
1

User experiences in a visual analytics business

Mariana Mărășoiu
Computer Laboratory
Cambridge University

Mariana.Marasoiu@cl.cam.ac.uk

Alan F. Blackwell
Computer Laboratory
Cambridge University

Alan.Blackwell@cl.cam.ac.uk

Abstract
We report on an ongoing ethnographic study conducted at a data analytics company and discuss the
multiple facets of user experience observed in this context. We describe in detail two interaction
episodes of analysts working with visual analytics software and characterize them through the
Patterns of User Experience framework. We discuss the implications of our observations and make
some recommendations for future tool design.

1. Introduction
The way in which businesses use data is changing, with more and more companies relying on visual
analytics for monitoring, improving or shaping their business. This can be done either in-house, or it
can be contracted out to specialized visual analytics consultancies. Together with the increased
interest in the larger population for analysing data, it is becoming ever more important to build tools
that support this work.

Ethnography and ethnographically informed methods have been previously used in studies of
software engineering in order to understand and describe the social context and work practices of
engineers in a variety of settings, for example agile development (Sharp & Robinson, 2004) and
professional end user development (Prior et al., 2008). At PPIG, ethnomethodologically informed
ethnography has been used to discuss programmers reading code by Rooksby and colleagues (2006).
They have also been used to study end user programmers (e.g. Nardi & Miller, 1990). Sharp and
colleagues highlight the importance of ethnographic studies in the context of empirical software
engineering research (Sharp et al., 2016), but their discussion can be extended to other studies of
professionals that work with computers on a daily basis. One such group are data analysts.

Recent work studying data analysts includes an interview study of 35 data analysts from various
industries (Kandel et al., 2012). The study characterized the process of data analysis in a real-world
industrial context, by categorizing three types of analysts on the dimension of tool use, and classifying
the activities that the analysts engage in with regards to data processing. We add to their work through
an in-depth study of a small group of analysts that specialize in visual analytics for exploring,
understanding and reporting data.

In this paper, we use the Patterns of User Experience framework (Blackwell, forthcoming; Blackwell
& Fincher, 2010) to characterize ethnographic descriptions, highlighting the experiences we observed
the data analysts having whilst they worked working with visualisation tools. We also observe the
commonalities between the work of the analysts and previously studied programming-related
activities and behaviours. We present these observations alongside ethnographic “thick descriptions”
(Geertz, 1973), a format which allows us to discuss the experiences of the analysts in the context of
their work.

2. Methodology
The study started in August 2016. The first author was the single observer, and visited the office of
Atheon Analytics one day a week, almost every week, for a total of 27 times until the submission of
this paper. The observer aimed to take part in day-to-day activities, by attending meetings, having
informal discussions with the analysts, observing them at work by sitting next to them, and working at
her own laptop at a nearby desk in order to capture the shared office environment.

In the chosen setup, due to the researcher not being trained as an analyst and the relatively sparse
visits, there was limited opportunity for more in-depth participation in the work activities of the team,
such as working on models and dashboard development alongside the analysts. However, the ability

2

The desks of the consultancy team

to observe the team over several months offered insights into their work that a shorter but more dense
study wouldn’t have provided. For example, we were able to observe a wide range of activities and
projects, as well as how the projects evolved through various stages of requirements gathering,
planning, design, implementation and customer support.

3. The background
To situate the observed episodes that are described in Section 4, we first describe the context of the
ethnographic study, the setting and the people observed, and then give a short description of Tableau1,
a commercial software for data visualisation used by the analysts.

3.1 The setting
The office is located in the Cranfield Innovation Centre, a one-storey office building within the
Cranfield University Technology Park. The Park is located outside the Cranfield village, next to the
Cranfield Airport, on the road that leads from the village to the university. The team first moved here
in 2012 from Luton, and since then they have expanded to larger offices twice more, but within the
same building. One such moved happened during the study reported here, in December 2016.

