye Tracking in the Eclipse IDE

Sebastian Lohmeier
Freie Universität Berlin and eCube GmbH

sl@monochromata.de

Abstract
Eye tracking is used in program comprehension research and is potentially useful for enhancing inte-
grated development environments (IDEs). While eye tracking plug-ins exist for the Eclipse IDE, eye
trackers do not typically work on operating systems other than Windows. To make empirical studies ac-
cessible to programmers working on Linux or MacOS, a recently presented webcam-based eye tracker
is being adapted to the Java platform and provided as a plug-in for the Eclipse IDE. The eye tracker
shall demonstrate eye tracking in the IDE without external devices to stimulate ideas of how to improve
webcam-based eye tracking and how eye tracking could be used to improve program comprehension
research and IDEs.

Introduction
Progress has been made in recent years in integrating eye trackers into the Eclipse IDE (Shaffer et al.,
2015; Lohmeier, 2015) and iTrace of Shaffer et al. (2015) is now open source. Eye tracking requires an
eye tracker, though. Looking at commercially-available remote eye trackers, they are either prohibitively
expensive, come with restrictive licensing terms, or are only available for Windows. The situation might
be due to a chicken and egg problem: Few eye trackers are sold (at high prices) while the eye tracking
killer app is yet to be found and eye tracking is not used due to high prices, making it hard to imagine
an eye tracking killer app. It is therefore desireable to strive for low-cost eye trackers – both to ease eye
tracking studies in the field and to be able to support programmers’ work via eye tracking.

Webcam-based eye tracking
Webcam-based eye tracking has recently drawn attention with eye trackers based on constrained local
models (CLM) that use mouse and keyboard interaction for implicit calibration. This form of calibration
seems well-suited for the use of eye tracking in programming where participants sit in front of the com-
puter for a long time and mouse and keyboard are used frequently. WebGazer and PACE are examples
of such eye trackers.

WebGazer is a JavaScript-based in-browser eye tracker that is implicitly calibrated instantaneously via
relatively few mouse clicks and mouse movements (Papoutsaki et al., 2016). Its authors report an average
error of at least 100px between gaze and corresponding click locations from a study of 82 participants
with normal vision, contact lenses, and glasses who were free to move their heads and took less than 10
minutes per participant on average.

PACE is an eye tracker for desktop applications that uses a webcam and is calibrated using hundreds of
mouse and keyboard events (Huang, Kwok, Ngai, Chan, & Leong, 2016). The authors report an average
accuracy of 2.56◦ of visual angle from a study with 10 participants that created at least 1500 interaction
events each during 4 hours on average. PACE is interesting because it is based on a careful study of user
interaction that might be suitable for programming tasks as well.

Eclipse plug-in
Like Papoutsaki et al. (2016), the Eclipse plug-in uses https://www.auduno.com/clmtrackr/
for face tracking. Because Clmtrackr is implemented in JavaScript, J2V8 is used: it embeds the V8
JavaScript engine of Google Chrome in Java. An SVM is trained using eye images and mouse coordi-
nates to predict gaze after training. The plug-in works with glasses and contact lenses and is tested on



Linux, Mac OS, and Windows. It is a proof-of-concept so far and requires further development, before
its tracking accuracy can be evaluated. It will also be necessary to consider Huang et al. (2016) to iden-
tify forms of mouse and keyboard interaction during programming that are suitable for training the eye
tracker.

Psychology of programming
The Eclipse plug-in is motivated by work like Lohmeier (2016) that aims at a cognitive model of program
comprehension. Records of eye movements are input into that model to construct one (out of many)
plausible representations of a programmer’s memory of source code. These representations can be used
to predict knowledge-related comprehension difficulties of individual programmers – parts of the code
that integrate less known information might be hard to comprehend. Both working memory and long-
term memory might be covered. Collecting such records might be feasible with low frequency and low
accuracy webcam-based eye trackers.

One of the key challenges for such applications will be to shape problems in such a way that (a) permits
the error that the low accuracy of webcam-based eye trackers introduces and that (b) capitalizes on the
easy availablility of webcam-based eye trackers. One of such problems might be the identification of
potential referents of a referring expression: Instead of presenting an exhaustive list of all identifiers in
a program that are equal to the referring expression, potential referents from the programmer’s field of
view might be presented.

It would also be interesting to interpret eye tracking data to identify potential comprehension difficulties.
It is yet unclear whether webcam-based eye trackers will be able to deliver data fast and accurate enough
for such tasks and in sufficient amounts, though.

Webcam-based eye tracking lowers the barrier for industry programmers to participate in studies that
use eye tracking to study program comprehension. Another idea behind the eye tracker plug-in is to
have software developers consider eye tracking and become creative with this new input device in order
to see what kinds of scenarios eye tracking could be useful for and to reflect on what happens when they
read and write source code.

Conclusion
The current work shows that porting the concept of webcam-based eye tracking to a Java IDE is feasible.
The described eye tracker plug-in shall make eye tracking in the Eclipse IDE accessible on a variety of
operating systems. It is yet to be shown whether the interactions between programmers and IDEs are
suitable for implicit calibration of the eye tracker. If that is the case, webcam-based eye tracking po-
tentially provides easy access to low accuracy eye tracking data to improve IDEs and facilitate program
comprehension research.

References
Huang, M. X., Kwok, T. C., Ngai, G., Chan, S. C., & Leong, H. V. (2016). Building a personalized,

auto-calibrating eye tracker from user interactions. In CHI 2016 (pp. 5169–5179).
Lohmeier, S. (2015). Experimental evaluation and modelling of the comprehension of indirect

anaphors in a programming language. Version 1.3. Retrieved 2017/05/15, from http://
monochromata.de/master_thesis/

Lohmeier, S. (2016). A formal and a cognitive model of anaphors in Java. In PPIG 2016 (pp. 32–35).
Papoutsaki, A., Sangkloy, P., Laskey, J., Daskalova, N., Huang, J., & Hays, J. (2016). Webgazer:

Scalable webcam eye tracking using user interactions. In IJCAI 2016 (pp. 3839–3845).
Shaffer, T. R., Wise, J. L., Walters, B. M., Müller, S. C., Falcone, M., & Sharif, B. (2015). iTrace:

Enabling eye tracking on software artifacts within the IDE to support software engineering tasks.
In ESEC/FSE 2015 (pp. 954–957).