Atheon initially started as two separate businesses, Atheon Consulting and Atheon Software Products,
which were merged in 2010 under a single name, Atheon Analytics. However, the dual nature of the
company has been maintained over the years, as Atheon Analytics offers both consulting services and
products for retailers and suppliers. At present, the company has around 22 employees, 4 of which are
formally part of the consulting team, alongside the managing director. The study reported here has

been conducted by observing this team.

Figure 1. A photo of the office2 and a sketch of the office plan.

The office is open plan, with desks having partition screens on the long edge. The partition screens
were added after the last move and they weren’t present in the office when the study started. Each
desk of the team members has one or two monitors, but no desktop computers - all the work is done
on laptops, with the external monitors connected for additional screen space. A photo and a sketch of
the office can be seen in Fig. 1.

The office has a kitchen and a meeting room, both of which got larger when the company moved
offices. Besides the usual appliances, the current kitchen has a whiteboard and a table, where people
eat, chat or sometimes even have meetings (when the meeting room is occupied).

3.2 The consulting team
The consulting team is located in the far left corner, the 4 analysts working at a four-desk island
(highlighted in Fig. 1). The managing director and CEO, who organizes most of the consulting
projects and also contributes with analyses sits at an adjacent desk on the right side. The other
technical teams are on the other side of the common play area.

1 https://www.tableau.com/
2 From http://atheonanalytics.com/news/2016/12/5/atheon-moves-to-its-largest-office-yet

3

The team has one weekly meeting, usually scheduled for Monday morning, sometimes moved later in
the week, where they go through the projects that they’re working on, update each other on progress,
decide the state of the project for the upcoming week, and add new projects. Usually, there are
between 5 and 8 projects that the team is actively working on, with another 5 to 8 in wait, depending
on other people, and around 20 more possibilities of future projects.

The projects are diverse, ranging from one-off analytical pieces where the output is a presentation of
the insights, to building bespoke “tools” for clients that will be used in business decision making, and
to maintaining and adding new features to SKUtrak3, a Tableau-based product that the company
provides as a service to a number of retailers and suppliers.

This wide range of projects is interesting for multiple reasons. First, the analyst takes on multiple
roles. One is that of the typical data analyst where they’re asked to analyse some data and report on it.
Another set of roles are those related to building a software product, so the analysts themselves are
gathering requirements, designing an interface, develop it and then maintaining it. From our
observations, the latter is more prevalent in the work of the team we studied.

3.3. The software used by the analysts
The main visual analytics tool used by the team is Tableau, a commercial software package that
allows rapid creation of interactive visualisations and dashboards of visualisations. Tableau is based
on previous work visualisation techniques for data cubes and relational databases (Stolte et al., 2002).

The result of a project is often a Tableau workbook. Tableau’s file organization is similar to that of
Excel: a workbook is a file that contains one or more sheets, which can in turn be worksheets,
dashboards, or stories. A worksheet contains a single “view” of the data, for example a table or a
chart. A dashboard consists of one or more views laid out on a canvas area. Fig. 2 shows a screenshot
of the interface for creating a visualisation worksheet, to aid understanding of the user interaction with
the software we describe in the next section.

Figure 2. A screenshot of the Tableau data “view” interface.

Whilst most of the observations were conducted when the analysts were using Tableau, they are using
a large number of other tools that help them for specific tasks. For example, Alteryx, a data flow
programming language, is being used for data processing and data blending, Excel is being used for
some analytical tasks and tracking requirements, PowerPoint is used for creating anticipatory sketches
of a data visualisation or for presenting results, SQL for querying databases, and Python scripting
within Jupyter notebooks for predictive analyses.

3 https://www.skutrak.com/

4

4. Findings
In this section, we discuss two observed instances of analysts working with Tableau and other tools.
We offer rich descriptions of each observed episode, and, in parallel commentary, a) discuss them
using the Patterns of User Experience framework in order to describe the experience of the analysts as
they’re using their tools (green text), and b) highlight programming-related activities (blue text). The
names in the descriptions are fictional.

Due to the context in which our analysts work, we can describe two types of experiences, depending
on who the user is. First, we can analyse the designed customer-experience: the experience that the
analysts aim to design in their tool for their clients. Second, we can observe and discuss the analyst-
experience, that is, the experience of the analyst as they’re building the tool. This dichotomy of
experiences appears since both the analysts and the clients use the same underlying software, with the
analysts having the knowledge to “program” against it (to create complex visualisations and
dashboards, program filters, actions and interactions, etc.), whereas the client is using the resulting
dashboards in an interactive, but read-only mode (they’re interested in understanding today’s data
with the given visualisations, not in creating new dashboards).

4.1 Preparing for a workshop with a client
John explains to me what he’s working on today: “I have a
training session coming up later this week [so I’m now
figuring out what they need]. [...] They also gave me a
shopping list of stuff [that they want to do]” during the
training session, so John is going through that list to make sure
he is prepared for the meeting. I only notice this later, but he
has a spreadsheet with the requirements from the client team,
where he also takes notes of the things that should be brought
up during the training session.

The spreadsheet of requirements fulfills
an equivalent role to that of a feature
tracker in professional software
engineering.

For now, he’s adjusting the width of some Filter widgets in a
dashboard. He does this by following the same set of steps for
each of the filter: from the menu dropdown of the filter widget
he selects “Fixed width”, then enters 180 as the new pixel
width of the widget.

Figure 2. Menu for editing the width of a filter widget

Following this, he renames the sheet by adding “ - Working”
at the end, then duplicates it and starts to change the previous
one more substantially.

This activity could be described within
the PUX framework as a modification
activity - the widgets already exist, and
the analyst is only changing their
appearance. With regard to the designed
customer-experience, the goal of this
activity is to improve the experience of
meaning, and in particular, ME3: Similar
things look similar. From the analyst-
experience perspective, the interface
enables to some extent IE2: Actions are
fluid, not awkward and PE2: The steps
you take match your goal - the sequence
of steps is easy to remember, but it is not
supporting PE5: Repetition can be
automated.

We also notice a strategy for version
control: the analyst creates a checkpoint
by duplicating a sheet, renaming it with
a description of it’s current state, in
order to make more substantial changes
to the initial sheet.

I observe him doing something more complicated in order to
get the title of a chart to appear at the top of the chart rather
than at the bottom. After he’s finished, I ask him what he just
did, so I can understand what he did and why, as it wasn’t
straightforward from just watching him. He undoes part of the
changes he made and walks me through them, explaining what
he did.

5

Starting with a dashboard that has a table on the left side and a
bar chart on the left, he goes to the sheet describing the bar
chart. He duplicates a pill (Tableau’s name for field names
which comes from their visual representation, e.g.

) that already exists in the column shelf,
defining the bars of the chart. This creates a new visualisation
side by side with the existing visualisation. He then makes the
marks of this new visualisation fully transparent, and then
merges the two visualisations into a single, dual-axis chart. He
then hides the axis and title at the bottom (which corresponds
to one of the charts) and he also hides the axis at the top, but
maintains its title (this corresponds to the other chart). He
explains that he did this so that the chart design could match
the table in the dashboard where they are put side by side.
John mentions that “in Tableau 10 you can have a grand total
in a table and you can chose to have that at the top. But they
haven’t introduced it for charts.”

Even though this is a more complex
situation, the end goal is still a change to
an existing dashboard - a modification
activity. Analysing the designed
customer-experience, the change would
enable the experience ME3: Similar
things look similar. The experiences of
the analyst are similar to that of
performing a work-around in the system
to get what they want, which is reflected
in their last comment. As such, the
relevant patterns of experience that are
not supported by the interface are IE1:
Interaction opportunities are evident,
IE2: Actions are fluid, not awkward,
IE3: Things stay where you put them and
TE1: You don’t need to think too hard.
However, the ability to employ such
hacks to achieve a desired goal could be
an encouragement for creativity (patterns
CE1: You can extend the language and
CE4: Anything not forbidden is allowed
apply).

Another request from the clients is for him to give them an
explanation for blending data sources, and John mentions that
he’s going to use a blog article he wrote, which discusses
blending vs. joins as a starting point for the training session.
John mentions at this point that the client team uses an Excel
spreadsheet to select the stores they want to look at. He
mentions that one of the disadvantages of using Tableau is that
you can’t enter data into it - data comes from external sources.
However, “for something that works with databases, that’s
probably a good thing”. The way that John is getting around
this limitation is to use a spreadsheet file as a data source, join
it with the other data sources, so changes to the spreadsheet
followed by a refresh in Tableau updates the visualisations.

In this case, the analyst performs an
incrementation activity, by adding a new
data source and combining it with the
existing ones. This would later enable
modification as an activity for the client
(changing the data in the spreadsheet and
visualising the change in Tableau), as
well as sense-making (analysing the new
data).

Before discussing the patterns of
experience, we should note that there is
one feature of Tableau has the highest
effect on the other patterns. This is the
ability to work with data only in read-
only mode. On one hand, this enables
pattern IE4: Accidental mistakes are
unlikely, as data cannot be changed
accidentally in Tableau. On the other
hand, it limits the things one can do in
Tableau.

Looking at the example above, in the
context of modifying data in Excel and
visualising the change in Tableau, the
experience pattern IE2: Actions are
fluid, not awkward is hindered, as the
user (whether analyst or client) needs to
switch between multiple applications to
generate changes in the visualisation.

4.2. Implementing feature requests from clients
Today I’m watching Emily work. Eric, the team manager who
sits next to her, mentions that they have some quick fixes for a
project that they need to do, asking if she would like to do
them. She says “Yeah sure” and Eric continues that some of it
is tooltip changes, and a few other things. He says that they

6

don’t have to do them, they’re not urgent, but Emily switches
and starts working on this immediately. Eric sends her the
spreadsheet link on Hangouts that contains the list of the
requested changes to the dashboard tool. They chat a bit about
the changes she needs to make - the spreadsheet has several
columns, including a description of the desired change,
estimated time, status and notes.

We again notice the use of spreadsheets
for keeping track of feature requests,
similar in purpose to the feature trackers
used by software engineering teams.

Emily starts with the first requirement, a tooltip edit. She goes
to the visualisation whose tooltip needs changing, then opens
the “Edit tooltip” window and makes some changes to the text
and the format. She closes the window, then hovers over a few
data points to see how the tooltip looks. She then opens the
tooltip editor window again and makes some more changes to
the formatting. She does this several times, until she’s happy
with how the tooltip looks.

Within a PUX description, the activity
Emily engages in is modification: she
desires to change the tooltip text and
format.
The experience of interacting with the
tooltip when hovering over a data point
is characteristic of IE1: Interaction
opportunities are evident and IE2:
Actions are fluid, not awkward.
However the experience of editing the
tooltip is more problematic. There is a
lack of PE3: You can try out a partial
product - the interface doesn’t allow her
to interact with the tooltip in the
visualisation whilst she’s editing the
contents of the tooltip. This also inhibits
TE5: You are drawn to play around, as
the back and forth between the tooltip
editor and the visualisation can be
perceived as frustrating.

Once she has decided on a format and content structure, she
goes through multiple sheets that need to have a similar tooltip
and makes the same changes there as well, one by one.

Once she’s done with the tooltips, she marks it as done in the
requirements sheet and moves to the next one.

PE6: Repetition can be automated is
relevant here: she doesn’t have the
ability to automate the change across all
other similar tooltips, she has to
manually edit each of them.

In the meantime, the project manager of another team comes
over to Eric’s desk and they chat for a bit about another
project. Emily takes a short break and goes to make herself a
tea.

Once Eric finishes the chat, Emily asks him about some of the
tasks in the spreadsheet which she’s marked with “???” in the
“Notes” column.

For the first one, Eric points to a chart which needs changing
on a specific dashboard from the workbook.

Emily taking notes of her progress is an
incrementation activity, with the most
relevant experience being ME5: You can
add comments.

For the second one he tries to explain what the client wants.
He takes a piece of paper from his desk and draws a chart
saying that this is what the thinks that the client expects. Emily
seems slightly confused and comments that in the dashboard
it’s a rolling week, so the chart shows a full week of data, and
that “[she hasn’t] seen anything with missing data”. She opens
the calculation of the field that is shown on the chart, and they
discuss what the formula is trying to do.

After some discussion, Emily says: “This is basically saying,
it’s doing the difference between the dates, and for some
reason it’s adding a 2”.

Emily and Eric are talking about the calculation looking at

We observe here Eric sketching a chart
in order to support the conversation (an
exploratory design activity pattern), and
the use of a different medium than
Tableau: the pen and paper.

When the Tableau visualisation is
brought back into the focus of the
discussion, the analysts collaboratively
aim to understand the calculated fields (a
sense-making activity within the PUX
framework). From a programming
perspective, the analysts are debugging.

7

their calendars, trying to figure out why “it’s adding a 2”.
Emily opens the formulas for “<Project> week” and “Calendar
week” repeatedly, so that they appear on top of the other
successively, and they discuss the differences between them.

Eric suggests to see how the fields actually look against a
daily date. Emily makes a table in a new sheet, with “Date” as
first column, then “Max date”, and then the three similar
calculated fields. This creates a table similar to the one below.

Date Max date Week <Project> week Calendar week
… … … … ...

../../11 ../../28 -1 -2 -2

../../12 ../../28 -1 -1 -2

../../13 ../../28 -1 -1 -1

../../14 ../../28 -1 -1 -1

../../15 ../../28 -1 -1 -1

../../16 ../../28 -1 -1 -1

../../17 ../../28 -1 -1 -1

../../18 ../../28 0 -1 -1

../../19 ../../28 0 0 -1

../../20 ../../28 0 0 0

../../21 ../../28 0 0 0

../../22 ../../28 0 0 0

../../23 ../../28 0 0 0

../../24 ../../28 0 0 0

../../25 ../../28 1 0 0

../../26 ../../28 1 1 0

../../27 ../../28 1 1 1

../../28 ../../28 1 1 1

After Emily and Eric look at the table and have discovered
what the current behaviour is, they then discuss how the client
wants it and what changes Emily should make. They discuss
both how the visualisation at hand should be changed (Emily
says that the clients probably want the weeks with value 0 and
1 to be in the chart, rather than -1 and 0 as it is at the moment),
as well as how changing this visualisation would change the
others that might depend on the same formulas.

After deciding how the visualisation should look, Emily
spends some time working out how she can implement the
change in the calculated fields.

Eric’s suggestion to display the fields
can be compared to state tracing in
programming: displaying the internal
state of the program with the purpose of
debugging it.
The PUX activities are a combination of
Exploratory design (exploring solutions
for understanding the calculations) and
Transcription (creating the table once
the decision to create the table has been
taken).
The relevant patterns of experience for
the creation of the table are: IE2: Actions
are fluid, not awkward, IE3: Things stay
where you put them, IE5: Easier actions
steer what you do, as Emily only took a
few seconds to create the table.

However, the need to create the table in
order to understand the results of a
calculation suggests that visibility may
be an issue (VE1: The information you
need is visible).

This can be described as a design
discussion, where the analysts evaluate
what the expected behaviour of the
visualisation is and how it can be
implemented.

After some investigation, Emily turns to Eric and says “I’m
going to put in a parameter for this screen”. She explains that
many of the other charts in the rest of the model use the 0 and
-1 check for the weeks to be displayed, so if she changes the
formulas that compute “<Project> week” and the other fields,
it would affect the rest of the model. She then pauses and
comments that she would still have to edit all of them to put
the parameter in.

After a sidetrack in the discussion, Emily says that in order to
make the parameter work, she will have to duplicate all the
calculated fields on the current sheet to put the parameter in.
Or she will have to rewrite all calculated fields with the
parameter.

Eric says: “I suppose there’s no harm there, is there? That’s

This is a discussion that reflects
experiences of structure, and in
particular SE1: You can see
relationships between parts - Emily had
to take several minute to find out how
the calculations were interrelated, so the
relations were not immediately visible.
Also, the fact that changing one sheet
would affect the rest of the workbook
signals a problem for SE2: You can
change your mind easily - the
information structure in the software
makes it difficult to isolate changes to
one sheet.

8

the more elegant way [the second option].”

They go briefly through the other dashboards to see what
would be impacted by the change. They decide to put the
parameter in. Emily finishes the discussion mentioning again
why using a parameter would be a good idea: otherwise she
would have to go through and change 1 to 0, and that would
affect the whole model and it wouldn’t give her any flexibility.

The decision that the analysts need to
make her is one that is quite familiar to
programmers: the tradeoff between
increasing flexibility at the cost of
adding an abstraction and effort for
doing so, or in an Attention Investment
description (Blackwell, 2002), deciding
between the pay-off that future work will
be made easier and the risk that the
parameter will never be used anywhere
else. The decision is eased by the fact
that even if the parameter is not
introduced, Emily will still have to edit
all calculations that refer to the week
indices.

Emily returns to editing the dashboard. She creates a new
“Current/Full toggle” parameter. She then edits a calculation
using a large “if then/else” statement that depends on the new
parameter. She writes the code in, then checks it against the
helper table that she built, which is now on her secondary
screen. Her work now involves editing the calculations,
looking at the visualisations and seeing if anything changed,
taking some notes on her notebook, and toggling parameters
for testing.

Within the PUX framework, Emily
performs incrementation and
modification activities. She is familiar
with the interface for adding parameters
and editing calculations, so IE2: Actions
are fluid, not awkward and IE5: Easier
actions steer what you do apply for her.

She is also engaging in testing of the
feature she just built, often by comparing
the behaviour of the tool with her
expectations (comparison activities and
SE4: You can compare or contrast
different parts and VE1: The information
you need is visible are relevant here).

5. Discussion
We can observe that the analysts can be described both as end user programmers and professional
programmers - on one hand they are end users of Tableau, and are building visual analyses for
specific purposes, to answer analytical questions: the tool only matters to the extent that it allows
them to achieve their own goal. On the other hand, the dashboards that they are building are then used
by others, and the interactivity and ability to react to new data gives the analysts the ability to
generalize the models and “productionise” them.

This creates an opportunity for building tools to support such visual analysis activities, by analogy to
those which are traditionally found in software engineering. Previous research into introducing such
support for spreadsheets (e.g. for debugging and testing (Reichwein et al., 1999), and for code smells
(Hermans et al., 2015)) might be a useful starting point for improving such support for visualisation
tools.

Further reflecting on our analysis above, we can observe that the current tool used by the analysts,
Tableau, is sophisticated on some axes, but not on others. For example, the ability to do state tracing
by displaying data in a table has a higher throughput than stepping instruction by instruction, as in a
typical IDE for a textual programming language, and this can result in a quicker understanding of the
code being debugged. In this case, the interface supports IE2: Actions are fluid, not awkward and
PE2: The steps you take match your goals when the analyst creates the table, as well as TE1: You
don’t need to think too hard when interpreting the table. Capabilities for finding out where a measure
is used do exist in Tableau, as in modern IDEs. However, the global extraction of a parameter in the
second episode is made harder by the lack of ability to search and replace through all calculated
fields, resulting in poor experiences of structure and interaction (in particular SE1: You can see
relationships between parts and IE2: Actions are fluid, not awkward are problematic). Refactoring
features are available in most modern IDEs. Another area in need of improvement is version control -

9

as we have seen, duplication of a sheet is one strategy, but it is limited and prone to errors (as we have
observed on a different occasion, a sheet was duplicated and renamed, but the modifications that
followed were done in the wrong sheet of the two).

The analysts we studied were often engaged in maintaining software (Tableau dashboards) that they
previously shared with others (clients, other team and company members). However, while clearly
engaging in programming activities, the analysts refer to themselves not as “visualisation developers”,
but as “data animators”4. This suggests that they view their practice more creatively, and that the
purpose of their work is not the tools they create, but helping their users gain insights into their data
through the tools.

6. Conclusion
We presented two ethnographic descriptions of work typical for a visual analytics consultancy, taken
from an ongoing study. We used the PUX framework as a tool for characterizing these rich
descriptions, in order to discuss the experiences of the analysts as they go about their work. We
discussed two types of experiences - the designed-customer experience and the analyst experience,
and observed that these are often distinct. We also observed that the analysts engage in a number of
programming-related activities, which could be better supported by future tools.

7. Acknowledgements
Mariana is a Vice-Chancellor’s Scholar and is supported by an EPSRC industrial CASE studentship
co-sponsored by BT. She is also supported by a Qualcomm European Research Studentship in
Technology.

We would like to thank Atheon Analytics and their consulting team for agreeing to participate in this
research and welcoming the first author to conduct the study in their office. We would also like to
thank Luke Church for discussions of ongoing work and for his comments on this paper.

8. References

Blackwell, A. F. (forthcoming). A pattern language for the design of diagrams. In C. Richards (Ed.),
Elements of Diagramming.

Blackwell, A. F. (2002). First steps in programming: A rationale for attention investment models.
Proceedings - IEEE 2002 Symposia on Human Centric Computing Languages and
Environments, HCC 2002, 2–10.

Blackwell, A.F. & Fincher, S. (2010). PUX: Patterns of User Experience. Interactions 17(2), 27-31.

Geertz, C. (1973). The interpretation of cultures: selected essays. Basic Books.

Hermans, F., Pinzger, M., & van Deursen, A. (2015). Detecting and refactoring code smells in
spreadsheet formulas. Empirical Software Engineer, 20(2), 549–575.

Kandel, S., Paepcke, A., Hellerstein, J. M., & Heer, J. (2012). Enterprise data analysis and
visualization: An interview study. IEEE Transactions on Visualization and Computer Graphics,
18(October), 2917–2926.

Nardi, B. A., & Miller, J. R. (1990). An ethnographic study of distributed problem solving in
spreadsheet development. In Proceedings of the 1990 ACM conference on Computer-supported
cooperative work (pp. 197–208). ACM.

Prior, J., Robertson, T., & Leaney, J. (2008). Situated Software Development: Work Practice and
Infrastructure Are Mutually Constitutive. In 19th Australian Conference on Software
Engineering (pp. 160–169). Perth, Australia: IEEE.

4 https://dataanimators.com/

10

Reichwein, J., Rothermel, G., & Burnett, M. (1999). Slicing spreadsheets: An integrated methodology
for spreadsheet testing and debugging. ACM SIGPLAN Notices.

Rooksby, J., Martin, D., & Rouncefield, M. (2006). Reading as part of computer programming. An
ethnomethodological enquiry. In P. Romero, J. Good, E. Acosta Chaparro, & S. Bryant (Eds.),
Proceedings of the 18th Workshop of the Psychology of Programming Interest Group (pp. 198–
212).

Sharp, H., Dittrich, Y., & de Souza, C. (2016). The Role of Ethnographic Studies in Empirical
Software Engineering. IEEE Transactions on Software Engineering, PP(99), 1–1.

Sharp, H., & Robinson, H. (2004). An Ethnographic Study of XP Practice. Empirical Software
Engineering, 9(4), 353–375.

Stolte, C., Tang, D., & Hanrahan, P. (2002). Polaris: a system for query, analysis, and visualization of
multidimensional relational databases. IEEE Transactions on Visualization and Computer
Graphics, 8(1), 52–65.

Stolte, C., Tang, D., & Hanrahan, P. (2002). Polaris: a system for query, analysis, and visualization of
multidimensional relational databases. IEEE Transactions on Visualization and Computer
Graphics, 8(1), 52–65.

